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Abstract—Despite the huge number of contributions dealing
with the evaluation of cellular networks performance, tackling
with more and more complex systems including multi-tier net-
works or MIMO systems, the fundamental limits in terms of
capacity in an information theory sense is not known for these
networks. Stochastic geometry helped doing a step forward,
relying on Palm theory and providing coverage statistic at the
network scale. However, this statistic is not sufficient to establish
a fundamental limit, namely to characterise a Shannon capacity
region of the network. In this paper, we propose a new approach
exploiting the cell capacity of the Spatial Continuum Broadcast
Channel (SCBC) recently introduced for an isolated cell. The
network capacity is linked to the cells’ geometry statistics in a
Voronoi tessellation. The fundamental limit is characterised by
the minimal average cell power required in a network modelled
as a Point Process (PP) to achieve a desired rate distribution.
A direct relation is established between this minimum average
power and the partial area statistics of the cells geometry, which
constitute a sufficient statistic. Our approach is validated through
Monte-Carlo simulations.

Index Terms—Cellular networks, Voronoi tessellation, Point
Processes, Stochastic geometry, NOMA, Fundamental limit.

I. INTRODUCTION

A. Motivation and related work

Stochastic geometry has been widely used for cellular
network performance evaluation since [1] and pioneering work
in wireless ad-hoc networks in [2, 3]. It provides a means of
evaluating in a simple manner the overall performance in a
cellular network from the local statistic around a reference
point and under the assumption of spatial stationarity. Most
of the literature published beyond [1], see [4] for a recent
overview, derive analytic results from the coverage statistic.
Despite the relative simplicity of the underlying propagation
models, the coverage statistic appeared to fit quite well with
real measurements [5]. However, this coverage statistic does
not includes the impact of cell’s load on joint rates. This
cell load is studied as a function of the Base Stations (BSs)
activity probability in [6, 7] and over a two-tier Poisson Point
Process (PPP) network in [8]. This cell load – defined as the
product of the mean packet size, the users density and the
cell area – is a good approximation of the sum-rate but does
not consider the relation between rates and radio link quality.
This relation is introduced in [9] for a noisy limited network
but relies explicitly on an orthogonal resource sharing strategy
inside each cell. In [10], the load in a single cell in the uplink
is formalised through the joint transmissions probability and
considering successive interference cancellation (SIC) but the
approach was not generalised to a multi-cell scenario.

None of the aforementioned results provide a fundamental
limit in the meaning of Shannon theory [11]. Remind that for a
point-to-point (P2P) channel, the Shannon capacity establishes
the maximal rate at which an information can be sent with an
arbitrarily low error probability when the coding block length
tends to infinity. The capacity thus represents a fundamental
limit that cannot be over-passed.

Evaluating an analogous result of the Shannon capacity for
a cellular network is the objective of this paper, under some
specific conditions. Following the model of [9], we consider a
noisy limited network. In our case, each cell is assimilated to
a Gaussian memoryless broadcast channel (BC). Its capacity
region is known and achievable with a superposition coding
(SC) strategy [12]. This gives rise to the unprecedented interest
for Non Orthogonal Multiple Access (NOMA) techniques
for 5G networks. Considering the BC model in a multi-cell
network is the core contribution of our paper.

Our approach relies on the characterization of the distri-
bution of cell’s geometry. The cell area statistics have been
investigated in the general framework of Poisson Voronoi cells
in [13, 14] and empirical models based on fitting a generalised
gamma distribution have been obtained. We will show below
that this statistic is not sufficient in our case and additional
knowledge is required.

B. Contributions and outcomes

The goal of this paper is to characterise the Shannon
capacity region of a noisy limited cellular network

Over the years,the P2P Shannon capacity theorem has
been extended to multi-user scenarios by Shannon himself
and others [12], through the definition of a capacity region.
Given a typical K-user scenario , e.g. the K-user BC, the
capacity region is characterised by the set of joint rates which
are simultaneously feasible. In Shannon’s wording, the rates
(R1, R2, . . . , Rk) are feasible if there exist a joint encoding-
scheduling strategy such that the transmission error probability
tends to 0 when the coding length tends to infinity. Note that
this coding length is usually measured in numbers of channel
uses (c.u.), and can be thought as a number of resource
elements used for a packet transmission.

The BC is a good abstraction for a radio-cell with K mobile
nodes in the downlink and is used in [15] to establish the
capacity region of a cell with a discrete set of nodes. It is
shown that a classical orthogonal resource sharing (e.g. TDMA
or FDMA) is not optimal for a large class of physical channels,
and gives rise to NOMA techniques. For Gaussian channels



(under Additive White Gaussian noise (AWGN)), the capacity
region is known and any point in this region is achievable with
superposition coding (SC) [12].

The Shannon capacity region of the Gaussian BC was
reformulated for a random distribution of users with the
continuum model, denoted SCBC in [16] to take into account
a distribution of nodes instead of a discrete set of nodes.
A SCBC is fully characterised by a cell geometry and a
probability density function ρ(x), with x ∈ C and where C
is the cell. ρ(x) is called the rate distribution of the cell, and
stands for the spatial random distribution of downlink rate
requests.

Definition I.1. A rate distribution ρ(x) is said achievable
under some power constraint, if a joint transmission scheme
exists such that the error transmission tends to 0 for all users
when the number of channel uses tends to infinity.

The SCBC Shannon capacity region is called the access
capacity region. The definition follows:

Definition I.2. The power constrained SCBC access capacity
region of a cell is the set of feasible rate densities ρ(x) for a
given power granted to the BS.

This access capacity region has been analysed in [17],
for a single isolated cell with regular pathloss and shad-
owing, through its alternative form, the fundamental energy
efficiency-spectral efficiency (EE-SE) trade-off (see sec. II-A
for details). At the network scale, this access capacity region
can be defined similarly and should characterise the set of
feasible rate distributions at the network scale. Unfortunately,
such an extension is not straightforward since it relies on high
order statistics of the cell’s geometry distribution in terms of
area and shape.

The aim of this paper is therefore to explore the relation
between the cell geometry distribution and the EE-SE trade-
off. It is worth mentioning that the following assumptions are
made for mathematical tractability purpose :
• Fast fading, static fading and shadowing are not explicitly

considered in this model1.
• Single antennas are only considered at both transmitters

and receivers. Considering multi-antenna BSs under per-
fect channel state information at the transmitter (CSIT)
is straitghforward but has been discarded due to the lack
of space.

• Interference between cells is not considered since this
paper focuses on the impact of the cell’s geometry. The
extension to interfering cells is still an open problem.

It is true that these assumptions simplify the derivation of
the network fundamental limits and may lack of realism.
Nevertheless, we believe that this model is a fundamental
key model of a cellular network, playing a similar role as
the Gaussian channel for a P2P transmission. The resulting

1In [18], any network (even an hexagonal lattice) with shadowing was
shown to be equivalent to a PP network without shadowing. This is true for
first order statistics, but not for higher order statistics as herein required.

Shannon P2P capacity (log2(1+ SNR)) deserved to be known
despite its simplicity.

The main results of this paper are as follows. In Theorem 1,
the fundamental EE-SE limit is established under the assump-
tions mentioned above. The expression of the minimal average
power required for a given rate spatial distribution from [16]
is extended at the network scale. In Theorem 2, a direct
relationship is established between this average minimal cell
power and a sufficient statistic of the underlying PP through
the area and partial area distributions, defined in Sec.II-C.
These distributions characterise the high order statistics of
the cellular network. This theorem is evaluated by extensive
simulations giving credit to the proposed formulation. The
price of randomness (in terms of transmission power excess) is
computed and analysed by confronting PPP and Matérn Point
Process (MPP) networks.

II. MODELS AND BACKGROUND

The cellular network is modelled with two PPs. One stands
for the BSs and the other for the node requests. The latter
is modelled with a PPP of density λT and lead to a uniform
spatial distribution of nodes. For the sake of simplicity, it is
assumed that each BS aims at transmitting non correlated and
independent information to its nodes with a fixed amount of
information per packet denoted I0. The rate spatial distribution
is therefore uniformand given by ρ0 = λT I0 expressed in
nat.cu−1.m−2, where cu stands for channel use. Each node is
associated to its nearest BS.

Let us consider a cell C of area |C| = A. Its average spectral
efficiency is η = Aρ0. Given a reference time T , the BS has to
serve a random selection of nodes (the sum rate is in average
T Aρ0), picked up randomly over the cell. For a given selection
of users, the K−user Gaussian BC is appropriate and has a
known capacity region [12], but this model does not capture
the users randomness.

A. Fundamental limit in a single cell

For the sake of completeness, this section summarises the
results from [16]. For each node k the received signal is
yk = xk + zk , where xk is the signal transmitted by the BS,
and zk an equivalent noise of variance νk = N0/lk where
lk = l(rk) is a continuously decreasing pathloss function and
rk the BS-node distance associated to the k th node. νk is call
the equivalent noise power in the rest of this paper. Hence,
the SNR at the receiver is given by γk := Pk/νk where
Pk is the power dedicated to the k th node. Each radio link
considered individually corresponds to a Gaussian P2P channel
subject to an average power constraint. Its fundamental limit
is given by the maximal spectral efficiency per channel use
ηk = 0.5 log(1 + γk) in nat.cu−1. Alternatively, the minimal
power density required to achieve a given spectral efficiency
is

Pmin = (e2η − 1)N0, (1)

where N0 is the receiver noise power density.
The joint fundamental limit of the k−user BC, when the

individual rates are all equal and where each node requires



(a) Uniform PPP

Voronoi tesselation of the LTE antennas in Lyon

LTE antennas Cells

(b) LTE antennas (c) Matérn

Fig. 1. Three Voronoi tessellations corresponding to a PPP (a), the LTE antennas of the city of Lyon (b) and a MPP (c) (Matérn hard-core type II point
process). Both PPP and MPP have the same density λP = λM = 200. The cells in periphery of the Voronoi tessellation of the LTE antennas may be much
larger than the average since we did not take into account the antennas of the adjacent cities.

the same SINR γ∗ is known and achievable with SC [12]. The
minimal power required at the BS is the sum of all individual
powers Psum =

∑K
k=1 Pk , where the nodes are ordered from the

nearest to the farthest point and where the individual powers
are

Pk=γ
∗ ·

(
νk +

k−1∑
i=1

Pi

)
. (2)

The additional terms in Pk stand for the intra-cell interference
due to SC, while the terms for i > k are cancelled with
successive decoding. Relying on this fundamental limit in a
Gaussian BC, we computed in [16] the minimal power in a
single isolated cell, taking the limit when T →∞, correspond-
ing to the Shannon asymptotic regime for the SCBC.

Let us define the cumulative density function (cdf) F(ν)
representing the sum-rate associated to all nodes with an
equivalent noise lower than ν, and let G(ν) and f (ν) be respec-
tively the corresponding complementary cumulative density
function (ccdf) and the probability density function (pdf).

By taking the limit T →∞, the minimal transmission power
per channel use for the nth cell was established as:

Pmin,n = 2ηn ·
∫ νmax

0
ν(ν) · e2ηn ·G(ν)dν, (3)

where νmax is the maximum equivalent noise, holding at
the cell edge. Note that static fading and shadowing can
be integrated in this model by computing an appropriate
distribution of f (ν).

Eq(3) characterises the fundamental EE-SE limits of this
cell by providing a lower bound on the minimum average
power required to achieve any desired rate distribution. It
relies on the cell properties (through f (ν) and G(ν)) and on
the sum-rate requirement, i.e. ηn. The attention of the reader
is drawn to the fact that this bound is only achievable with
SC and establishes a fundamental limit of a NOMA strategy.

This result is the keystone element used below to assess the
fundamental limit at the network scale.

B. Network elements

The network is modelled as a Voronoi tessellation derived
from a random PP of BSs with density λ. The Voronoi cell
associated to a BS is the set of closest points. More formally,
ΦBS denotes the set of all BSs. Let z ∈ ΦBS be a BS of the
PP. Its Voronoi cell C (z) is defined by

C (z) := {x ∈ R2 : ∀z′ ∈ ΦBS\{z}, ‖z − x‖ < ‖z′ − x‖}. (4)

The set of all the Voronoi cells forms the Voronoi tessellation
of the network as represented in fig. 1a for a uniform PPP.

This model based on a uniform random distribution of BSs
may not well describe a physical cellular network where the
BSs locations are partly correlated [3, 19]. For instance, see
fig. 1b for the Voronoi tessellation of the LTE antennas in
Lyon for the ISP Orange (according to the French National
Frequencies Agency data [20]). The Matérn Point Process
(MPP) is a modified model allowing to take into account
spatial correlations [21, 3] . In the rest of this paper, we will
consider the Matérn Hard-Core Process of type II defined in
[3]. Given rM the Matérn radius corresponding to the minimal
distance, a MPP is obtained through the following steps:

1. Generate the parent PPP ΦP = {xi} with density λP .
2. Give random marks {mi | mi ∼ U([0, 1])} to each point

xi ∈ ΦP where U([0, 1]) denotes the uniform probability
law in the range [0, 1].

3. For each xi ∈ ΦP:
i. For each xj ∈ ΦP with j , i, if mj < mi andxi − xj

 < rM , add the mark (4) to xj
4. Form a new point process ΦM with the

xi without the mark (4). In other words,
ΦM = ΦP\ {xi with the mark (4)}.



The new process ΦM is a MPP with density λM given by

λM =
1 − exp

(
−λPπr2

M

)
πr2

M

. (5)

An MPP, as in fig. 1c, can be easily generated from a PPP,
with a known density and providing more regular cells.

C. A sufficient statistic for cells geometry

The geometry (cell size and shape) impacts the fundamental
limit of the network. But, as shown in section III, the cells
areas and partial areas are a sufficient statistic. Considering a
single BS located in z and its Voronoi cell C (z), the total area
and two partial area measures as functions of a distance r > 0
as represented in fig. 2 are defined.

(a) Total area (b) Partial area (c) Compl. partial area

Fig. 2. The total area of a cell associated to a BS (black triangle) is represented
in (a). For a given distance r , the partial and complementary partial areas are
represented in (b) and (c) respectively.

1) Total area: A := |C (z) |, where |S | denotes the cardinal
of the set S.

2) Partial area (PA): The partial area is A(r) :=
| {x ∈ C (z) : ‖z − x‖ ≤ r} |.

3) Complementary partial area (CPA): The complementary
partial area is Ac(r) := | {x ∈ C (z) : ‖z − x‖ > r} |.

In a PP network, these areas are random variables
parametrised by λ and thus noted Aλ, Aλ(r) and Ac,λ(r). For
a normalised PP i.e. with a density λ = 1, the corresponding
variables are noted A, A(r) and Ac(r). We denote further the
moment generating function (MGF) of the CPA by:

MAc,λ(r) (t) :=
+∞∑
k=0

tkE
[
Ac,λ(r)k

]
k!

. (6)

Thanks to the scaling properties of the MGF, the following
relation between the CPA’s MGFs for a non normalised and
normalised PP holds:

MAλ,c (r)(t) =MAc (u)
( t
λ

)
, (7)

where u :=
√
λr is a normalised distance.

III. MINIMUM TRANSMISSION POWER IN PP NETWORKS

A. AMCP derivation

Let us introduce the partial sum-rate of the nth cell Rn(ν) :=
2ηnFn(ν) which corresponds to the sum-rate of nodes with
an equivalent noise lower than ν. The differential sum-rate
associated to Cn with respect to ν is then given by:

dRn(ν) = 2ηn fn(ν)dν. (8)

The complementary partial sum-rate, associated to the nodes
with an equivalent noise greater than or equal to ν is:

Rc,n(ν) = 2ηnGn(ν). (9)

With these definitions, the AMCP expression follows:

Theorem 1 (Average minimal cell power – AMCP). The
average minimal cell power in a PP network is

AMCP =
∫ νmax

0

(
E0

[
eRc (ν)

]
− 1

)
dν, (10)

where E0 [·] denotes the expectation for the Palm theory [2].

Proof. We can rewrite (3) using (8) and (9) as:

Pmin,n = −
∫ νmax

0
νdRn(ν)eRc,n(ν)dν (11)

(i)
= −νmax +

∫ νmax

0
eRc,n(ν)dν, (12)

where (i) uses partial integration. AMCP is then given by:

AMCP = En
[
Pmin,n

] (i)
= E0 [

Pmin,0
]
, (13)

where (i) derives from Slivnyak’s theorem (see [2]). Finally,
by linearity of the expectation, AMCP is given by:

AMCP = −νmax +

∫ νmax

0
E0

[
eRc,0(ν)

]
dν, (14)

which straightforwardly leads to the result by denoting
Rc(ν) := Rc,0(ν) since the PP is uniform. �

Using the CPA definition (section II), it comes:

Theorem 2 (AMCP w.r.t. CPA). The average minimal cell
power in a PP network with a homogeneous rate distribution
ρ0 and a continuously decreasing pathloss function l(r), is
given by:

AMCP =
∫ umax

0
ν′

(
u
√
λ

) (
MAc (u) (2η) − 1

)
du, (15)

where ν′(u/
√
λ) = N0

d
du l

(
u/
√
λ
)−1

and umax is the nor-
malised coverage radius associated to νmax . MAc (u) (.) is
defined in section II-B.

Proof. By introducing the MGF of the complementary partial
sum-rate given by

MRc (ν) (t) = E
[
etRc (ν)

]
(16)

one can rewrite (10) as

AMCP =
∫ νmax

0

(
MRc (ν) (1) − 1

)
dν. (17)

According to the assumptions (uniform rate and pathloss
function), one have Rc(ν) = 2ρ0 Ac(r(ν)) where Ac(r) denotes
the random variable of CPA defined in section II-C. Reminding
that u =

√
λr is a normalised radius, one obtains:

MRc (ν) (1)
(i)
=MAλ,c (r(ν)) (2ρ0)

(ii)
=MAc (u)

(
2ρ0
λ

)
, (18)



where (i) and (ii) are obtained thanks to the scaling property
of the MGF. The right hand term in (18) reveals a MGFs
belonging to

{
MAc (u) (t) ;∀u > 0, t > 0

}
independent of the

operational parameters (λ, l(r), η...) except through its argu-
ments (u, t). Moreover, the quantity ρ0/λ is nothing but the
cell spectral efficiency η. Now, using (18) and rewriting (17) in
terms of the normalised coverage radius u gives the result. �

When u increases, CPA decreases and so the non-zero CPA
probability. For some large values of u, Ac(u) exhibits a
discontinuity on 0, with a peak. To overcome this, we use
a Bernoulli random variable b(u) ∼ B(β(u)) defined as

b(u) =
{

0 if u ≥ umax with probability 1 − β(u)
1 if u < umax with probability β(u)

(19)

where B(·) denotes the Bernoulli probability law and β(u) the
probability of non-zero CPA for a given u. Hence, the random
variable of the CPA can be written as

Ac(u) = b(u) · Ãc(u), (20)

where Ãc(u) stands for the non-zero CPA. This refinement
allows us to rewrite the MGF of the normalised CPA as

MAc (u) (t) = (1 − β(u)) + β(u) · M Ãc (u) (t) , (21)

where the remaining MGF deals only with non-zero areas. The
final expression of the AMCP is:

AMCP =
∫ umax

0
ν′

(
u
√
λ

)
β(u)

(
M Ãc (u) (2η) − 1

)
du (22)

Computing (22) requires the knowledge, for u ∈ [0, umax],
of β(u) and M Ãc (u) (t). We draw the attention of the reader
that these laws are independent of the physical parameters and
depend only on the PP kind. They can therefore be evaluated
at once for each kind of PP. The physical parameters required
in a second step to compute the integral in (22) are the
maximal distance umax over all the cells, the equivalent noise
distribution ν(u) which depends on the pathloss function, the
BS density λ and the desired spectral efficiency η.

B. CPA Moment-generating function

This section is dedicated to the study of the CPA’s MGF.
We address the problem of its convergence radius in III-B1
and its computation in III-B2.

1) Convergence radius: Let start with the remark that, for
any k ∈ N and for 0 ≤ u1 ≤ u2, the following inequality holds:

E
[
(Ac(u1))k

]
≥ E

[
(Ac(u2))k

]
. (23)

Because the greater the coverage radius, the lower the CPA,
so are its moments. The MGF inequality follows from (23),

∀t > 0, MAc (u1) (t) ≥ MAc (u2) (t) (24)

and in particular with u1 = 0 and u2 = u > 0, we have

∀t > 0, MAc (0) (t) >MAc (u) (t) . (25)

We denote %c(u) the convergence radius of CPA’s MGF for
the coverage radius u. The MGF inequality (25) gives the
following inequality between the convergence radii

∀u > 0, %c(0) < %c(u). (26)

Since (22) must be finite, the choice of 2η is bounded by the
minimum convergence radius over the integration interval:

2η ≤ min
u∈[0,umax ]

%c(u) = %c(0). (27)

In order to find the value of %c(0), we focus on the pdf of CPA
for u = 0 which corresponds to the pdf of the Total Areas. In
[13], the pdf of the total areas is well approximated by the
generalised gamma (GΓ) probability law whose pdf is

f (x |a, p, d) = p

adΓ

(
d
p

) xd−1 exp
(
−

( x
a

)p)
(28)

where a, p, d are positive parameters and Γ(x) =∫ +∞
0 tx−1e−xdx denotes the gamma function.

Theorem 3 (Convergence radius of CPA’s MGF). The con-
vergence radius of MAc (0) (t) is given by

%∗c =


0 if p < 1
1
a if p = 1
+∞ if p > 1

(29)

Proof. The proof is given in Appendix A. �

It means that if p > 1, MAc (0) (t) converges for any t, and
if p = 1, it converges for t < a−1. For p < 1, the MAc (0) (t)
diverges.

2) Computation: Let {xi}i=1,...,N be a set of observed
CPAs.

An empirical method is used to compute its MGF and
consists in computing, for a real t, the mean of the set
{etxi }i=1,...,N . The unbiased estimated MGF is then

M̂Ac (u) (t) =
1
N

N∑
i=1

etxi . (30)

IV. VALIDATION BY SIMULATIONS

Computing (22) and by extension (30) requires extensive
Monte-Carlo simulations. The two algorithms used to simulate
PP networks and to compute AMCP are now described.

The first one computes the Monte-Carlo Average Cell Power
(MCMCP) by extensive simulations of real networks. It is done
by generating Nnet networks i.e. sets of BSs according a PPP
with density λBS in a square region R of side D. For each
network, NT sets of nodes are generated. The average cell
power of the individual networks are computed by averaging
over all the powers required by the cells. Then, the MCMCP
is obtained by averaging over all the individual average cell
powers.

The second algorithm computes for u ∈ [0, umax] the
estimated mgfs (see (30)) and ratios (β̂u) of non-zero CPAs.
This corresponds to the case of a normalised PPP (λBS = 1)



(a) Total areas – Left: Uniform PPP, Right: Matérn PP (b) CPA – Left: Uniform PPP, Right: Matérn PP

Fig. 3. Histograms and generalised gamma fits for cell total area distributions (a) and non-zero CPA distributions with u = 0.8/
√
π (b).

that we will refer hereafter as the reference case. Once both
the mgfs and ratios have been computed in the reference case,
it is easy to use these results to compute the AMCPs of PPP
with different BS densities λBS , 1. Indeed, (22) is a general
expression that can be computed for any λ. One must simply
pay attention that η depends on λBS since η = ρ0/λBS .

Since the AMCP is the average power required by a cell to
satisfy a continuum of users, it does not depend on the users
density λT and only needs to be computed once. Furthermore,
there is no need of new simulations when the parameters of
the network change. Finally, the computation of the AMCP
for a PPP with density λBS , 1 reduces to a simple integral
calculation which takes considerably less time than a complete
simulation. In practice, computing the average cell power
with the first algorithm for only one value of λT requires
approximately the same simulation time as computing the
AMCP for a range of λT . The time saved to assess the
performance bound of a network is very significant. Hence, our
algorithm allows to evaluate easily different network scenarios
just by tuning the physical parameters. The comparison of
the two average minimum powers is performed and AMCP is
exploited to draw some conclusions on the energy performance
in PP networks.

A. Monte-Carlo cell power simulations

The algorithm for computing the Monte-Carlo average cell
power (MCACP) simulator is the following:

1. Compute the region area AR = D2.
2. For i = 1, . . . , Nnet :

i. Draw the number nBS according to a Poisson law with
parameter AR × λBS .

ii. Generate a network Ni with nBS BSs whose positions
are drawn uniformly in R.

iii. For j = 1, . . . , NT :
a. Draw the number nT according to a Poisson law

with parameter AR × λT .
b. Generate nT nodes in the network Ni whose posi-

tions are drawn uniformly in R and associate each
of them to the nearest BS.

c. Compute the power Pj required by each cell in Ni .
iv. Compute the network’s average cell power required by
Ni such as Pi =

∑NT

j=1 Pj/NT .

3. Compute the MCACP ˆ̄P =
∑Nnet

i=1 Pi/Nnet

B. MGF and non-zero CPAs ratios based simulator

The algorithm for computing the estimated mgf (30) and
non-zero CPAs ratios β̂u is the following:

1. Initialize empty lists Lu for each u ∈ u.
2. Compute the region area AR = D2.
3. For i = 1, . . . , Nnet :

i. Draw the number nBS according to a Poisson law with
parameter AR × λBS .

ii. Generate a network Ni with nBS BSs whose positions
are drawn uniformly in R.

iii. Build the Voronoi tessellation of the Ni’s BSs.
iv. For u ∈ u, compute the CPAs of each cell in N for the

coverage radius u and add them to the list Lu .
4. Estimate the MGFs of the non-zero normalised CPA for

each u ∈ u: M̂u =
∑

x∈Lu
eηλBS x/(Nnet AR λBS).

5. Estimate β̂u of non-zero CPA for each Lu .

V. RESULTS

The cells’ geometry statistic is evaluated for both PPP and
MPP. The areas and CPA distributions as a function of the
radius u = r

√
λBS = r/(

√
πravg) have been obtained. ravg :=

1/
√
πλBS is the radius of a disk with its area equal to the

average cell area. The distributions of the total areas and the
CPAs are provided resp. in figs. 3a and 3b, as well as the
best GΓ fit. For PPP, our results are similar to those from [13]
with (a = 0.315, p = 1.04, d = 3.3). According to Th.3, the
convergence radius is infinite, meaning that AMCP is always
finite whatever the network load. However, since p is close
to 1, for which the convergence radius is lower bounded by
a−1, it may be interesting to compute the corresponding limit,
with a = 0.315, leading to η = 2.32bits.cu−1, which has an
interesting meaning as seen below in fig. 5.

For MPP, the parameters of the best GΓ fitting are (a =
0.04, p = 0.85, b = 12.9) and seem to indicate that the mgf
diverges according to Th.3. However, this fit is loose and
artificially increases the probability of high values, compared
to the empirical values. Simulation results in terms of min-
imum power are provided in figs. 4 and 5. They have been
obtained for the parameters given in table I. To facilitate
the interpretation, spectral efficiency values are given in this
section in bits.cu−1 using ηnat = ηbits × ln 2.

Choosing Nnet and NT as large as possible to obtain more
accurate results is necessary but is limited by the computa-
tional time. Choosing a large Nnet appears more important



Fig. 4. Comparison between the MCACP and the AMCP. When the
node density increases, the MCACP tends to the AMCP.

Fig. 5. Confrontation of the PPP’s AMCP, the Matérn’s AMCP and
the MCCP for different values of η and different pathlosses.

than choosing a large NT especially when the nodes density
λT is high enough.

TABLE I
PARAMETERS USED FOR THE RESULTS IN FIGS. 4 AND 5.

Parameter Figure 4 Figure 5
R 1 × 1 1 × 1
λBS 200 200
λT {10, 20, s, 100} �
η 2.1640 bits.cu−1 [0.0721, 4.4724] bits.cu−1

N0 1 1
α 2 [2, 4]
r0 1 0.01 × ravg

l(r) r−2 (r/r0)−α
r {0, 0.01, s, 3} × ravg {0, 0.01, s, 3} × ravg

rM � 0.9 × ravg

Nnet 1000 �
NT 100 �

Figure 4 shows the convergence for a PPP network of the
MCACP to the AMCP when the nodes density λT increases.
The resulting MCACP decrease when λT grows since the SC
encoding strategy improves, allowing to approach the AMCP
fundamental limit, at least in the low SE regime. This validates
the AMCP to be the power required by a continuum of users
at the network scale. Note that for MCACP curve, the network
sum-rate is kept constant (η = 2.164 bits.cu−1), meaning that
the increase of λT is always counterbalanced by a decrease
in the individual rates. It is also worth mentioning that the
proposed MCACP curve is not smooth despite a very large
number of Monte-Carlo simulations (100 runs for each of 1000
random networks of 200 BS in average). These simulations
reveal the distribution of cell areas in a PPP includes rare but
very large cells consuming a high part of the network power.
The reason is the exponential relation of the cell power with
respect to the sum-rate as seen in (3).

Figure 5 confronts the PPP and MPP AMCPs as functions
of η (x-axis) and for different pathloss strengths α (indexed
by the colour bar on right). The comparison is also made w.r.t
the Minimal Circular Cell Power (MCCP):

MCCP = −ν(ravg) +
∫ ravg

0

dν(r)
dr

eη
πr2
λBS dr . (31)

The MCCP is nothing but the AMCP applied to a single cell
network with a circular shape and a radius r = ravg, thus
having its area equal to the average area (PPP model). The
circular cell is an ideal case from a geometry point-of-view.

The gap between AMCP (plain curves) and MCCP (dashed
lines) increases with both rate and pathloss. We clearly see
around η = 2 bits.cu−1 a significant increase of the slope of
the AMCP curve. This power overconsumption represents the
price to be paid for the cells geometry randomness due to a
pure random deployment. We also plot in the same figure the
AMCP obtained with the MPP from section II, highlighting
how the network randomness impacts the power efficiency.
Since a MPP has a more regular CPA distribution, its AMCP
is closer to the MCCP. Hence, the power penalty w.r.t. the
ideal circular cell starts around 3bits.cu−1 with a lower slope.

These curves show the power saving an operator can get
by optimising the cells distribution. From these results, we
conjecture that a PPP does not behave as a real network at the
second-order and beyond. A Matérn hard-core type II model
is a good candidate for this, but need to be tuned to fit with
experimental data.

VI. CONCLUSION

In this paper, we exploit the high order statistics of the
radio links, through CPA distribution, from the newly estab-
lished analytic relation between AMCP and CPA statistics.
This result has been validated with Monte-Carlo simulations.
The important result is how the cells geometry randomness
in a PPP generates a huge power overconsumption in the
network, which can be significantly reduced in a more regular
network, as modelled with a MPP. Our theoretical tool can
help engineers to balance their operational costs between the
cost of randomness and the cost of optimization. At the best
of our knowledge, this paper is the first contribution dealing
with the fundamental limit of a cellular network, considering
high order statistics in PPs.
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APPENDIX A
PROOF OF THEOREM 3

The moments of a GΓ distributed random variable X are:

∀k ∈ N, E
[
Xk

]
= ak
Γ

(
(d + k)p−1

)
Γ

(
dp−1

)−1
. (32)

By using the series expansion of the MGF from (16), one have

MRc (ν) (t) =
+∞∑
k=0

tk

k!
E

[
Rc(ν)k

]
. (33)

Replacing (32) in (33), the CPA’s MGF for u = 0 becomes

MAc (0) (t) =
+∞∑
k=0

tk

k!
ak
Γ

(
(d + k)p−1

)
Γ

(
dp−1

)−1
. (34)

Let the sequences (vk) and (wk) be defined as

vk =
ak

k!
Γ

(
(d + k)p−1

)
Γ

(
dp−1

)−1
, wk = vk/vk−1. (35)

According to D’Alembert’s rule, 1/%∗c = limk→+∞ wk , where:

wk = ak−1
Γ

(
(d + k)p−1

)
Γ

(
(d + k − 1)p−1

)−1
. (36)

Using the following property of the Γ-function:

Γ(x + y) = Γ(x)Γ(y)B(x, y)−1 , ∀x, y ∈ R+, (37)

with B(, ) the Beta function, one obtain:

wk = ak−1
Γ

(
p−1

)
B

(
(d + k − 1)p−1, p−1

)−1
. (38)

The Stirling’s approximation of the Beta function, given y

B(x, y) ∼
x→+∞

Γ(y)x−y, (39)

used in (38), leads to

wk ∼
k→+∞

ak−1
(
kp−1

)1/p
. (40)

The value of %∗c = 1/limk→+∞ wk is obtained with (40)
• if p < 1 then 1/p − 1 > 0 and %∗c = 0;
• if p = 1 then 1/p − 1 = 0 and %∗c = 1/a;
• if p > 1 then 1/p − 1 < 0 and %∗c = +∞.
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