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Abstract—A distributed sampling strategy for multiple (N )
agents is considered that minimizes the sample complexity and
regret of acquiring the best subset of size N among total K ≥ N
channels in a cognitive radio access setup. Agents cannot directly
communicate with each other, and no central coordination is
possible. Each agent can transmit on one channel at a time,
and if multiple agents transmit on the same channel at the
same time, a collision occurs, and no agent gets any information
about the channel gain or how many other agents transmitted
on the same channel. If no collision occurs, the agent observes a
reward (or gain) sample drawn from an underlying distribution
associated with the channel. An algorithm to minimize the sample
complexity and regret is proposed. One important property of
our algorithm that distinguishes it from the prior work (that do
not assume knowledge of N ) is that it requires no information
about the difference of the means of the channel gains of the K
channels. Our approach results in fewer collisions with improved
regret performance compared to the state-of-the-art algorithms.
We validate our theoretical guarantees with experiments.

Index Terms—Multi-player Multi-armed Bandits, Constant
regret, Pure exploration, Distributed learning

I. INTRODUCTION

Consider a communication network consisting of N users
and K channels where each user wishes to use one of the K
channels. A user can transmit on any of the channels. To keep
the model more general, users cannot communicate directly
between them and any information about the other users can
be obtained only by collisions. In particular, if user n transmits
on channel k, it gets a sample of the gain of channel k if no
other user transmits on channel k, otherwise it only gets to
know that at least one other user transmitted on channel k at
the same time. We assume that the expected gain of each of the
K channels is distinct. Even though users cannot communicate
and have to make decisions in a distributed fashion, we consider
a non-strategic setting where users have a common goal to
maximize the total gain in the network, i.e., to achieve an
optimal allocation, which is realized when all the users occupy
non-overlapping channels in the top N channels. Here the top
N channels refer to the set of N channels with highest expected
gain. As the goal is to achieve optimal network allocation, we
assume that each user is satisfied if she gets one of the top
N channels among the K, when no other better channel is
free. Our aim in this work is to find a strategy that minimizes
the time by which the users reach an optimal allocation while
keeping the number of collisions low.

This problem is motivated by ad hoc cognitive radio networks
(CRN), where multiple users try to access the same set of
channels [1], [2], without any direct communication between
them. In this setting, there is no central controller or a common
control channel that can be used to resolve contentions and all
channel selection decisions have to be done in a decentralized

fashion [1], [2]. Moreover, this problem is well suited for
upcoming 5G standards like device-to-device communication
mode in cellular networks where multiple mobile nodes try
to form groups to reduce signaling load on the central base
station. Such models are also being envisioned for futuristic
ultra-dense networks deployed to offer high peak rates [3].

In ad hoc CRNs, users may not know the quality of channels,
and the number of other users present in the network. The goal
is still to maximize the number of successful transmissions
(or sum rate/ throughput) in the network. To achieve this, the
users not only have to learn the channel qualities but also have
to learn to co-ordinate by selecting non-overlapping channels.
This distributed learning problem is a multi-player version of
the multi-armed bandit problem with K arms, with a total
of N players. Individual players do not know the number of
other players and cannot communicate with others about their
arm selection strategy. A player can select at most one arm at
a time. If multiple players select a common arm, a collision
occurs and none of them receive any reward.

The performance of the arm selection policy is measured as
regret, i.e., the difference of the total expected reward obtained
by the policy and the total expected reward gained by playing
an optimal strategy in each round by all the players. The total
number of collisions is the sum of collisions experienced by
all the players. From the applications point of view, e.g., in a
CRN, where users are mostly battery operated, a higher number
of collisions will result in reduced operational life. Hence, in
addition to minimizing the regret, the algorithms should work
with as fewer collisions as possible.

The problem of multi-player multi-armed bandits with the
unknown number of users is studied in [4] where Musical chair
(MC) is developed to minimize regret and its performance is
shown to be superior compared to other algorithms (for the
unknown number of players) [5] [6]. In the MC algorithm,
each player selects the arms uniformly at random for a fixed
number of rounds and then estimate the top N arms and the
number of users based on the reward samples and collisions
observed. The number of rounds required to get good estimates
is set based on the separation between the mean reward of
the arms and is assumed to be lower bounded by a known
positive number. However, this assumption is restrictive as it
is not easy to identify the lower bound in real-life applications.
In this work, we propose a learning algorithm which achieves
the optimal allocation quickly with fewer collision without
requiring the knowledge of the gap between the mean reward
of the arms. Our contributions can be summarized as follows:
• We design a communication protocol for exchanging

information among players through collisions that do not
need any direct communication medium between players.



• We develop an algorithm named Distributed Learning and
Coordination (DLC) that achieves optimal allocation in
the constant number of the rounds with high probability.
This bound also translates to a constant regret with high
probability. The DLC algorithm does not need to know
the minimum gap between the arms.

• We give a variant of DLC that improves utilization
of channels through efficient signaling, resulting in
performance improvement in terms of regret.

• We validate our claims by numerical experiments and
demonstrate performance gains over the state-of-the-art.

The DLC algorithm combines the ideas of pure exploration
methods with efficient signaling schemes to achieve optimal
allocation with high probability. In DLC, each player first
learns the number of players in the network by colliding with
others in a specific pattern. One of the players then identifies
the top N arms via pure explorations and signals all the players
to occupy one of top N arms without any overlap.

A. Related Work: Multi-player Multi-armed Bandits

Most work on stochastic bandits with multiple-players
require some negotiation or pre-agreement phase to avoid
collisions between the players. The dUCB4 algorithm in [7]
achieves this using Bertsekas’ auction mechanism for players
to negotiate unique arm. The time divisions fair sharing
(TDFS) algorithm in [8] requires players to agree on a time
division of slots before the game. Such negotiations are hard to
realize in a completely distributed (ad hoc) setup [1], [2]. The
ρRAND algorithm in [5] is communication free and completely
decentralized but requires knowledge of the number of users.
The modified ρEST algorithm overcomes this issue, but its
guarantees are asymptotic and do not hold for the finite time
like ours. Performance improvements of ρRAND are studied in [9].
Another set of works in [10], [11] considers selfish behavior
of players and analyze their equilibrium behavior.

The works most similar to ours are [6] and [4] which
consider a communication-free setting with the unknown
number of players that can vary during the game. The MEGA
algorithm in [6] uses the classical ε- greedy MAB algorithm
and ALOHA based collision avoidance mechanism. Though
collision frequency reduces in MEGA as the game proceeds
it may not go to zero as shown in [4]. To overcome this, [4]
proposed a musical chairs (MC) algorithm that incurs collisions
only in the initial phase and guarantees collision free sampling
subsequently. Though MC performs better than MEGA, its
performance in the initial rounds is poor – MC uses collision
information to estimate the number of players and forces a
large number of collisions to get a good estimate.

SIC-MMAB and ESER algorithm in [12] and [13],
respectively, propose signaling mechanisms that use a suitable
pattern of collisions among the players for exchanging
information. Although some of the ideas of the DLC and
SIC-MMAB are similar, DLC uses different learning and
signaling scheme. Specifically, the exploration phase in
SIC-MMAB and ESER is based on sequential hopping whereas
in DLC it is based on pure-exploration.

Organization of the paper: In Section II we introduce the
notations and setup the problem. We give an algorithm and
analyze their performance in Section III and provide its
improved variant in Section IV. We validate our claims through

experiments in Section V. Conclusions and future directions
are given in Section VI.

II. PROBLEM SETUP

The standard stochastic K-armed bandit problem consists of
a single player with K > 1 arms. The multi-player K-armed
bandit is similar, but consists of multiple players. Let N ≤ K
denote the total number of players. Playing arm k ∈ [K] where
[K] := {1, 2, . . . ,K}, gives reward drawn independently from
a distribution with support [0, 1]. The reward distributions are
stationary, homogeneous, and independent across the players,
and µk denotes the mean of arm k. The players are not aware
of how many other players are present, and there exist no
control channels over which they can communicate with each
other. When a player samples an arm, the reward is obtained if
she alone happens to play that arm. Otherwise, all the players
choosing that arm will get zero rewards. We refer to the latter
case as ‘collision’. For any distributed policy, let In,t and ηn,t
indicate the arm played by player n ∈ [N ] and her collision
indicator in the round t, respectively. ηn,t = 1 if together with
player n at least one other player plays the same arm as n at
time t and is set equal to zero otherwise.

To achieve an optimal allocation in a distributed setting,
each player needs to learn the means of the arms to arbitrary
precision which require them to play a large number of times
making the goal infeasible for all practical purposes. Thus,
we focus on achieving an approximate optimal allocation of
arms with high probability that is defined as below. Let π :=
πt : t ≥ 1 denote a policy, where πt : [N ]→ [K] denotes the
allocation at time t, i.e., In,t = πt(n).

Definition 1 (Def. 1 of [13]). For a given tolerance ε ≥ 0 and
confidence δ ∈ (0, 1/2], an allocation by a policy π is said to
be (ε, δ)−optimal if there exists T := T (π) <∞ such that

Pr

 ∑
n∈[N?]

µn −
∑
n∈[N ]

µπt(n) ≤ ε

 ≥ 1− δ. ∀ t ≥ T (1)

where N? denotes the best subset of N arms with highest
mean rewards.

This definition can be viewed as a generalization of
probably-approximately-correct (PAC) performance guarantee
in the pure exploration multi-armed bandits problems with
single player [14], [15] to the multi-player case. T (π) denotes
the sample complexity of the policy π. The goal is to develop
a policy that has small sample complexity.
We define the expected cumulative (pseudo-)regret of policy π
over period T as

RT (π) =

T∑
t=1

∑
n∈[N∗]

µn −
T∑
t=1

∑
n∈[N ]

µπt(n)(1− ηn,t). (2)

The total number of collisions incurred by a policy π over
period T is defined as

C(π) =

T∑
t=1

∑
n∈[N ]

ηn,t. (3)

Note that a collision on the arm is counted multiple times
because all the players involved in a collision have to re-sample
in another slot incurring extra transmission cost.



Our goal is to develop distributed algorithms that gives
(ε, δ)−optimal allocation quickly while keepingRT and CT low.
Specifically, we develop algorithms whose regret is constant
with high probability, i.e., algorithm incurs regret only for
finitely many rounds.

Similar to the prior work [4], [9], [12], [13], [16], we
assume players are synchronized and know arms’ indices before
entering into the network. Further, all the players are assumed
to see the same gains on all the channels, which is often the
case in dense networks because of the close proximity of users.

III. AN ADAPTIVE ALGORITHM

In this section, we propose an algorithm named, Distributed
Learning and Coordination (DLC), in which all the players
settle on top N arms quickly. The players cannot communicate
explicitly but can exchange information with each other by
colliding in a particular fashion. We refer to such deliberate
collisions in the network for information exchange as signals.
All signals are counted as collisions and add to the regret.

A. DLC Algorithm
DLC algorithm consists of mainly 4 phases, namely 1)

Orthogonalization 2) Player Indexing 3) Adaptive Learning and
4) Communication. These phases run sequentially one after
another.

DLC Distributed Learning and Coordination

1: Input: K, ε ≥ 0, δ ∈ (0, 1/2]
2: Select the arms uniformly at random for TRP rounds and

find reserved arm i
3: Play arm i for 2i rounds. After that sequentially hop for
K − i rounds and then play arm i for K − i− 1 rounds

4: Find number of players (N ) and their reserved arm.
Designate as Leader if has smallest reserved arm’s index

5: if Player is Leader then
6: Find top N arms using AdaptiveExplore sub-routine
7: Assign top N arms among players without overlap
8: else
9: Transmit on arm i periodically. When a collision is

observed on arm i, play it for next dlog2(K)e rounds
and then play received arm in the subsequent rounds.

10: end if

1) Orthogonalization: The first phase of DLC finds
orthogonal arm allocations through random hopping in which
each player selects an arm uniformly at random in each round
until she observes a collision-free transmission on the selected
arm. Once it happens, she continues to play that arm till the
end of the phase. The length of Orthogonalization phase (TRP )
is set such that all the players are on different arms by the end
of the phase with probability at least 1 − δ. We refer to the
last arm played by a player in this phase as her reserved arm.

2) Player Indexing: This phase is similar to the initialization
phase in SIC-MMAB algorithm [12]. In this phase, each player
estimates how many other players are there in the network and
finds their reserved arms using a specific pattern of collisions.
A player with reserved arm i plays arm i for 2i rounds. After
this, she starts playing arm with higher index in each round
(sequential hopping) for next K − i rounds and then plays her
reserved arm for next K − i− 1 rounds. This process makes

sure that players begin sequential hopping in a delayed fashion
and the player with reserved arm i will collide with the player
with the reserved arm j(> i) at time TRP + i+ j. At the end
of round TRP + 2K − 1, each player knows the number of
players (N) in the network and their respective reserved arms.

The player with smallest reserved arm’s index will be
designated as Leader. The Leader knows the reserved arm
of other players and she assigns a ranking to the players based
on the index of their reserved arms as follows: The Leader
takes herself rank 0. The player with the second smallest index
of the reserved arm is assigned rank 1. The third smallest index
of the reserved arm has rank 2 and so on, i.e., the player on
jth smallest index of the reserved arm is given rank j − 1.

3) Adaptive Learning: In the next phase, the Leader uses the
AdaptiveExplore sub-routine to find the top N arms while the
non-Leaders check for a signal from the Leader by transmitting
on their reserved arms periodically. Periodic transmissions of
all players in the non-Leaders set are designed such that only
one player among the non-Leaders transmits at a time. It helps
the Leader to inform the non-Leaders which arms they should
occupy when she has completed the task of identifying the top
N arms. We first describe a method for the Leader to learn the
top N arms and then describe a method how she can inform
the Non-Leaders which arms to occupy.

Sub-routine: AdaptiveExplore

1: Input : K, N ≤ K, ε ≥ 0, δ ∈ (0, 1/2], t = 1
2: Initialize: α = 1.1, k1 = 505.5, B(1) =∞
3: Play each arm once. Compute Ua(1), La(1) ∀ a ∈ [K]
4: while B(t) > ε/N do
5: Compute ut and lt using (5) and play arm ut and lt in

round-robin fashion. If no non-Leader is going to play
selected arm then play it else play other arm

6: Update J(t), Ua(t) and La(t) ∀a ∈ [K] using (4)
7: B(t)← Uut

− Llt , t← t+ 2
8: end while
9: TAE ← t

10: Return J(TAE), TAE

The Leader can use any pure exploration algorithm [14],
[15], [17] to find the top N -arms. We will adapt the KL-LUCB
algorithm given in [15] to our scenario as it has the best-known
performance guarantees.

AdaptiveExplore takes (K,N, ε, δ) as input and maintains a
set J(t) of the N arms with highest empirical mean rewards in
each round t. Ua(t) and La(t) represent the upper and lower
confidence bounds on a mean reward µa of arm a. These bound
are computed using empirical mean reward µ̂a(t) of arm a at
time t as follows:

Ua(t) := max{q ∈ [µ̂a(t), 1] : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}
La(t) := max{q ∈ [0, µ̂a(t)] : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}

where β(t, δ) = log

(
k1Ks

α

δ

)
+ log log

(
k1Ks

α

δ

)
,

α > 1, k1 > 2e+ 1 +
e

α− 1
+

e+ 1

(α− 1)2
, s = dt/2e , (4)

and d(p, q) is the Kullback-Leibler divergence (differential
entropy) between two Bernoulli distributions with parameter
p and q, and δ is the fixed confidence. In round t,



AdaptiveExplore selects two arms ut and lt such that

ut = arg max
j /∈J(t)

Uj(t) and lt = arg min
j∈J(t)

Lj(t). (5)

AdaptiveExplore finds (ε, δ)-optimal allocation if it terminates
after:

Uut(t)− Llt(t) < ε/N (6)

where ε ≥ 0 is fixed tolerance. Its proof follows from Theorem
1 of [14] by setting tolerance equal to ε/N .

AdaptiveExplore selects two arms in each alternative rounds,
and they are played over two slots in a round-robin fashion until
stopping criteria in Eqn. (6) is not met. In each round, before
playing an arm, the Leader checks that none of the non-Leaders
will play that arm in that round. If any non-Leader is going to
play the selected arm (due to periodic signals), Leader plays
the other arm to avoid any collision. The periodic signaling
by the non-leaders is designed such that they play only one
arm in any round.

When AdaptiveExplore terminates, it returns the top N arms
and number of rounds (TAE) it takes to terminate. Next, Leader
does a one-to-one mapping of top N arms to the N players.
This mapping can be done randomly or by using an injective
function. In our implementation, we assign the top arm to the
player with the best rank and the next best arm to the player
with next best rank and so on. The Leader takes the N th best
arm. After mapping arms to players, Leader informs other
players which arm they should occupy using collisions based
communication protocol.

Note that mapping of top N arms to players can be easily
adapted to be ‘fair’ allocation amongst players so that all
the players have same average reward asymptotically. For
example, after the Leader communicates the allocations, they
can sequentially hop on the N arms, which ensures no collision
and optimal allocation in every round.

4) Communication: While the Leader explores the arms to
find the top N arms, others play their reserved arms periodically.
Each non-Leader plays her reserved arm based on her rank.
A player with better rank plays earlier than the higher ranked
players. Specifically, a non-Leader ranked r plays her reserved
arm for the mth time in the round P (r,m) given by

P (r,m) = mTP + (r − 1)BK
where BK = (dlog2(K)e+ 1) and TP ≥ (N − 1)BK .

Once AdaptiveExplore sub-routine is initiated by the Leader,
the player with rank 1 plays her reserved arm once after TP
rounds, and then the player with next rank (i.e., 2) plays her
reserved arm. The value of TP is chosen such a way that all
players can play their reserved arm and receive arm information
from Leader within it, therefore, TP ≥ (N −1)(dlog2Ke+ 1).
This signaling strategy enables the Leader to transmit arm
information to a player immediately after she finishes it for
the previous player and continues until every player gets their
mapped arm from the Leader.

After termination of AdaptiveExplore sub-routine, i.e., at
time TAE , Leader computes the next time when a player with
rank r will play her reserved arm, denoted PL(r), as PL(r) =
P (r, τ) if P (r, τ) > TAE , otherwise PL(r) = P (r, τ + 1)
where τ = bTAE/TP c. When the Leader wants to send arm
information to the player with rank r, she will play the reserved
arm of that player in round PL(r). The occurrence of the first

collision notifies the player that she is going to get information
of the arm to occupy from the Leader and starts playing her
reserved arm for dlog2Ke rounds. As the index of each arm is
uniquely represented by the binary number of length dlog2Ke,
these many rounds are sufficient to convey the arm index. The
Leader informs a non-Leader the index of the arm to occupy
by colliding with her according to the binary sequence of the
arm’s index over dlog2Ke rounds. Leader conveys bit ‘1’ by
causing a collision on her reserved arm, while a bit ‘0’ is
conveyed if no collision occurs. With such a collision pattern,
all players get to know which arms they should occupy in the
subsequent rounds.

B. Analysis of DLC

We prove sample complexity, regret and collision bounds
of DLC algorithm using the following lemmas which give
expected number of rounds for players to 1) orthogonalize 2)
learn the number of players in the system with their ranks 3)
find top N arms and 4) arm assignment through signaling.

Theorem 1. Let arms be ordered in descending order of their
mean rewards and set c = (µN + µN+1)/2 where c /∈ {0, 1}.
For any ε ≥ 0 and δ ∈ (0, 1/2] the sample complexity of DLC
is bounded with probability at least 1− 2δ as

T (DLC) ≤

⌈
log(δ/K)

log
(
1− 1

4K

)⌉+ 2K − 1 + C0(α)Hε,c

log

(
k1K(Hε,c)

α

δ

)
+N(dlog2(K) + 1e

where Hε,c :=
∑
a∈[K]

1
max{d(µa,c),ε2/2} , k1 > 2e+1+ e

α−1 +
e+1

(α−1)2 with α > 1 and C0(α) is a problem independent
constant. Further, the total collisions in DLC is bounded as

C(DLC)≤N

⌈
log(δ/K)

log
(
1− 1

4K

)⌉+(N−1)

(
N

2
+dlog2Ke+1

)
.

The proof follows by bounding the number of rounds
required to complete each phase and the number of collisions
incurred in these phases. These bounds are given by the
following lemmas whose proofs are deferred to the appendix.

Lemma 1. Let δ be same as in Theorem 1. All players
will orthogonalize with probability at least 1 − δ in
Orthogonalization phase within TRP rounds where

TRP :=

⌈
log(δ/K)

log
(
1− 1

4K

)⌉ .
The number of collisions in the Orthogonalization phase is at
most CRP ≤ NTRP .

Lemma 2. In the Player’s Indexing phase, each player learns
about number of players in the network, their reserved arm,
and rank in TIP rounds where TIP := 2K − 1. During this
phase, the number of collisions is CIP := N(N − 1)/2.

Lemma 3. Assume conditions in Theorem 1 hold. Then with
probability at least 1 − δ, AdaptiveExplore terminates with
(ε, δ)-optimal allocation after TAE rounds where

TAE ≤ C0(α)Hε,c log

(
k1K(Hε,c)

α

δ

)



where α > 1, C0(α) is a problem independent constant
satisfying C0(α) ≥ α log(C0(α)) + 1 + α/e, k1 > 2e + 1 +
e

α−1 + e+1
(α−1)2 , and Hε,c :=

∑
a∈[K]

1
max{d(µa,c),ε2/2} .

Proof. KL-LUCB algorithm samples two arms in each round
whereas AdaptiveExplore sub-routine samples one arm. Using
t = 2s in the Theorem 3 of [15], we achieve stated bound.

Lemma 4. Let TP = (N−1)(dlog2Ke+1). Then the number
of rounds to terminate the Communication phase (TCP ) and
the number of collisions incurred (CCP ) are bounded as

TCP ≤ N(dlog2(K)e+ 1),

CCP ≤ (N − 1)(dlog2Ke+ 1).

We now return to the proof of Theorem 1. T (DLC) is the
total rounds from the beginning of Orthogonalization phase to
end of Communication phase, i.e.,

T (DLC) = TRP + TIP + TAE + TCP . (7)

Substituting the bounds on each of these terms from Lemmas
1, 2, 3 and 4 in (7) we get the bound.

Similarly, the total number of collisions is the sum of
that occurred during Orthogonalization phase, Player Indexing
phase, and Communication phase. Note that there is no collision
in the Adaptive Learning phase. Therefore, the total collisions
of DLC are given by

C(DLC) = CRP + CPI + CCP . (8)

Substitute the number of collisions in different phases from
Lemmas 1, 2, and 4 in (8) we get the stated bound. We next
bound the regret of DLC.

Theorem 2. Let the conditions in Theorem 1 hold. Then with
probability at least 1 − 2δ, the cumulative regret of DLC is
bounded by

R(DLC) ≤NT (DLC).

Proof. As µi ∈ [0, 1] for arm i ∈ [K], the maximum regret
each player can have for any round is 1. The maximum regret
for any round is bounded by N . Hence the cumulative regret
of DLC is upper bounded by NT (DLC).

Corollary 1. Let the conditions in Theorem 1 hold. The regret
of DLC is bound with probability 1− 2δ is bounded as

Regret(DLC) = O(NK log(K/δ)/∆2)

where ∆ = µN − µN+1.

Note that the minimizing of the sample complexity leads to
lower regret for DLC. Further, the regret of DLC is linearly
depended on the number of players and number of arms.

C. Regret of DLC vs MC
In the DLC, the number of rounds to complete all phases

except Adaptive Learning phase are independent of the gap
between the expected reward of the N th best arm and the
(N + 1) best arm. AdaptiveExplore sub-routine of DLC is
adapted from KL-LUCB algorithm that has the best-known
performance guarantees for identifying the best N arms.

The regret of state-of-the-art MC algorithm [4][Thm. 1]
is bounded by O

(
N2K log(K2/2δ)/ε2n

)
, with probability at

least 1− 2δ where εn is the lower bound on the gap between
the mean reward of the N th best arm and the N + 1 best arm,

i.e., εn < ∆. The value of εn is assumed to be known. The
regret bound of DLC improves the bound of MC by a factor
N and it is agnostic to problem-specific information like lower
bound (εn). Its regret bound DLC depends on the mean reward
of the arms of the given problem instance. Thus performance
gain of the DLC is compared to MC is significant. As we will
see later in the experimental section, the performance of DLC
is an order of magnitude better than the MC algorithm. This
improved performance gain is mainly due to the long random
hopping phase of MC where users are made to collide for the
large number of rounds which is used to estimate the number
of users in the network.

IV. AN IMPROVED ADAPTIVE ALGORITHM

In DLC algorithm, when the Leader explores the arms, all
other players transmit only periodically and hence do not get
any reward for other rounds until they are assigned an arm
by the Leader. However, it was necessary for players other
than the Leader to be idle so that the Leader can explore the
arms freely in the Adaptive Learning phase of DLC, leading
to under-utilization of arms and poor performance in term
of regret. We next discuss a modification of DLC where the
non-Leaders do not need to be idle while the Leader explores
top N arms, which allows efficient utilization of arms resulting
in the improved regret performance.

A. DLC with Information Exchange (DLC-Ix) Algorithm
In this section, we give a variant of DLC called DLC with

Information Exchange (DLC-Ix) which allows the non-Leader
to play their reserved arms while the Leader explores the
unreserved arms and share with her the information they have
gathered about their reserved arms, thus the Leader does not
need to explore the reserved arms as in DLC. The DLC-Ix
consists of 3 phases: 1) Orthogonalization 2) Player Indexing
and 3) Adaptive Learning with Communication (ALC).

The first two phases of DLC-Ix are the same as in DLC. Once
Leader is selected, other players continue to play their reserved
arms until the Leader tells her to change the arm by sending
signals. The Leader partitions the arms into two sets before
entering to Adaptive Learning with Communication phase,
namely Reserved and Unreserved arms. The set of the reserved
arm of all the players except the Leader forms the Reserved
set and the other set of unoccupied (empty) arms together with
the reserved arm of the Leader forms the Unreserved set.

Now the Leader explores only the Unreserved set to find the
best arm using the AdaptiveExplore sub-routine with K−N+1
arms. Once AdaptiveExplore sub-routine terminates, Leader has
the best arm among Unreserved set of arms. The Leader then
collides on the arm that is the reserved arm for the player with
rank r. When the player observes a collision, it acts as a signal
to transfer collected reward information of her reserved arm to
Leader. The rewards are real-valued in [0, 1] and communicating
them using with arbitrary precision requires binary codes of
large lengths, we thus allow the players to exchange average
reward within a known fixed error. Specifically, we set the
error to be εp, i.e., (RTc,r−R̂Tc,r )/Tc,r ≤ εp where Tc,r is the
time taken by a player with rank r to observe a collision after
the end of the Player Indexing phase, Rc is the total reward
collected by the player before observing collision and R̂c is
the total reward received by the Leader. The received reward
R̂c is always less than (or equal to) the collected reward Rc as
some fractional part may get truncated due to the finite fixed



precision. The number of rounds needed to transfer average
reward information to Leader within εp error is dlog2(1/εp)e1.
In our experiments, we have set εp = ε/2.

DLC-Ix DLC with Information Exchange

1: Input: K, ε ≥ 0, δ ∈ (0, 1/2]
2: Select the arms uniformly at random for TRP rounds and

settle on arm i
3: Play arm i for 2i rounds. After that sequentially hop for
K − i rounds and then play arm i for K − i− 1 rounds

4: Find number of players (N ) and their reserved arms.
Designate as Leader if has smallest reserved arm’s index

5: if Player is Leader then
6: for r = 1, 2, . . . , N − 1 do
7: Find the best arm using AdaptiveExplore sub-routine

in the Unreserved set of arms
8: Signal player with rank r. Collect rewards information

of her reserved arm and assign the current best arm
to her

9: Updates the Reserved and Unreserved set of arms
10: end for
11: Find the best arm using AdaptiveExplore sub-routine in

the Unreserved set of arms
12: Play the best arm in subsequent rounds
13: else
14: Play arm i. When a collision is observed, send collected

rewards information to Leader and after that received a
arm to play in next dlog2(K)e rounds

15: Play the received arm in subsequent rounds
16: end if

After receiving the mean reward from the player with rank
r, Leader recomputed the best arm. If the best arm is same
as the reserved arm of player, then Leader will not play it
for next dlog2Ke rounds. Otherwise, she collides with the
player for next dlog2Ke rounds as per the binary coding of
arm index the player should take. In the former case, the
player will continue to play her reserved arm in subsequent
rounds. In the latter case, the player moves to the new arm
assigned to her. The Leader then removes the just assigned
arm from the Unreserved set and moves it to the Reserved set.
The arm that is left unoccupied by this shifting is moved to
the Unreserved set. The Leader then recomputes the best arm
using AdaptiveExplore sub-routine and repeats the process with
the next ranked player. This process stops when Leader has
allocated arms to all non-Leaders from top N arms. Finally, the
Leader finds the best arm among Unreserved set for herself by
using AdaptiveExplore sub-routine. At the end of this process,
each player has been assigned an arm from top N arms and
remaining K −N arms are left in the Unreserved set.

B. Analysis of DLC-Ix
We need a variant of Lemma 3 to prove sample complexity,

regret and collision bounds of the DLC-Ix.

Lemma 5. Assume technical conditions stated in Theorem
1 hold. Let εp = ε/2, ca := (µa + µa+1)/2, and m =

1Note that for binary rewards {0, 1} case, any player can transfer exact
collected reward information to the Leader in the dlog2 Tc,re rounds where
the value of εp for player with rank r is εp(r) := 1/Tc,r .

arg min
a∈[K−1]

[ min{d(µa, ca), d(µa+1, ca)}]. For any ε ≥ 0

and δ ∈ (0, 1/2], the ALC phase of DLC-Ix terminates with
(ε, δ)-optimal allocation after TALC rounds with probability
at least 1− δ where

TALC ≤ C0(α)Hε,cm log

(
k1K(Hε,cm)α

δ

)
+ (N − 1) (dlog2 (1/ε)e+ dlog2(K)e)

where α > 1, C0(α) is a problem independent constant
satisfying C0(α) ≥ α log(C0(α)) + 1 + α/e, k1 > 2e + 1 +
e

α−1 + e+1
(α−1)2 , and Hε,cm := K

max{d(µm,cm),ε2/2} .

Proof. In case of identifying top N arms by AdaptiveExplore
sub-routine, the problem dependent variable Hε,c is defined as

Hε,c =
∑
a∈[K]

1

max{d(µa, c), ε2/2}
.

Since ∀a ∈ [K], d(µm, cm) ≤ d(µa, c),

Hε,c ≤
K

max{d(µm, cm), ε2/2}
= Hε,cm . (9)

Adaptive Learning with Communication phase of DLC-Ix
identifies top N arms one after other from a subset of arms
(Unreserved set). It is similar to solving best arm identification
problem by N number of times. By allowing information
exchange between Leader and non-Leaders, this problem
becomes equivalent to solve top N arms identification problem
except the problem dependent variable Hε,c can change for the
given subset of arms. Therefore, we consider worst problem
dependent variable Hε,cm that depends on the smallest gap
between the mean reward of any two arms instead of the N th

best arm and N + 1 best arm.
The maximum rounds needed for transferring collected

mean reward of arms by non-Leaders to Leader are∑N−1
r=1 dlog2 (2/ε)e. Further, Leader also needs dlog2(K)e

rounds to assign a arm to a non-Leader. Combine these facts
with (9), we get above stated bound.

Theorem 3. Assume technical conditions stated in Lemma 5
hold. For any ε ≥ 0 and δ ∈ (0, 1/2], the sample complexity
of DLC-Ix with probability at least 1− 2δ is bounded as

T (DLC-Ix) ≤

⌈
log(δ/K)

log
(
1− 1

4K

)⌉+ 2K − 1

+ C0(α)Hε,cm log

(
k1K(Hε,cm)α

δ

)
+ (N − 1) (dlog2 (2/ε)e+ dlog2(K)e) .

Further with probability at least 1− 2δ, the regret of DLC-Ix
is bounded as

R(DLC-Ix) ≤NT (DLC-Ix).

Proof. The total number of rounds Algorithm DLC-Ix takes
for assigning (ε, δ)-optimal allocation to the N players is

T (DLC-Ix) = TRP + TIP + TALC . (10)

Substitute the number of rounds needed for different phases
from Lemmas 1, 2 and 5 in (10) to get above stated bound
of T (DLC-Ix). As the maximum regret for any round is



N , cumulative regret of the DLC-Ix is upper bounded by
NT (DLC-Ix).

Theorem 4. Let conditions of Lemma 5 hold. Then with
probability at least 1− 2δ, the maximum number of collisions
that can occur in DLC-Ix is C(DLC-Ix) where

C(DLC-Ix) ≤ N

⌈
log(δ/K)

log
(
1− 1

4K

)⌉+
N(N − 1)

2

+ (N − 1) (dlog2 (2/eε)e+ dlog2(K)e) .
Proof. The total collisions of DLC-Ix is is given by

C(DLC-Ix) = CRP + CPI + CALC (11)

The maximum number of collisions observed in Adaptive
Learning with Communication phase of DLC-Ix is upper
bounded by CALC where

CALC ≤ (N − 1) (dlog2 (2/ε)e+ dlog2(K)e)
Add the number of collisions occurs in other phases from
Lemmas 1 and 2 with CALC in (11) to get stated bound.

Theorem 5. Let TP be the rounds for which non-Leader waits
to play her reserved arm in Adaptive Learning phase of DLC
and RL is the set of reserved arms of non-Leaders after the
end of the Player Indexing phase. If TL is the rounds spent
for exploration of top N arms by both DLC and DLC-Ix then

R(DLC)TL
−R(DLC-Ix)TL

≥
(
TL −

⌈
TL
TP

⌉) ∑
n∈RL

µn

Proof. It follows from the fact that DLC needs non-Leaders
play periodically in the learning phase so that the Leader can
explore the arms freely whereas DLC-Ix allows non-Leaders
continue to play their reserved arms in the learning phase.

V. EXPERIMENT

We implement DLC and DLC-Ix and compare their empirical
performances with state-of-the-art MC algorithm [4] and
SIC-MMAB algorithm [12]. MC algorithm runs for a fixed
number of rounds(T0) and uses collisions information to find
top N arms whereas SIC-MMAB has problem dependent
termination rule and allows communication among players
as in DLC and DLC-Ix. We repeated the experiment 20 times
and plotted the cumulative regret with 95% confidence interval
(the vertical line on each curve shows the confidence interval).

Figure 1 compares regret for MC, DLC and DLC-Ix using
the same set of parameters used to evaluate performance of
MC in [4] – K = 10, N = 6, T = 10000, with mean rewards
of the arms varying between 0.95 and 0.5 with separation of
0.05 between two consecutive arms. For this problem instance,
MC uses T0 = 3000 rounds for the learning phase, which
translates the lower bound on the gap between the means as
ε′ =

√
16K ln (4K2/δ)/3000. We set ε(≈ ε′/2) = 0.3 and

δ = 0.05 in DLC and DLC-Ix for fair comparison. As expected,
our algorithms have lower cumulative regret than MC.

Figure 2 compares cumulative regret of SIC-MMAB with
DLC and DLC-Ix using the parameters– K = 9, N = 6, T =
300000, δ = 0.05 as in [12] but we used a larger gap between
the mean reward of arms for faster convergence. The mean
reward of the arms varies between 0.95 and 0.55, with the same
gap of 0.05 between two consecutive arms. We set ε = 0.05 for
DLC and DLC-Ix. After termination, the cumulative regret of

DLC and DLC-Ix perform significantly better than SIC-MMAB.
DLC does not allow non-Leader to play arm in every round
during learning phase which leads to more regret in initial
rounds. Whereas DLC-Ix allows non-Leader to play arm during
learning phase which leads to lower regret but more sample
needed for learning as shown in Figure 5.

Fig. 1: Comparison with MC Fig. 2: Comparison with SIC-MMAB

Figures 3 and 4 depicts comparison of cumulative regret for
different number of players and number of arms for a problem
instance where K = 10 (when varying number of players),
N = 5 (when varying number of arms), T = 300000, δ =
0.05, ε = 0.05 and with highest mean reward set to 0.95 with
others decreasing uniformly with gap of 0.05.

Fig. 3: Varying number of arms Fig. 4: Varying number of players

The cumulative regret increases with an increase in the
number of arms since each arm has to be sufficiently sampled
to get better estimates of mean reward. As allocations are
guaranteed to be only (ε, δ)−optimal, sometimes DLC does
not terminate with top N arms due to the bad estimate of the
mean reward in the initial rounds. However, it does not happen
in DLC-Ix as non-Leaders keep playing their reserved arms
during exploration phase and share reward information with the
Leader which helps the Leader to have good estimates for the
arms she did not explore. When DLC does not terminate with
top N arms, it incurs constant regret for subsequent rounds
that is the reason for random behavior of DLC. Figure 3 shows
that with increasing K the improvement in performance of
DLC-Ix over SIC-MMAB is significant.

As the number of players increases, our algorithms perform
better than SIC-MMAB as information exchange between the
Leader and non-Leader happens once, whereas in SIC-MMAB
it happens multiple times. SIC-MMAB runs in multiple phases
where exploration and exploitation occur in each phase. At
the end of exploration in each phase, players communicate the
reward information of the sampled arms with other players
adding a significant amount of communication overhead.

This overhead increases with increase in the number of
players and arms, resulting in more regret, more rounds needed
for termination and more collisions in SIC-MMAB as shown in
Figure 4 and 5. The number rounds needed for the termination
of DLC and DLC-Ix depend upon the gap between the mean
reward of the arm and the average of the mean reward of
N th best arm and N + 1 best arm (as shown in Lemma 3).



Therefore, initially regret increases with an increase in the
number of players, but decreases after the number of players
become more than K/2 as shown in Figure 4.

Fig. 5: Collisions and Rounds needed for termination v/s gap between consecutive arms.

DLC and DLC-Ix also have fewer collisions and need less
number of rounds for finding and allocating the top N arms
as compare to SIC-MMAB which is shown in Figure 5. The
collisions in MC are much higher than DLC and DLC-Ix.
Hence, the comparison of collisions in MC with DLC and
DLC-Ix is not presented in this paper.

VI. CONCLUSION

We considered a CRN where multiple players access the
same set of arms in absence of any central coordination. The
players aim to maximize network throughput in a distributed
fashion. The mean rewards of channels and number of users
present in the network are unknown to the users. We set up the
problem as a stochastic multi-player multi-armed bandits and
developed completely decentralized and communication-free
algorithms that achieve constant regret with a high probability.

In this work, we considered that the quality of the arms is
the same across all the players (symmetric) and the number of
users was fixed throughout (static). In the future, we would like
to study the setting where the quality of arms could potentially
differ across players (asymmetric) and allow the number of
users to vary with time (dynamic networks).

VII. APPENDIX

Proof of Lemma 1: The proof of the first part of this lemma
is similar to that of [18, Lemma 1], so we skip the details.

As at least two players need to play the same arm for any
collision to happen, the maximum number of collisions are
bounded by N for any round. Therefore, total collisions in
Orthogonalization phase are trivially bounded by NTRH .

Proof of Lemma 2: As the player with channel index one
starts indexing other players, it needs to check the K − 1
channel for other players and N − 1 collisions happen during
this process. The player with arm’s index j starts sequential
hopping after 2j rounds and needs to check only K − j arms.
She observes N − j collisions in the process. The player with
arm index K−1 starts sequential hopping after 2(K−1) round
and need to check only the arm with index K. Therefore, the
total number of rounds (TIP ) required to complete the Player
Indexing phase is: TIP = 2K − 1.

The total number of collisions (CIP ) in the Player Indexing
phase is bounded as: CIP =

∑N
j=1(N − j) = N(N − 1)/2.

Proof of Lemma 4: Let TP = (N − 1)(dlog2Ke+ 1) be the
fixed number of rounds after which each player will play his
reserved arm. In the worst case, if AdaptiveExplore sub-routine
terminates just after any player played his reserved arm, then
Leader has to play TP more rounds in which he transfer

arm information to other players and then takes dlog2Ke+ 1
rounds to transfer arm information to that player. Therefore,
TCP ≤ N(dlog2Ke+ 1).

Since Leader has to play reserved arm in the specific round
before transferring the arm information to any player, this will
lead to N−1 collisions. The arm information is transferred in its
binary form which requires only dlog2Ke rounds. Therefore,
the maximum number of collisions needed for transferring
the arm information to other players is (N − 1) dlog2Ke.
Therefore, the total number of collisions (CCP ) can occur
in the Communication phase is bounded as: CCP ≤ (N −
1)(dlog2Ke+ 1).
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