
The Order of Things: Position-Aware
Network-friendly Recommendations in Long

Viewing Sessions
Theodoros Giannakas1, Thrasyvoulos Spyropoulos1, and Pavlos Sermpezis2

1 EURECOM, France, first.last@eurecom.fr
2 FORTH, Greece, sermpezis@ics.forth.gr

Abstract—Caching has recently attracted a lot of attention
in the wireless communications community, as a means to cope
with the increasing number of users consuming web content
from mobile devices. Caching offers an opportunity for a win-
win scenario: nearby content can improve the video streaming
experience for the user, and free up valuable network resources
for the operator. At the same time, recent works have shown that
recommendations of popular content apps are responsible for a
significant percentage of users requests. As a result, some very
recent works have considered how to nudge recommendations
to facilitate the network (e.g., increase cache hit rates). In this
paper, we follow up on this line of work, and consider the
problem of designing cache friendly recommendations for long
viewing sessions; specifically, we attempt to answer two open
questions in this context: (i) given that recommendation position
affects user click rates, what is the impact on the performance
of such network-friendly recommender solutions? (ii) can the
resulting optimization problems be solved efficiently, when con-
sidering both sequences of dependent accesses (e.g., YouTube)
and position preference? To this end, we propose a stochastic
model that incorporates position-aware recommendations into
a Markovian traversal model of the content catalog, and derive
the average cost of a user session using absorbing Markov chain
theory. We then formulate the optimization problem, and after a
careful sequence of equivalent transformations show that it has
a linear program equivalent and thus can be solved efficiently.
Finally, we use a range of real datasets we collected to investigate
the impact of position preference in recommendations on the
proposed optimal algorithm. Our results suggest more than 30%
improvement with respect to state-of-the-art methods.

I. INTRODUCTION

Storing content close to wireless users is recognized as a
promising method to (i) reduce the network cost to serve a
request, and (ii) improve user experience (e.g., better playout
quality). As a result, a number of studies suggest to install
tiny caches (e.g., hard drives) at every small-cell or femto-
node [1], bringing ideas from hierarchical caching [2] into
the wireless domain.

Nevertheless, the rapidly growing catalog sizes, smaller
sizes per cache (e.g., at femto-nodes or user devices) com-
pared to traditional CDNs, and volatility of user demand
when considering smaller populations, make the task of
caching algorithms increasingly challenging [3], [4]. For
example, installing say 1TB in every small cell in an ultra-
dense network (already a pretty expensive investment) would
still fit less 1% or less of the content catalogue of even one
provider (e.g., the Netflix catalogue is reportedly in the order

of few PBs). Things are even more stringent for UE-side
caching solutions [5], where it is reported that up to 10-20
files could be pre-fetched realistically [6].

To overcome such challenges, a radical approach has been
recently proposed [7], [8], [9], [10], [11], [12], based on the
observation that user demand is increasingly driven today
by recommendation systems of popular applications (e.g.,
Netflix, YouTube). Instead of simply recommending inter-
esting content, recommendations could instead be “nudged”
towards interesting content with low access cost (e.g., locally
cached) [7], [12]: the recommendation quality remains unal-
tered, and the new content might in fact become accessible at
better quality (e.g., HD). This idea is appealing, potentially
presenting a win-win situation for all involved parties.

Nevertheless, due to the very recent research interest in
the topic, a number of key questions remain unanswered.
First, it has been shown that the users have the tendency
to click on recommended contents (or products in the case
of e-commerce) according to the position they find them,
e.g., contents higher up in the recommendation list [13],
[14]. However, several of the aforementioned studies tend to
ignore this aspect [9], [11], [10] in their analysis, assuming
that an equally good recommendation will be clicked equally
frequently, regardless of the position in the application GUI
that it appears. The work in [7], while taking into account the
ranking of the recommendations in the modeling and their
proposed algorithm, in the simulation section they assume
that the boosting of the items is equal. So an interesting
question arising then is: Does the performance of network-
friendly recommendation schemes improves, deteriorates, or
is unaffected by such position preference?

A second important question has to do with the computa-
tional complexity of optimizing network-friendly recommen-
dations. In settings where each user requests one content (or
equivalently requests many contents in an I.I.D. manner), the
caching-side of the problem [11] or the recommendation-side
of the problem, can be efficiently approximated. However,
the joint caching and recommendation problem is NP com-
plete [7], without any known approximation guarantees or
optimal decompositions [7]. Things get worse, when one con-
siders a user accessing multiple contents during a session in
a structured manner, due to the inherent memory this system
has (the content recommended and/or accessed at step n has

1

an impact beyond step n+ 1). Even without position prefer-
ence, the problem of network-friendly recommendations for
long (markovian) sequences of content accessed seems to be
hard (non-convex) [9]. A second question of interest then is:
Can the problem of network-friendly recommendations even
be solved efficiently, in a context where there is both position
preference and dependence in consecutive content requests?

To this end, in this paper we make the following contribu-
tions towards answering the above questions:
(i) Sequential request analysis based on absorbing
Markov chain theory. We propose an analytical framework
based on absorbing Markov chain theory, to model a user
accessing a sequence of contents, driven by a recommender
(Sections II and III). The sequential request model with
preference to top recommendations better fits real users
behavior in a number of popular applications (e.g. YouTube,
Vimeo, Spotify) compared to Independent Reference Models
(IRM) used in previous work [11] and/or models neglecting
the position of recommendations [9], [11].
(ii) Optimal solution. We formulate a generic optimization
problem for high quality but network-friendly recommenda-
tions. While the original problem in non-convex (similarly
to previous formulations [9]), we prove an equivalent convex
one through a sequence of transformations, which allows to
solve the original problem efficiently (Section IV).
(iii) Real data analysis and performance evaluation. We
validate our algorithms using existing and collected datasets
from different content catalogs (e.g., YouTube, Movielens),
and demonstrate performance improvements up to 35% com-
pared to a state-of-the-art method, and 60% compared to
a greedy cache-friendly recommender (in terms of relative
gain), for a scenario with 90% of the original recommen-
dation quality (Section V). Our findings reveal that the
more skewed the preference towards top positions of rec-
ommendations is, the higher the gains of network-friendly
recommendation schemes can be.

Finally, we discuss related work in Section VI and con-
clude our paper in Section VII.

II. PROBLEM SETUP

A. Recommendation-driven Content Consumption.

We consider a user that consumes one or more contents
during a session, drawn from a catalogue K of cardinality K.
It is reported that YouTube users spend on average around 40
minutes at the service, viewing several related videos [15].
After each viewing, a user is offered some recommended
items that she might follow or not, according to the model
below.

Definition 1 (Recommendation-Driven Requests). After a
user consumes a content, N contents are recommended to
her (these might differ between users).
• with probability 1− α (α ∈ [0, 1]) she ignores the recom-

mendations, and picks a content j (e.g., through a search
bar) with probability pj ∈ (0, 1), p0 = [p1, p2, ..., pK]T .

• with probability α she follows one of the N recommenda-
tions.

• each of the N recommended contents is placed in one of N
possible slots/positions in the application GUI; if she does
follow recommendation, the conditional probability to pick
the item in position i is vi, where

∑
i vi = 1.

We assume the probabilities pj capture long-term user
behavior (beyond one session), and possibly the impact of the
baseline recommender. W.l.o.g. we also assume p0 governs
the first content accessed, when a user starts a session.
This model captures a number of everyday scenarios (e.g.,
watching clips on YouTube, personalized radio, etc).

The last point in the definition is a key differentiator
of this work, compared to some previous ones on the
topic [9], [7], [10]. A variety of recent studies [13], [14]
has shown that the web-users have the tendency to click on
contents (or products in the case of e-commerce) according to
the position they find them. For example, in the PC interface
of YouTube, they show a preference for the contents that
are higher in the list of the recommended items. Hence,
the probability of picking content in position 1 (v1), might
be quite higher than the probability to pick the content in
position N (vN)1. In contrast, [9], [7], [10] explicitly or
implicitly assume that vi = 1

N ,∀i.
Remark - Position Entropy: A key goal of this paper is

to understand the additional impact of position preference on
the achievable gains of network-friendly recommendations. A
natural way to capture position preference is with the entropy
of the probability mass function v = [v1, v2, ..., vN], namely

Hv = H(v1, .., vN) = −
N∑
n=1

vn · log(vn). (1)

The original case of no position preference, corresponds to
a uniformly distributed v, which is well known to have
maximum entropy. Any position preference will lead to lower
entropy, with the extreme case of a “1-hot vector” (i.e., only
one vi = 1) having zero entropy.

Content Retrieval Cost. We assume that fetching content i
is associated with a generic cost ci ∈ R, c = [c1, c2, ..., cK]T ,
which is known to the content provider, and might depend on
access latency, congestion overhead, or even monetary cost.
Maximizing cache hits: Can be captured by setting ci = 1
for all cached content and to ci = 0, for non-cached content.
Hierachical caching: Can be captured by letting ci take
values out of n possible ones, corresponding to n cache
layers: higher values correspond to layers farther from the
user [16], [2].

B. Baseline Recommendations.

Recommendation systems (RS) are an active area of re-
search, with state-of-the-art RS using collaborative filter-
ing [17], and recently deep neural networks [18]. For sim-
plicity, we assume that the baseline RS works as follows:

1In fact, a Zipf-like relation has been observed [14].

2

Definition 2 (Baseline Recommendations and Matrix U).
(i) For every pair of contents i, j ∈ K a score uij ∈ [0, 1] is
calculated, using a state-of-the-art method. Note that these
scores can be personalized, and differ between users.2

(ii) After a user has just consumed content i, the RS recom-
mends contents according to these uij values (e.g., the N
contents j with the highest uij value [14], [18].3

C. Network-friendly Recommendations.

Our goal is to depart from the baseline recommendations
(Def. 2) that are based only on U, and let them consider the
access costs c as well. We define recommendation decisions
as follows.

Definition 3 (Control Variables R1, ..,RN). Let rnij ∈ [0, 1]
denote the probability that content j is recommended after a
user watches content i in the position n of the list. For the
n-th position in the recommendation list, these probabilities
define a matrix K × K recommendation matrix, which we
call Rn.

Defining recommendations as probabilities provides us
more flexibility, as it allows to not always show a user
the same contents (after consuming some content i). For
example, assume K = 4 total files, a user just watched item
1, and N = 2 items must be recommended. Let the first
row of the matrix R1 be r11 = [0, 1, 0, 0] and that of R2 be
r21 = [0, 0, 0.5, 0.5]. In practice, this means that in position 1
the user will always see content 2 being recommended (after
consuming content 1), and the recommendation for position
2 will half the time be for content 3 and half for content 4.

Our objective is to choose what to recommend in which
position, i.e., choose R1, ..RN , to minimize the average con-
tent access cost. However, we still need to ensure that the user
remains generally happy with the quality of recommendations
and does not abandon the streaming session.

Recommendation Quality Constraint.
Let rn(B)

ij denote the baseline recommendations of Def .2.
We can define the recommendation quality of this baseline
recommender for content i, qmaxi as follows

qmaxi =

K∑
j=1

N∑
n=1

vn · r(n)(B)
ij · uij . (2)

This quantity will act as another figure of merit for other
(network-friendly) RS.

Definition 4 (Quality of Network-Friendly Recommenda-
tions). Any other (network-friendly) RS that differs from the

2uij could correspond to the cosine similarity between content i and j,
in a collaborative filterting system [17], or simply take values either 1 (for a
small number of related files) and 0 (for unrelated ones). These scores might
also depend on user preferences and past history of that user, as is often the
case when users are logged into the app.

3N depends on the scenario. E.g., in YouTube N = 2, .., 5 in its mobile
app, and N = 20 in its website version.

Fig. 1: Comparison of baseline (left) and network-friendly (right) recom-
menders. Gray and white boxes denote cached and non-cached contents,
respectively. Recommending after content 3 a slightly less similar content
(i.e., content 4 instead of 6), leads to lower access cost in the long term.

baseline recommendations rBij can be assessed in terms of its
recommendation quality q ∈ [0, 1] with the constraint:

K∑
j=1

N∑
n=1

vn · rnij · uij ≥ q · qmaxi ,∀i ∈ K. (3)

where qmaxi is the quantity defined in Eq.(2).

This equation weighs each recommendation with: (a) its
quality uij , and (b) the importance of the position n it appears
at, vn. Note however that this constraint is not a restrictive
choice. One could conceive a more “aggresive” recommender
that removes the weight vn from the left-hand side. In fact,
our framework can handle any quality constraint(s) that are
convex in rnij .

Based on the above discussion, a network-friendly recom-
mendation could favor at each step contents j (i.e., give high
rnij values) that have low access cost cj but also are interesting
to the user (i.e., have high uij value). However, as we show
in later sections, such a greedy approach is suboptimal, as
the impact of rnij goes beyond the content j accessed next,
affecting the entire sample path of subsequent contents in that
session. The example in Fig. 1 depicts such a scenario: after
content 3, instead of recommending content 6 (related value
u36 = 1) content 4 is recommended (u34 = 0.8), because
4 is more related to cached contents (9 and 7) that can be
recommended later (whereas 6 is related to the non-cached
contents 5 and 4).4

Remark on Recommendation Personalization. As hinted at
earlier, content utilities uij and recommendations rnij can be
user-specific (e.g. uuij for user u), since different users might
have different access patterns that can be leveraged. Never-
theless, to avoid notation clutter we do not use superscript
u in the remainder of the paper, and will assume that these
quantities and the respective optimization algorithm is done
per user.
Remark on Recommendation Quality. Cache-friendly rec-
ommendations might also improve user QoE, in addition to
network cost, a “win-win” situation. Today’s RS, measure
their performance (QoR) without taking into account where
the recommended content is stored. Assuming two contents
equally interesting to the user where the one is stored locally
while the other is not; it is obvious that the cached one could
be streamed in much better quality (e.g., HD, so higher QoS),
thus leading to q > 1. Hence, more sophisticated QoE (= QoR
+ QoS) metrics could combine these effects: e.g., a content’s
effective utility ûij = f(uij , cj) that increases if j is highly

4The reason is that many contents j will have high enough relevance uij
to the original content i, and are thus interchangeable [14]

3

TABLE I: Important Notation

α Prob. the user follows recommendations
rnij Prob. to recommend j after i at position n
qmax
i Maximum baseline quality of content i
q Percentage of original quality
p0 Baseline popularity of contents
uij Similarity scores content pairs {i, j}, included in U
vn Click prob. of recommendation at the position n
ci Access cost for content i
K Content catalogue (of cardinality K)
N Number of recommendations

related to i but also if it is locally cached (i.e., cj is low). Such
a metric could be immediately integrated into our framework,
simply be replacing u with û.

Table I summarizes some important notation. Vectors and
matrices are denoted with bold symbols.

III. AVERAGE SESSION COST

Having defined the content access model, our first step to-
wards “optimizing” the (network-friendly) recommendations,
is to better understand what we are trying to optimize. To this
end, in this section we derive the expected content access cost
for a typical user session, as a function of recommendation
variables rnij . This will serve as the objective of our problem.
(Section IV).

Definition 5. Let S = {i1, i2, . . . , is}, in ∈ K be a sequence
of contents accessed by a user according to Def. 1 during a
viewing session. Then S is a discrete-time Markov process
with transition matrix

P = α

N∑
n=1

vnR
n + (1− α)1 · pT0 , (4)

where 1 = [1, 1, ..., 1]T is a column vector of all 1s.

When the user has just consumed content i, then she
might next consume content j if all the following occur: she
decides to follow a recommendation (probability α according
to Def. 1), j appears in the position n (probability rnij), and
she picks the content at the n-th position (probability vn).
These probabilities are by definition independent, hence the
probability of these three events is their product, α · vn · rnij .
Note that the user might consume j, if she finds it in
positions other than n (for example in position m) and
will then click it with vm. Moreover, the user might also
consume j after i, if she ignores the recommendations (with
probability 1 − α according to Def. 1) and picks content
j from the entire catalog (with probability pj). Putting all
these together gives the transition probability from i to j,
Pr{i→ j} = α ·

∑N
n=1 vn · rnij + (1−α) · pj , which written

in matrix notation gives Eq. (4).

Lemma 1 (Content Access as Renewal-Reward). A content
access sequence S = {S1

R, S
2
R, . . . } defines a renewal

process, with subsequences SR, where the user follows rec-
ommended content, each ending with a jump outside of the
recommender. The cost ci incurred at each state is the reward.

Fig. 2: Example of a multi-content session. Gray and white boxes denote
cached and non-cached contents, respectively. A user follows recommenda-
tions (continuous arrows) or ignores them (dotted arrows).

It is easy to see that whenever a user makes a jump outside
of the recommendations (w.p. 1− α), the process renews to
state p0. An example can be found in Fig. 2. To derive the
mean access cost, we employ Lemma 1 and the framework of
Absorbing Markov Chains (AMC) [19]: a user is in transient
states while she is following recommendations; and she gets
absorbed as soon as a jump outside of recommendations
occurs, as shown in Fig. 2. Hence, during a content access
sequence, recommendations affect the user’s choices (and
related costs) only during the transient states.

Lemma 2 (Recommendation-Driven Cost). The content ac-
cess cost C(SR) during a renewal cycle SR is given by

E[C(SR)] = pT0 ·G · c, (5)
and the expected length of such a cycle is

|SR| = pT0 ·G · 1 =
1

1− α
, (6)

where G =
(
I− α ·

∑N
n=1 ·Rn

)−1
is the Fundamental

Matrix of an AMC with K transient states and 1 absorbing
state, corresponding to a jump outside recommendations.

Proof. Let a user start a sub-sequence by retrieving content
i. The expected number of retrievals of content j (or, number
of times visiting state j) until the end of the sub-sequence is
given by gij , where gij is the (i-row,j-column) element of
the fundamental matrix G of the AMC [19].

The fundamental matrix is defined as
G =

∑∞
n=0 Q

n = (I−Q)−1 (7)
where Q the matrix with the transition probabilities qij
between the transient states of the AMC (i, j ∈ K). Following
the same arguments as in Def. 5, we get that qij = α ·∑N
n=1 vn · rnij , or, in a matrix format Q = α ·

∑N
n=1 vn ·Rn.

Substituting this into Eq. (7) gives the expression for G that
appears in Lemma 2. Now, the cost of retrieving a content j
is cj . Since each content j is retrieved on average gij times
during a sub-sequence that starts from i, the total cost is given
by

E[C(SR) | i] =
∑
j∈K gij · cj (8)

The probability that a sub-sequence starts at content i is
equal for all sub-sessions and is given by pi. Thus, taking
the expectation over all the possible initial states i, gives

E[C(SR)] =
∑
i∈K

E[C(SR) | i] ·pi =
∑
i∈K

∑
j∈K

gij · cj ·pi (9)

Expressing the above summation as the product of the
vectors p0 and c, and the matrix G, gives Eq. (5).

Similarly, if gij is the amount of time spent on state j
before absorption, starting from state i, then

∑
j gij must be

4

equal to the total time spent at any state before absorption.
Weighing this with the probability pi of starting at each state
i, gives the expected time to absorption, which is the expected
duration of a sub-sequence E[|SR|] =

∑
i pi ·

∑
j gij . Writing

this in matrix notation, gives the first part of Eq.(6).
However, observe that the probability of absorption at any

state i is equal to 1−α, independent of i. Hence, the number
of steps till absorption is a geometric random variable with
parameter 1 − α, and thus the mean time (i.e., number of
steps) to absorption is 1

1−α .

The following Theorem, which gives the expected retrieval
cost for a user session, follows immediately from Lem-
mas 1, 2, and the Renewal-Reward theorem [20]

Theorem 1. The expected retrieval cost per content, for a
user session S, given a recommendation matrix R is

E[C(S) | R1, .,RN] =
pT0

(
I− α

∑N
n=1 vnR

n
)−1

c

1
1−α

(10)

IV. OPTIMIZATION PROBLEM AND METHODOLOGY

In this section, we use the results of the previous section
to formulate the problem of minimizing the expected access
cost until absorption under a set of modeling constraints.

A. The Problem and its Constraints
OP 1 (Nonconvex formulation).

minimize
R1,..,RN

pT
0 · (I− α ·

N∑
n=1

vn ·Rn)−1 · c (11)

subject to
K∑

j=1

N∑
n=1

vn · rnij · uij ≥ q · qmax
i , ∀ i ∈ K (12)

K∑
j=1

rnij = 1, ∀ i ∈ K and n = 1, ..., N (13)

N∑
n=1

rnij ≤ 1, ∀ {i, j} ∈ K (14)

0 ≤ rnij ≤ 1 (i 6= j), rnii = 0 ∀ i, n. (15)

The constraint in Eq.(12), is responsible for keeping the
quality of the recommendations above a pre-specified (and
given) threshold. The pair of constraints in Eqs.(13,15),
defines a probability simplex for every row of all the Rn

matrices. Note that we also prohibit self-recommendations
(rnii = 0 ∀ i and n) (see Eq.(15)). Importantly, Eq.(14)
is necessary in the position-aware setup, to ensure that the
same content will not be recommended in two different
positions. As an example assume that r11 = [0, 1, 0, 0] and
r21 = [0, 0.2, 0.3, 0.5], in that case we clearly see that content
2 would always be shown in position 1 (after watching
content 1), but 20% of those times it would be shown in
position 2 as well. Hence, Eq.(14) ensures that such decision
vectors would be infeasible.

Evidently, our feasible space consists of either linear
(equalities or inequalities) or box constraints with respect
to the decision variables rnij . However, the objective is non-
convex in general.

Lemma 3. The problem described in OP 1 is nonconvex.

Proof. The problem OP 1 comprises N · K2 variables rnij ,
and a set of K2 ·(N+2)+K linear (equality and inequality)
constraints, thus the feasible solution space is convex. How-
ever, assume w.l.o.g that p0 = c = w, N = 1, and v1 = 1;
the objective now becomes f(R) = wT (I − α · R)−1w.
Unless R is symmetric positive semi-definite (PSD), f(R) is
non-convex [21]. Forcing R to be symmetric would require
additional constraints that lead to suboptimal solutions of this
problem [22]. Therefore, our objective as is, is nonconvex and
there are no exact methods that can solve it in polynomial
time.

B. The Journey to Optimality

In addition to non-convexity, a key difficulty in solving
OP 1 is the inverse matrix in the objective. Any gradient-
based algorithm would require a matrix inversion at each gra-
dient step (an operation of complexity O(K3). To circumvent
this, we introduce K auxiliary variables zT , for which we will
demand zT = pT0 ·(I−α·

∑N
n=1 vnR

n)−1. This introduces K
new equality constraints, leading to the following equivalent
problem.5

Intermediate Step (Equivalent formulation).
minimize

z, R1,..,RN
cT · z, (16)

subject to zT − α · zT ·
N∑

n=1

vn ·Rn = pT
0 (17)

Eqs.(12, 13, 14, 15) (18)

The new objective is now convex (in fact, linear) in
the new variable (z). However, as the set of constraints
Eq.(17) are all quadratic equalities, the problem remains
nonconvex. The above formulation falls under the umbrella
of non-convex QCQP (Quadratically Constrained Quadratic
Program), where it is common to perform a convex relaxation
of the quadratic constraints, and then solve an approximate
convex problem (e.g., SDP or Spectral relaxation, see [23]
for more details). The problem can also be seen as bi-convex
in variables Rn and z, respectively. Alternating Direction
Method of Multipliers (ADMM) can be applied to such
problems, iteratively solving convex subproblems [24], [9].
Nevertheless, none of these methods provides any optimality
guarantees, and even convergence for non-convex ADMM is
an open research topic.

To further deal with this additional complication, we define
another set of variables as fnij = zi·rnij . Since the j-th element
of the n-th vector zT ·Rn can be written as

∑
i zi · rnij , we

can write now zT ·Rn = 1T ·Fn, and the new variables are
z and F1, ..,FN , which are a K × 1 vector, and N K ×K
matrices respectively.

This new transformation leads to the following problem.

5Two problems are equivalent if the solution of the one, can be uniquely
obtained through the solution of the other [21]; introducing auxiliary
variables preserves the property.

5

OP 2 (LP formulation).
minimize
z, F1,..,FN

cT · z, (19)

subject to
K∑

j=1

N∑
n=1

vn · fn
ij · uij ≥ zi · q · qmax

i , ∀ i ∈ K

(20)
K∑

j=1

fn
ij = zi, ∀ i ∈ K and n = 1, .., N (21)

N∑
n=1

fn
ij ≤ zi, ∀ {i, j} ∈ K (22)

fn
ij ≥ 0 (i 6= j), fn

ii = 0,∀ i, j ∈ K (23)

zj − α ·
N∑

n=1

vn ·
K∑
i

fn
ij = pj , ∀j ∈ K (24)

Lemma 4. The change of variables fnij = zi · rnij , is a bijec-
tion (one-to-one mapping) between (zi, r

n
ij) and (zi, f

n
ij).

Proof. This follows immediately, as we can readily obtain
rnij =

fn
ij

zi
from {zi, rnij}. Note that, since zj =

∑
i f

n
ij + pj ,

and pi ∈ (0, 1) ∀ i, i.e. nonzero (see Def. 1), this forces
z > 0 and thus rnij are always uniquely defined.

Corollary. OP 1 can be solved efficiently as an LP.

Proof. Equivalency due to Lemma 4.

We have therefore transformed the nonconvex OP 1 to a
convex (LP) one OP 2, and can now solve it optimally.

C. A Myopic Approach

A natural way to tackle the OP 1 is to try minimizing
the cost of content retrieval in a single-content session (i.e.,
only one transition in the Markov chain). This is equivalent
to minimizing the scalar quantity

pT0 · (α ·
N∑
n=1

vn ·Rn + (1− α) · 1T · p0) · c (25)

Ignoring the terms that do not depend on the control variables
Rn, yields the following.

OP 3 (Greedy Aware Recommendations).

minimize
R1,..,RN

pT
0 ·
(N∑

n=1

vn ·Rn
)
· c, (26)

subject to Eqs.(12, 13, 14, 15) (27)

Unlike the multi-step problem, this is already an LP, and
can be solved directly without the earlier transformation
steps. This solution of OP 3 will serve in the upcoming
results section as a baseline approach, to solving the hard
basis problem OP 1. Interestingly, the solution of OP 3 (we
will call Greedy from now), resembles the policies proposed
in [7], [8]. Although the algorithm of [7] targets a different
context, i.e., the joint caching and single access content rec-
ommendation, the Greedy algorithm could be interpreted as
applying the recommendation part of [7] for each user, along
with a continuous relaxation of the control (recommendation)
variables. In doing so, the recommendation problem is simply
an LP of the type of Eq.(26), when the recommendations

are allowed to be probabilistic. Due to this relaxation, the
greedy algorithm is an upper bound for [7], looking at the
recommendation problem only.

V. VALIDATION RESULTS

A. Warm Up
In this section we evaluate the performance of the proposed

algorithm and provide insights regarding the behavior of the
network-friendly recommendations schemes. For a realistic
evaluation, we use three collected datasets from video/audio
services. Before diving into the details, we need to state the
following
Performance metric: Cache Hit Rate (CHR), as computed by
the objective of Eq.(10), here we will minimize the cache
miss.
Relative Gain: computed as CHR(proposed)−CHR(baseline)

CHR(baseline)
· 100%.

p0: drawn from Zipf [25] of parameter s.
v: drawn from Zipf [14] of parameter β
α: will vary from 0.7 to 0.8
c: ci = 0 for the C (cache capacity) most popular contents
according to p0, and 1 to the rest.
Solving OP 2, OP 3: carried out using IBM ILOG CPLEX
in Python. We note that since CPLEX is designed to receive
LPs in the standard form, we had to vectorize our matrices in
order to bring the problem in the format min

x≥0,A·x≤b
{cT ·x}

with linear and bound constraints over the variables. Regard-
ing OP 3, it is easy to see that the problem’s objective Eq.(26)
decomposes into K independent minimization problems, of
size NK each, as the variables per content i are not coupled.
Finally note that for the simulations in Figs. 3, 4, we
will quote the cache-hit rate without recommendations for
reference, (i.e. storing the most popular contents that fit in
the cache C, based on p0) and, which we denote as MPH
(Most Popular Hit - No Recommendations). This information
along with the simulation parameters are included in Table II.

B. Schemes we compare with
We refer to our algorithm (OP 2) as Optimal.

Greedy Aware: We consider as baseline algorithm for
network-friendly recommendations (OP 3 [7]), which is a
position-aware scheme, but does not take into account that
requests are sequential.
CARS: algorithm [9], a position-unaware scheme for sequen-
tial content requests proposed in, will serve as our second
baseline. The CARS algorithm optimizes (with no guaran-
tees) the recommendations for a user performing multiple se-
quential requests, but assumes that the user selects uniformly
one of the recommendations regardless of the position they
appear.
Note on CARS. In our framework, this translates to solving
OP 1 for uniform v. The algorithm will then return N
identical stochastic recommendation matrices. Importantly,
whichever v we choose, the parenthesis of the Eq.(11) will be
(I−α ·(v1 ·R+ ..+vN ·R)) = (I−α ·R). This explains why
the hit rate of CARS in the plots, remains constant regardless
of the click distribution v.

6

TABLE II: Parameters of the simulation
q % zipf(s) α N MPH %

MovieLens 80 0.8 0.7 2 23.26
YouTube FR 95 0.6 0.8 2 12.17
last.fm 80 0.6 0.7 3 11.74

C. Datasets

YouTube FR. (K = 1054) We used the crawling methodol-
ogy of [12] and collected a dataset from YouTube in France.
We considered 11 of the most popular videos on a given day,
and did a breadth-first-search (up to depth 2) on the lists
of related videos (max 50 per video) offered by the YouTube
API. We built the matrix U ∈ {0, 1} from the collected video
relations.

last.fm. (K = 757) We considered a dataset from the last.fm
database [26]. We applied the “getSimilar” method to the
content IDs’ to fill the entries of the matrix U with similarity
scores in [0,1]. We then set scores above 0.1 to uij = 1 to
obtain a dense U matrix.

MovieLens. (K = 1066) We consider the Movielens movies-
rating dataset [27], containing 69162 ratings (0 to 5 stars)
of 671 users for 9066 movies. We apply an item-to-item
collaborative filtering (using 10 most similar items) to extract
the missing user ratings, and then use the cosine distance
(∈ [−1, 1]) of each pair of contents based on their common
ratings. We set uij = 1 for contents with cosine distance
larger than 0.6.

D. Results

Optimal vs CARS. We initially focus on answering a basic
question: Is the non-uniformity of users’ preferences to some
positions helpful or harmful for a network friendly recom-
mender? In Figs. 3(a), 3(b) (see Table II for sim. parameters),
we assume behaviors of increasing entropy; starting from
users that show preference on the higher positions of the list
(low entropy), to users that select uniformly recommendations
(maximum entropy). In our simulations, we have used a zipf
distribution [14] over the N positions and by decreasing
its exponent, the entropy on the x-axis is increased. As an
example, in Fig. 3(a), lowest Hv corresponds to a vector of
probabilities v = [0.8, 0.2] (recall that N = 2), while the
highest one on the same plot to v = [0.58, 0.42].

Observation 1. Our first observation is that the lower the
entropy, the higher the optimal result. In the extreme case
where the Hv → 0 (virtually this would mean N = 1, the
user clicks deterministically), the optimal hit rate becomes
maximum. This can be validated in Fig. 5(b), where for
increasing entropy the the hit rate decreases and its max is
attained for N = 1.

Optimal vs Greedy. The second question we study is: How
would a simpler greedy/myopic, yet position-aware, algo-
rithm fare against our proposed method? Fundamentally, the
Greedy algorithm solves a less constrained problem than
OP 1, and is therefore a more lightweight option in terms
of execution time. However, the merits of using the proposed

0.75 0.8 0.85 0.9 0.95

Entropy

35

40

45

50

C
H
R

(%
)

MovieLens

Optimal-Aware
CARS

(a) Absolute Perf.

0.75 0.8 0.85 0.9 0.95

Entropy

0

5

10

15

20

25

R
el
at
iv
e
G
ai
n
(%

)

vs CARS

last.fm
YouTube FR
MovieLens

(b) Relative Gain %
Fig. 3: Cache Hit Rate vs Hv (C/K ≈ 1.00%)

0.75 0.8 0.85 0.9 0.95

Entropy

35

40

45

50

C
H
R

(%
)

MovieLens

Optimal-Aware
Greedy-Aware

(a) Absolute Perf.

0.75 0.8 0.85 0.9 0.95

Entropy

10

20

30

40

50

60

70

R
el
at
iv
e
G
ai
n
(%

)

vs Greedy-Aware

last.fm
YouTube FR
MovieLens

(b) Relative Gain %
Fig. 4: Cache Hit Rate vs Hv (C/K ≈ 1.00%)

optimal method are noticeable in Figs. 4(a), 4(b) (parameters
in Table II). In all three datasets, we see an impressive
improvement, between 20− 60%.

Observation 2. The constant relative gain of the two aware
algorithms hints that both, as the entropy increases, seem to
do the right placement in the positions. However, as Greedy
decides with a small horizon, it cannot build the correct
long paths that lead to higher gains in the following requests
(clicks) of the user.

Lastly, we investigate the sensitivity of the three methods
against the number of recommendations (N). In Fig. 5(b), we
present the CHR curves of all three schemes for increasing N ,
where we keep constant the distribution v ∼ zipf(0.9). As
expected, for N = 1 (e.g., YouTube autoplay scenario) CARS
and the proposed scheme coincide, as there is no flexibility in
having only one recommendation. However, as N increases,
CARS and Greedy decay at a much faster pace than the
proposed scheme, which is more resilient to the increase of
N . This leads to the following observation.

Observation 3. For large N , CARS may offer the “correct”
recommendations (cached or related or both), but it cannot
place them in the right positions, as there are now too
many available spots. In contrast, our algorithm Optimal
recommends the “correct” contents, and places the recom-
mendations in the “correct” positions. Fig. 5(a), strengthens

Relative Gain Optimal vs CARS

0

0

0

0

0

0.04

0.07

0.11

0.15

0.18

0.05

0.1

0.16

0.21

0.26

0.04

0.09

0.15

0.22

0.29

0.03

0.08

0.14

0.22

0.31

1 2 3 4 5

N

0.3

0.6

0.9

1.2

1.5

β

(a) q = 80%, K = 400

1 2 3 4

N (# of recom/s)

15

20

25

30

35

C
H
R

(%
)

last.fm, v ∼ zipf(0.9)

Optimal-Aware
CARS
Greedy-Aware

(b) Absolute Perf. (q =
90%, s = 0.6, MPH =
11.24%)

Fig. 5: (a:) Relative Gain vs (N, β) and (b:) Cache Hit Rate vs N (C/K ≈
1.00%, α = 0.7)

7

even more the Observation 3; its key conclusion is that with
high enough enough β (i.e. low Hv) and more than 2 or
3 recommendations, while CARS aims to solve the multiple
access problem, its position preference unawareness leads to
suboptimal recommendation placement, and thus severe drop
of its CHR performance compared to the Optimal.

VI. RELATED WORK

RS and Caching Interplay. The relation between RS and
caching has only recently been considered [8], [7], [10],
[11], [12], [28], [29], [30], [31]. Closer to our study, [7]
considers the joint problem of caching and recommendations,
placing the most popular contents (among all users) in a
cache and then trying to bias recommendations to favor
cached contents, taking into account position preference in
their model. However, this is applied to a different setup than
ours (no markovian traversal of content graph); furthermore,
they do not provide any simulation results on the impact of
position preference. The work in [9] tackles recommendations
for users consuming multiple contents in a row, as we do.
However, [9] formulates a nonconvex problem, and proposes
a heuristic algorithm, and does not have optimality guaran-
tees.

Optimization Methodology. The problem of optimal recom-
mendations for multi-content sessions, bares some similarity
with PageRank manipulation [32], [33], [22]. The idea there
is to choose the links of a subset of pages (the user has access
to) with the intention to increase the PageRank of some tar-
geted web page(s). Although that problem is generally hard,
some versions of the problem can also be convexified [32].

VII. CONCLUSIONS

This work has proposed the optimal solution for network-
friendly position aware recommendations. This technique can
be used offline in a data-center of the content provider for
network cost minimization.

Nevertheless, the area is still in its infancy. Theoretical
and experimental research is needed to refine user behav-
ior models and metrics, as well as dynamic learning and
optimization of system parameters (e.g., user’s reactivity to
modified recommendations) or even where the “network-
friendly” content appears in the recommendation list. Finally,
jointly optimizing recommendations together with caching
decisions (as in previous works [7], but now for multi-content
sessions) is a key future step.

REFERENCES

[1] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless video content delivery through
distributed caching helpers,” in Proc. IEEE INFOCOM, 2012.

[2] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, 2010.

[3] G. S. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wire-
less caching: Technical misconceptions and business barriers,” IEEE
Communications Magazine, vol. 54, no. 8, pp. 16–22, 2016.

[4] S. Elayoubi and J. Roberts, “Performance and cost effectiveness of
caching in mobile access networks,” in Proc. ACM ICN, 2015.

[5] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in
wireless d2d networks,” IEEE Trans. on Information Theory, vol. 62,
no. 2, pp. 849–869, 2016.

[6] D. Karamshuk, N. Sastry, M. Al-Bassam, A. Secker, and J. Chandaria,
“Take-away tv: Recharging work commutes with predictive preloading
of catch-up tv content,” IEEE JSAC, vol. 34, no. 8, pp. 2091–2101,
2016.

[7] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos,
“Jointly optimizing content caching and recommendations in small cell
networks,” IEEE Trans. on Mobile Computing, vol. 18, no. 1, pp. 125–
138, 2019.

[8] D. K. Krishnappa, M. Zink, C. Griwodz, and P. Halvorsen, “Cache-
centric video recommendation: an approach to improve the efficiency
of youtube caches,” ACM TOMM, vol. 11, no. 4, p. 48, 2015.

[9] T. Giannakas, P. Sermpezis, and T. Spyropoulos, “Show me the cache:
Optimizing cache-friendly recommendations for sequential content
access,” Proc. IEEE WoWMoM, 2018 (arXiv:1805.06670), 2018.

[10] D. Munaro, C. Delgado, and D. S. Menasché, “Content recommen-
dation and service costs in swarming systems,” in Proc. IEEE ICC,
2015.

[11] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft cache
hits: Improving performance through recommendation and delivery of
related content,” IEEE JSAC, 2018.

[12] S. Kastanakis, P. Sermpezis, V. Kotronis, and X. Dimitropoulos,
“CABaRet: Leveraging recommendation systems for mobile edge
caching,” in Proc. ACM SIGCOMM Workshops, 2018.

[13] D. K. Krishnappa, M. Zink, and C. Griwodz, “What should you cache?:
a global analysis on youtube related video caching,” in Proc. ACM
NOSSDAV Workshop, pp. 31–36, 2013.

[14] R. Zhou, S. Khemmarat, and L. Gao, “The impact of youtube recom-
mendation system on video views,” in In Proc. of ACM IMC 2010.

[15] “Google spells out how YouTube is coming after TV.” http://www.
businessinsider.fr/us/google-q2-earnings-call-youtube-vs-tv-2015-7/.

[16] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms
for mobile data caching in small cell networks,” IEEE Trans. on
Communications, vol. 62, no. 10, pp. 3665–3677, 2014.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proc. WWW, 2001.

[18] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proc. ACM RecSys, pp. 191–198, 2016.

[19] C. M. Grinstead and J. L. Snell, Introduction to probability. American
Mathematical Soc., 2012.

[20] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge Univ. Press, 2013.

[21] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[22] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman, “Designing fast
absorbing markov chains.,” in Proc. AAAI, pp. 849–855, 2014.

[23] J. Park and S. Boyd, “General heuristics for nonconvex quadratically
constrained quadratic programming,” preprint arXiv:1703.07870, 2017.

[24] S. Boyd et al., “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and Trends R©
in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[25] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet.,”
[26] “https://labrosa.ee.columbia.edu/millionsong/lastfm.”
[27] “https://grouplens.org/datasets/movielens.”
[28] L. Song and C. Fragouli, “Making recommendations bandwidth aware,”

IEEE Trans. on Inform. Theory, vol. 64, no. 11, pp. 7031–7050, 2018.
[29] Z. Lin and W. Chen, “Joint pushing and recommendation for suscepti-

ble users with time-varying connectivity,” in Proc. IEEE GLOBECOM,
pp. 1–6, IEEE, 2018.

[30] T. Spyropoulos and P. Sermpezis, “Soft cache hits and the impact of
alternative content recommendations on mobile edge caching,” in Proc.
ACM CHANTS workshop, pp. 51–56, 2016.

[31] D. Liu and C. Yang, “A learning-based approach to joint con-
tent caching and recommendation at base stations,” arXiv preprint
arXiv:1802.01414, 2018.

[32] O. Fercoq, M. Akian, M. Bouhtou, and S. Gaubert, “Ergodic control
and polyhedral approaches to pagerank optimization,” IEEE Trans. on
Automatic Control, vol. 58, no. 1, pp. 134–148, 2013.

[33] K. Avrachenkov and N. Litvak, “The effect of new links on google
pagerank,” Stochastic Models, vol. 22, no. 2, pp. 319–331, 2006.

8

