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Abstract—We consider the problem of energy-efficient broad-
casting on dense ad-hoc networks. Ad-hoc networks are generally
modeled using random geometric graphs (RGGs). Here, nodes
are deployed uniformly in a square area around the origin, and
any two nodes which are within Euclidean distance of 1 are
assumed to be able to receive each other’s broadcast. A source
node at the origin encodes k data packets of information into
n (> k) coded packets and transmits them to all its one-hop
neighbors. The encoding is such that, any node that receives
at least k out of the n coded packets can retrieve the original
k data packets. Every other node in the network follows a
probabilistic forwarding protocol; upon reception of a previously
unreceived packet, the node forwards it with probability p and
does nothing with probability 1 − p. We are interested in the
minimum forwarding probability which ensures that a large
fraction of nodes can decode the information from the source.
We deem this a near-broadcast. The performance metric of
interest is the expected total number of transmissions at this
minimum forwarding probability, where the expectation is over
both the forwarding protocol as well as the realization of the
RGG. In comparison to probabilistic forwarding with no coding,
our treatment of the problem indicates that, with a judicious
choice of n, it is possible to reduce the expected total number of
transmissions while ensuring a near-broadcast.

I. INTRODUCTION

Broadcast mechanisms on distributed ad-hoc networks (see
e.g. [1], [2]) are critical for network management. In ap-
plications such as Wireless Sensor Networks (WSNs) and
Internet of Things (IoT), networks are dense with the individ-
ual nodes being energy-constrained. The nodes have limited
computational ability and knowledge of the network topology.
Algorithms such as flooding, although being light-weight and
easy to implement, give rise to unnecessary transmissions and
hence are not energy efficient (see [3]).

Probabilistic forwarding as a broadcast mechanism (see
e.g., [4], [5], [6]) has been proposed in the literature as
an alternative to flooding. Here, each node, on receiving a
packet for the first time, either forwards it to all its one-
hop neighbours with probability p or takes no action with
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probability 1− p. While this mechanism reduces the number
of transmissions, reception of a packet by a network node is
not guaranteed.

To improve the chances of a network node receiving a
packet and to handle packet drops, we introduce coding along
with probabilistic forwarding. Let us suppose that the source
possesses ks message packets which need to be broadcast.
These ks message packets are first encoded into n coded
packets such that, for some k ≥ ks, the reception of any k
out of the n coded packets by a node, suffices to retrieve
the original ks message packets. Examples of codes with
this property are Maximum Distance Separable (MDS) codes
(k = ks), fountain codes (k = ks(1 + ε) for some ε > 0) etc.
which are used in practice.

The n coded packets are indexed using integers from 1 to
n, and the source transmits each packet to all its one-hop
neighbours. Every other node in the network, upon reception
of a packet (say packet #j) uses the probabilistic forwarding
mechanism described above. The node ignores all subsequent
receptions of packet #j. Packet collisions and interference
effects are neglected.

Random network models have found wide acceptance in
modeling wireless ad-hoc networks. In particular, random
geometric graphs (RGGs) have been used in the literature
to model spatially distributed networks (see [7] and [8]).
These are generated by scattering (a Poisson number of) nodes
in a finite area uniformly at random and connecting nodes
within a pre-specified distance. The random distribution of
nodes captures the variability in the deployment of the nodes
of an ad-hoc network. The distance threshold conforms to
the maximum range at which a transmission from a node,
with maximum power, is received reliably. A more formal
description of our network setting is provided in the next
section.

In this paper, we analyze the performance of the above al-
gorithm on RGGs. In particular, we wish to find the minimum
retransmission probability p for which the expected fraction of
nodes receiving at least k out of the n coded packets is close to
1, which we deem a “near-broadcast”. Here, it is to be clarified
that the expectation is over both the realization of the RGG
and the probabilistic forwarding protocol. This probability
yields the minimum value for the expected total number of
transmissions across all the network nodes needed for a near-

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

               ISBN 978-3-903176-37-9 © 2021 IFIP



broadcast. The expected total number of transmissions is taken
to be a measure of the energy expenditure in the network.

In our previous work [9], we have analyzed the probabilistic
forwarding mechanism described here on deterministic graphs
such as trees and grids. It was found that, introducing coded
packets with probabilistic forwarding, offered significant en-
ergy benefits in terms of the number of transmissions needed
for a near-broadcast on well-connected graphs such as grids
and other lattice structures. However, for d-regular trees,
such energy savings were not observed. Dense RGGs show
similar behaviour as grids, i.e., for an intelligently chosen
value of the number of coded packets, n, and the minimum
forwarding probability, the energy expenditure in the network
is considerably lesser for a near-broadcast, when compared to
the scenario of probabilistic forwarding with no coding.

In this paper, we justify these observations using rigorous
methods. While the techniques used here are similar to the
ones on the grid (in [9]), the additional complications due to
the randomness of the underlying graph need to be addressed.
Ideas from continuum percolation, ergodic theory and Palm
theory are employed to circumvent these technicalities. Our
method of analysis may also extend to more general broad-
casting models and other point processes.

The rest of the paper is organized as follows. In Sec-
tion II, we describe our network setup and formulate our
problem. Section III provides the simulation results of the
probabilistic forwarding algorithm on RGGs. In Section IV,
we provide definitions and notations of RGGs on R2 and
marked point processes (MPPs). Additionally, we state an
ergodic theorem for MPPs. Section V relates probabilistic
forwarding and marked point processes. Ergodic theorems on
MPPs are used to obtain some key quantities. These will
serve as the main ingredients in obtaining our estimates for
the minimum forwarding probability and the expected total
number of transmissions which are presented in Section VI.
Section VII discusses some aspects related to the assumptions
and our results. Due to lack of space, most of our proofs and
results are provided in [10], the extended version of this paper.

II. PROBLEM FORMULATION

A. Network setup

A random geometric graph is parametrized by the intensity
λ and the distance threshold r. It suffices to study them by
keeping one of the parameters fixed. In our treatment, we will
fix the distance parameter r to be equal to 1, and study various
properties as a function of the intensity, λ.

Construct a random geometric graph Gm with intensity λ

and distance threshold r = 1 on Γm :=
[−m

2 , m2
]2

as follows:
• Step 1: Sample the number of points, N , from a Poisson
distribution with mean λν(Γm). Here, ν(·) is the Lebesgue
measure on R2. Therefore, N ∼ Poi(λm2).
• Step 2: Choose points X1, X2, · · · , XN uniformly and
independently from Γm. These form the points of a Poisson
point process Φ (see, e.g., [8] or [11]), and constitute the
vertex set of Gm. It is often easier to think of a point process

as a counting measure Φ :=
∑
i εXi

, where εx is the Dirac
measure; for A ⊂ R2, εx(A) = 1 if x ∈ A and εx(A) = 0 if
x /∈ A. Consequently, Φ(A) gives the number of points in A.
• Step 3: Place an edge between any two vertices which are
within Euclidean distance r = 1 of each other.

To carry out probabilistic forwarding over Gm, we need to
fix a source. For this, we introduce a new point at the origin
0 = (0, 0) ∈ R2. More specifically, a graph, G0

m, is created
with the underlying point process Φ0 , Φ∪{0} as the vertex
set, and by introducing additional edges from 0 to nodes which
are within B1(0), to the edge set of Gm. Here, B1(0) (more
generally, B1(v) for v ∈ R2) is a closed Euclidean ball of
radius 1 centered at 0 (v).

The inclusion of an additional point at the origin 0 means
that all the probabilistic computations need to be made with
respect to the Palm probability given a point at the origin. We
direct the reader to [11, Ch. 1.4] for an in-depth treatment
of Palm theory. Physically, the Palm probability must be
interpreted as the probability conditional on the event that the
origin is a point of the point process. We denote the Palm
probability by P0 and the expectation with respect to it by
E0.

The origin here is a distinguished vertex. Broadcasts initi-
ated from it can be received by the nodes which are present in
the component of the origin only. Denote by C0 ≡ C0(G0

m),
the set of nodes in the component of the origin in G0

m.
The component of the origin in G0

m forms the underlying
connected graph, which we denote by G.

B. Probabilistic forwarding on RGG

Equipped with the underlying network, G, we now describe
the probabilistic forwarding algorithm on it. The source, 0, en-
codes ks message packets into n coded packets and transmits it
to all its one-hop neighbours. Every other node in the network
follows the probabilistic forwarding protocol. A node receiving
a particular packet for the first time, forwards it to all its one-
hop neighbours with probability p and takes no action with
probability 1− p. Each packet is forwarded independently of
other packets and other nodes. The node ignores all subsequent
receptions of the same packet, irrespective of the decision it
took at the time of first reception.

We are interested in the following scenario. Let Rk,n(G)
be the number of nodes in C0 that receive at least k out of
the n coded packets. We refer to these as successful receivers.
We sometimes denote this by Rk,n(G0

m) to explicitly bring
out the dependence on m. Given a δ > 0, we are interested
in the minimum forwarding probability p, such that the ex-
pected fraction of successful receivers is at least 1− δ. More
specifically, we define

pk,n,δ = inf

{
p
∣∣∣ E

[
Rk,n(G0

m)

|C0(G0
m)|

]
≥ 1− δ

}
, (1)

where the expectation is over both the graph G0
m as well as

the probabilistic forwarding mechanism. Note that, from our
construction, Rk,n(G) = Rk,n(G0

m) ⊆ C0(G0
m). The number

of successful receivers is normalized by the total number of
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vertices in G, which is the same as the number of vertices
within the component of the origin, C0(G0

m).
The performance measure of interest, denoted by τk,n,δ , is

the expected total number of transmissions across all nodes
when the forwarding probability is set to pk,n,δ . Here, it should
be clarified that whenever a node forwards (broadcasts) a
packet to all its one-hop neighbours, it is counted as a single
(simulcast) transmission. Our aim is to determine, for a given
k and δ, how τk,n,δ varies with n, and the value of n at
which it is minimized (if it is indeed minimized). To this
end, it is necessary to first understand the behaviour of pk,n,δ
as a function of n. In subsequent sections, we will cast the
probabilistic forwarding mechanism as a marked point process
and use results from ergodic theory to obtain the expected
value of the number of successful receivers and the overall
number of transmissions.

III. SIMULATION RESULTS

Simulations were performed on an RGG generated with
m = 101 and intensity λ = 4.5 and 4. As stated before, the
distance threshold parameter r was set to 1. The probabilistic
forwarding mechanism was carried out with k = 20 packets
and n varying from 20 to 40. The value of δ was set to 0.1.
Twenty realizations of G were generated and 10 iterations of
the probabilistic forwarding mechanism was carried out on
each of the realizations. The fraction of successful receivers
was averaged over each iteration and realization of the graph.
This was used to find the minimum forwarding probability,
pk,n,δ , required for a near-broadcast, which is plotted in
Fig. 1(a). The pk,n,δ values so obtained were further used
to find the expected total number of transmissions over the
same realizations. The expected total number of transmissions
τk,n,δ , normalized by λm2, which is the average number of
points within Γm, is shown in Fig. 1(b).

Notice that the expected number of transmissions decreases
initially to a minimum and then increases. The decrease
indicates the benefit of introducing coding along with prob-
abilistic forwarding. The number of coded packets, n, and
the probability, pk,n,δ , corresponding to the minimum point
of Fig. 1(b) are the ideal parameters for operating the network
to obtain maximum energy benefits.

IV. PRELIMINARIES

In this section, we introduce the tools required to character-
ize the performance of the probabilistic forwarding algorithm.
The probabilistic forwarding mechanism on the RGG is mod-
eled using marked point processes which are described here.

A. Random geometric graphs on R2

Our approach to analyzing the probabilistic forwarding
mechanism on G is to relate it to the probabilistic forwarding
mechanism on a RGG generated on the whole R2 plane with
the origin as the source. This means that the vertex set of
the RGG is a Poisson point process, Φ, on R2. We refer the
reader to [8] or [11] for the background needed on Poisson
point processes. In particular, we use the procedure outlined
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Fig. 1: Simulations on a random geometric graph generated on
Γ101 with intensity λ and distance threshold r = 1. Probabilistic
forwarding done with k = 20 packets and δ = 0.1.

in [11, Section 1.3] to construct the RGG on the whole R2

plane.
Create a tiling of the R2 plane with translations of Γm, i.e.,

Γi,j := (im, jm) + Γm for i, j ∈ Z. On each such translation,
Γi,j , construct an independent copy of a Poisson point process
with intensity λ as described in steps 1 and 2 of Section II-A.
The random geometric graph (G) is constructed by connecting
vertices which are within distance 1 of each other. We then
say G ∼ RGG(λ, 1).

It is known that the RGG(λ, 1) model on R2 shows a phase
transition phenomenon (see [12]). For λ > λc, the critical
intensity, there exists a unique infinite cluster, C ≡ C(Φ), in
the RGG almost surely. The value of λc is not exactly known,
but simulation studies such as [13] indicate that λc ≈ 1.44.
The percolation probability θ(λ) is defined as the probability
that the origin is present in the infinite cluster C, i.e., θ(λ) :=
P0(0 ∈ C). We remark here that there is no known analytical
expression for θ(λ) nor are there good approximations. Since
we are interested in large, dense networks, we will assume
throughout our analysis that we operate in the super-critical
region, i.e., λ > λc.

B. Marked Point Process

During the course of the probabilistic forwarding protocol
on the RGG, each node decides independently whether to
forward a particular packet with probability p. Marked point
processes (MPPs) turn out to be a natural way to model such
functions of an underlying point process.

Definition IV.1. Let Φ =
∑
i εXi

be a Poisson point process
on R2. With each point Xi of Φ, associate a mark Zi taking
values in some measurable space (K,K) such that {Zi}i∈N

iid∼
Π(·). Then, Φ̃ =

∑
i ε(Xi,Zi) is called an iid marked point

process on R2 ×K with mark distribution Π(·).
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We now state an ergodic theorem for MPPs which is used
to obtain some key results required in the analysis of the
probabilistic forwarding protocol in Section V.

C. Ergodic theorem
Let (Ω,F ,P) be the probability space over which an iid

marked point process Φ̃ =
∑
i ε(Xi,Zi) is defined with mark

distribution Π(·). Let θx : Ω→ Ω, for x ∈ R2, be the operator
which shifts each point of Φ̃ by −x, i.e., θxΦ̃ =

∑
i ε(Xi−x,Zi)

and let (K,K) be the measurable space of marks. Let f :
K × Ω → R+ be a non-negative function of the MPP. Then,
by the ergodic theorem for marked random measures (see [14,
Theorem 8.4.4]), we have P-almost surely (P-a.s.),

1

ν(Γm)

∑
Xi∈Γm

f(Zi, θXi(ω))
m→∞−→ λ

∫
K
E(0,z) [f(z, ω)] Π(dz)

(2)

where E(0,z) is the expectation with respect to the Palm prob-
ability P(0,z) conditional on the mark, z. If f(z, ω) = f(ω),
then (2) reduces to

1

ν(Γm)

∑
Xi∈Γm

f(θXi
(ω))

m→∞−→ λE0 [f(ω)] P-a.s.. (3)

V. PROBABILISTIC FORWARDING AND MPPS

In this section, we formulate probabilistic forwarding using
the framework of marked point processes. Ergodic theorems
for MPPs are then used to derive relevant results which will
be used to obtain estimates for pk,n,δ and τk,n,δ . It should be
noted here that all the graphs and point processes discussed
in this section are on the whole R2 plane.

A. Single packet probabilistic forwarding
Consider the probabilistic forwarding of a single packet

on G ∼ RGG(Φ, 1) defined on a PPP Φ of intensity λ on
R2. Let G0 be the graph created with the underlying point
process being Φ0 , Φ∪{0} as the vertex set, and introducing
additional edges from 0 to nodes which are within B1(0),
to the edge set of G. We assign a mark 1 to a node if it
decides to transmit the packet and 0 otherwise. Thus, the mark
space is K = {0, 1} and Φ̃ is an iid MPP with a Ber(p)
mark distribution. Note that the origin, 0, has mark 1 since it
always transmits the packet. Also, the subset of nodes which
have mark 1 form a thinned point process of intensity λp, and
the subset of vertices with mark 0 form a λ(1 − p)–thinned
process. Denote these by Φ+ and Φ− respectively, and the
corresponding RGGs by G+ and G−. Notice that the set of
vertices of Φ+ which are in the same cluster as the origin
are the vertices which receive the packet from the source
and transmit it. Thus, the number of vertices in the cluster
containing the origin in G+ (call this set of nodes C+

0 ), is the
number of transmissions of the packet.

In addition to the nodes of the cluster containing the origin
in G+, the nodes of G− which are within distance 1 from
them, also receive the packet. To account for them, we define
for any cluster of nodes S ⊂ Φ+, the boundary of S as

∂S = {v ∈ Φ−|B1(v) ∩ S 6= ∅},

TABLE I: Results from evaluating the ergodic statements in
(3) and (4) for different functions f .

f(z, ω) Result Using

(a) 1
Φ(Γm)

ν(Γm)

m→∞−→ λ P-a.s.. (3)

(b) z
Φ+(Γm)

ν(Γm)

m→∞−→ λp P-a.s.. (4)

(c) 1{0 ∈ C}
|C ∩ Γm|
ν(Γm)

m→∞−→ λ θ(λ) P-a.s.. (3)

(d) 1{0 ∈ C+}
|C+ ∩ Γm|
ν(Γm)

m→∞−→ λp θ(λp) P-a.s.. (3)

(e) 1{0 ∈ Cext}
|Cext ∩ Γm|
ν(Γm)

m→∞−→ λθ(λp) P-a.s.. (4)

and the extended cluster of S to be Sext = S ∪ ∂S. Then,
the receivers are the nodes in Cext

0 . We refer to this as the
extended cluster of the origin.

In Section VI, we relate C+
0 and Cext

0 to the infinite
cluster C+ := C(Φ+) and the infinite extended cluster (IEC),
Cext, defined as the extended cluster of C+, respectively.
Specifically, in the thermodynamic limit, the expected number
of vertices in C0∩Γm (resp. Cext

0 ∩Γm) is well-approximated
by the expected number of vertices within Γm of the infinite
cluster C+ (resp., of the IEC Cext) for large m. We use the
ergodic theorem stated in Section IV-C to obtain almost sure
results for the fraction of nodes within Γm of the infinite
cluster C+ and the IEC Cext in terms of the percolation
probability θ(λ).

B. Application of the ergodic theorem

Specializing the statement in (2) to the probabilistic for-
warding of a single packet where K = {0, 1} and the marks
are independent, conditional on Φ, with distribution given by
Π(1) = 1−Π(0) = p, we obtain for P-a.s.,

1

ν(Γm)

∑
Xi∈Γm

f(Zi, θXi(ω))

m→∞−→ λpE(0,1)[f(1, ω)] + λ(1− p) E(0,0)[f(0, ω)].
(4)

We will now use (3) and (4) to obtain key results which
will help us analyze the probabilistic forwarding of a single
packet on R2. In particular, we substitute different functions
f in (3) and (4) to obtain the results given in Table: I. We
provide these derivations in the extended version of our paper
[10] due to shortage of space.

Remarks:
1) For λ > λc, using the dominated convergence theorem

(DCT) and the reciprocal of result (a) with result (c) of
Table I, we also have that

E
[
|C ∩ Γm|
Φ(Γm)

]
m→∞−→ θ(λ). (5)

This means that, for large m, the expected fraction of
vertices of the infinite cluster within Γm is a good
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Fig. 2: Percolation probability θ(λ) vs. intensity λ

approximation for the percolation probability. We use
this to obtain an empirical estimate of the percolation
probability as follows. We generate 100 instantiations
of the RGG(λ, 1) model on Γ251, for each value of
λ between 1 and 5 (in steps of 0.01). The fraction of
vertices in the largest cluster within Γm averaged over
these instantiations is computed and taken as a proxy for
the fraction of nodes in the infinite cluster within Γm.
The plot obtained is shown in Fig. 2. We use the values
from this plot in our numerical results.

2) In obtaining result (e) of Table I, if instead of using (4),
we had substituted f(ω) = 1{0 ∈ Cext} in (3), we would
have obtained λP0(0 ∈ Cext) on the RHS. From this and
(e), it is natural to define, θext(λ, p) := P0(0 ∈ Cext) =
θ(λp).

3) Comparing RHS of results (b) and (e) of Table I suggests
an alternate viewpoint for the nodes that are present
in the IEC. On the underlying point process Φ, define
new iid marks Z ′ ∈ K = {0, 1} with Ber(θext(λ, p))
distribution. This means that a vertex is attributed mark 1,
if it is in the IEC when probabilistic forwarding is carried
out with forwarding probability p. Then, the fraction of
nodes in the IEC when marks are Z corresponds to
the fraction of nodes with mark 1 when marks are Z ′.
This interpretation will be useful in proposing a heuristic
approach for probabilistic forwarding of multiple packets
in Section VII-B.

C. Probabilistic forwarding of multiple packets

Consider now the probabilistic forwarding mechanism of n
packets. Each node transmits a newly received packet with
probability p independently of other packets. It is required
to find the fraction of successful receivers, the nodes that
receive at least k out of the n packets. From our discussion of
probabilistic forwarding of a single packet (in Section V-A),
for large m, the number of nodes within Γm that receive a
packet from the origin is well-approximated by the number of
nodes in the IEC. In a similar way, the fraction of successful
receivers within Γm can be well-approximated by the fraction
of nodes which are present in at least k out of the n IECs
when probabilistic forwarding is done on the RGG, G0. In
this subsection, we will use the ergodic theorem to obtain a
limiting expression for this fraction.

Equip each vertex of the point process Φ with mark Z =
(Z1, Z2, · · · , Zn) ∈ K = {0, 1}n. Here the j-th co-ordinate

of the mark represents transmission of the j-th packet on Φ.
More precisely, Zj(·) ∼ Ber(p) and, for two different vertices
u and v, Z(Xu) and Z(Xv) are independent conditional on Φ.
Therefore, it forms an iid marked point process. Define Cext

k,n

to be the set of nodes which are present in at least k out of
the n IECs. Taking f(z, ω) = 1{0 ∈ Cext

k,n} in the statement
of the ergodic theorem (3), we obtain, for P almost surely,

1

ν(Γm)

∑
Xi∈Γm

1{Xi ∈ Cext
k,n}

m→∞−→ λP0(0 ∈ Cext
k,n).

Denote by θext
k,n(λ, p) := P0(0 ∈ Cext

k,n). Then the above
statement reads as

lim
m→∞

|Cext
k,n ∩ Γm|
ν(Γm)

= λθext
k,n(λ, p) P-a.s.. (6)

VI. MAIN RESULTS

In this section, we will obtain expressions for the expected
fraction of successful receivers and the expected total number
of transmissions on the finite graph G based on the framework
that has been developed in the previous section.

While constructing G0 (as described in Section V-A), the
graph corresponding to Γ0,0 can be taken to be G0

m (with
additional edges from vertices in Γ0,0 to those outside it).
Alternately, G0

m can be constructed by considering a restriction
of G ∼ RGG(λ, 1) to Γm and connecting the origin to nodes
within B1(0). In essence, it is true that the distribution of
nodes of G0

m and G0 ∩ Γm is the same. Recall that the graph
G on which the probabilistic forwarding mechanism is carried
out, is the component of the origin in G0

m. In light of the
correspondence between the vertices of G0

m and G0∩Γm, the
graph G should correspond to the graph induced on the nodes
within Γm that are present in the cluster of the origin in G0.
However, these nodes also include those that are contained in
the cluster of the origin through paths which go outside Γm
but are not connected to the origin within Γm. We refer to
these as, nodes in the cluster of the origin but without a Γm-
conduit and denote them by Ĉ0,m. We make the following
assumption about Ĉ0,m.

Assumption 1. lim
m→∞

|Ĉ0,m|
m2

= 0 P-a.s.

The assumption can be proved to be true over a subsequence
since Markov inequality accompanied by the convergence in
mean (similar to [9, Lemma VI.5]1), E

[
|Ĉ0,m|
m2

]
m→∞−→ 0 ,

gives convergence in probability. However, a complete proof
evades us at present.

Continuing, note that C0(G0) ∩ Γm = C0(G0
m) ∪ Ĉ0,m

and C0(G0
m) ∩ Ĉ0,m = ∅. Under Assumption 1, we can

also obtain the following lemma which relates the fraction
of vertices in the component of the origin within Γm, to
the percolation probability. The first equality stems from

1As in the case of a grid, the probability of there being a connected path in
an annulus around Γm, is known to tend to 1 as m→∞ in the super-critical
region, λ > λc.
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the assumption above. The proof for the second equality is
provided in [10].

Lemma VI.1. Let A = {0 ∈ C(G0)}, where C(G0) is the
infinite cluster of G0. For λ > λc, we have

lim
m→∞

|C0(G0
m)|

λm2
= lim
m→∞

|C0(G0) ∩ Γm|
λm2

= θ(λ)1A P-a.s.,

where C0(G0) is the set of nodes in the cluster of the origin
in G0.

Before we proceed, we recall the definition of the minimum
forwarding probability in (1):

pk,n,δ = inf

{
p
∣∣∣ E

[
Rk,n(G0

m)

|C0(G0
m)|

]
≥ 1− δ

}
,

where the expectation is over the graph as well as the
probabilistic forwarding mechanism. Note that in our setting,
the source, 0, always has mark 1 since it transmits all the
n packets. To be more explicit, define 1 = (1, 1, · · · , 1) to
be the vector of all 1s of length n. We denote by E(0,1) the
expectation with respect to the Palm probability P0 given a
point at the origin, conditional on it having mark Z(0) = 1.
In terms of this, the above equation translates to

pk,n,δ = inf

{
p
∣∣∣ E(0,1)

[
Rk,n(Gm)

|C0(Gm)|

]
≥ 1− δ

}
. (7)

Next, since we are addressing a broadcast problem, it is
necessary that a large fraction of nodes receive a packet. This,
in turn necessitates that the fraction of nodes that transmit the
packet is also large. With reference to the RGG on the whole
plane, this means that G+ needs to have an infinite cluster. To
allow for this, we make the following assumption.

Assumption 2. The forwarding probability p is such that λp >
λc.

Notice that the pk,n,δ values obtained from simulations in
Fig. 1 conform to this assumption. The assumption is discussed
in slightly more detail in Section VII-C. We now obtain
expressions for the minimum forwarding probability and the
expected total number of transmissions based on these two
assumptions.

A. Transmissions

Consider first the transmission of a single packet. Let
T (Gm) be the number of nodes of Gm that receive the packet
from the source and transmit it and let T (G)∩Γm be the set of
nodes within Γm that receive the packet from the source and
transmit it when probabilistic forwarding is carried out on G 2.
From our construction, it follows that T (Gm) is stochastically
dominated by |T (G)∩ Γm| since there might be nodes which
receive a packet from outside Γm and transmit it. However, it
can be shown that

lim
m→∞

E(0,1) [T (Gm)]

m2
= lim
m→∞

E(0,1) [|T (G) ∩ Γm|]
m2

.

2It is implicit from the use of Palm probabilities that the origin is the source
and probabilistic forwarding is formulated as an MPP as described in Section
V-A.

This is because the expected fraction of transmitting nodes
with no Γm-conduits diminishes as m→∞. Thus, it suffices
to evaluate limm→∞

E(0,1)[|T (G)∩Γm|]
m2 to find the expected

number of transmissions for a single packet.
In the jargon of marked point processes, T (G) is the set of

vertices with mark Z(·) = 1 that are in the cluster containing
the origin. Note that the origin has mark 1, since it always
transmits the packet. As the vertices with mark 1 form a
thinned point process, Φ+ of intensity λp, T (G) is the set
of nodes in the cluster containing the origin in G+. In Section
V-A, we denoted this set by C+

0 . From Assumption 2, the
graph on Φ+ is in the super-critical regime and thus possesses
a unique infinite cluster, C+. The following theorem provides
the expected size of C+

0 ∩Γm. The proof proceeds by relating
it to the expected size of C+∩Γm and using the ergodic result
(d) of Table I. The complete proof is provided in [10].

Theorem VI.2. For λp > λc, we have

lim
m→∞

E(0,1)

[
|C+

0 ∩ Γm|
λm2

]
= p θ(λp)2.

Therefore, for large values of m, the expected number of
transmissions, E(0,1) [T (Gm)], can be approximated by

E(0,1)
[
|C+

0 ∩ Γm|
]
≈ m2λp θ(λp)2. (8)

Consider now the transmission of multiple packets. The n
coded packets are transmitted independently of each other. The
expected total number of transmissions of all n packets would
just be n times the expected transmissions of a single packet.
Therefore, from Theorem VI.2, we then obtain

τk,n,δ ≈ nm2λpk,n,δ (θ(λpk,n,δ))
2
. (9)

B. Minimum forwarding probability

In this section, we will obtain an expression for the mini-
mum forwarding probability. Recall that this entails estimating
E(0,1)

[
Rk,n(Gm)
|C0(Gm)|

]
, where C0(Gm) is the set of nodes in the

component of the origin in the underlying RGG on Γm and
Rk,n(Gm) are the number of nodes that receive at least k out
of the n packets from the origin, which is the source. With
reference to the discussion prior to Assumption 1, C0(Gm)
can be viewed as the set of nodes in the component of the
origin in G0 restricted to Γm but with only those nodes which
are connected to the origin via Γm-conduits. Rk,n(Gm) is
the number of nodes among those in C0(Gm), which are
successful receivers. These arguments allow us think of the
expectation E(0,1)

[
Rk,n(Gm)
|C0(Gm)|

]
as being with respect to the

RGG, G0, instead of the finite RGG, G0
m.

Our interest is in large and dense networks, and hence it is
natural to assume that the origin is part of the infinite cluster of
G0. This means that the cluster of the origin in G0

m connects
to the infinite cluster in G0 when G0

m is embedded within it. In
other words, the event A = {0 ∈ C(G0)} occurs. The results
of this section are made with this assumption, which is stated
below explicitly. Additional justification for this is provided
in Section VII-C.
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Assumption 3. The origin is part of the infinite cluster of G0.

From the discussion above and the assumption, our interest
now is to estimate E(0,1)

A

[
Rk,n(Gm)
|C0(Gm)|

]
. The subscript A in the

expectation E(0,1)
A indicates conditional expectation given that

the event A occurs. From Assumption 2, it is clear that such
a conditioning can indeed be done, since P(A) = θ(λ) > 0.

The following theorem gives the expected value of the
fraction of successful receivers in the limit as m → ∞
given the event A. Before we state the theorem, recall the
formulation of probabilistic forwarding as a marked point
process in Section V. Cext

k,n was defined as the set of nodes
which are present in at least k out of the n IECs. Let
θext
k,n ≡ θext

k,n(λ, p) = P0(0 ∈ Cext
k,n). Additionally, define Aext

[t]
to be the event that the origin is present only in the IECs
corresponding to the packets 1, 2, · · · , t.

Theorem VI.3. For λp > λc, we have

lim
m→∞

E(0,1)
A

[
Rk,n(Gm)

|C0(Gm)|

]
=

1

θ(λ)2

n∑
t=k

(
n

t

)
θext
k,t P(0,1)(Aext

[t]).

The proof is on similar lines as that on the grid in [9]. It
relies on carefully relating the fraction of successful receivers
on G to the fraction of nodes present in at least k out of
the n IECs corresponding to probabilistic forwarding on G0.
An outline of the proof is given in the extended version of
this paper, [10]. The following proposition is used to express
P(0,1)(Aext

[t] ) in terms of θext
k,n. The proof is provided in [10].

Proposition VI.4.

P(0,1)
(
Aext

[t]

)
=


θext
t,n−θ

ext
t+1,n

(n
t)

0 ≤ t ≤ n− 1

θext
n,n t = n

. (10)

We remark here that the statement of Theorem VI.3 can
be used to obtain an estimate for the expected fraction of
successful receivers without the conditioning on the event A.
We write

E(0,1)

[
Rk,n(Gm)

|C0(Gm)|

]
= θ(λ) E(0,1)

A

[
Rk,n(Gm)

|C0(Gm)|

]
+

(1− θ(λ)) E(0,1)

AC

[
Rk,n(Gm)

|C0(Gm)|

]
.

Notice from Fig. 2 that θ(λ) shows a phase transition phe-
nomenon. For the intensities we are interested in, P(Ac) =
1−θ(λ) is very small and the latter term in the above equation
can be neglected. This also suggests that Assumption 3 is not
a very strong requirement.

Consequently, for large m, using Theorem VI.3 and Propo-
sition VI.4 in (7) yields an approximation for the minimum
forwarding probability given by,

pk,n,δ ≈ inf

{
p

∣∣∣∣∣
n−1∑
t=k

θext
k,t(θ

ext
t,n − θext

t+1,n)

θ(λ)
+
θext
k,nθ

ext
n,n

θ(λ)
≥ 1− δ

}
.

(11)
C. Comparison with simulations

We have not been able to obtain exact expressions for the
probability θext

k,t(λ, p) in terms of the percolation probability
θ(λ). However, in Section VII-A, we provide some bounds

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Number of coded packets (n)

8.5

9.0

9.5

10.0

τ
k,
n,
δ
/λ
m

2

from simulations
using (9) with pk, n, δ from Fig. 1(a)

Fig. 3: Comparison of the expected number of transmissions per
node in the RGG(4.5, 1) model on Γ101 obtained using (9) with that
obtained through simulations. Note that the pk,n,δ value for each
point on both the curves are from the simulations in Fig. 1(a).

for it. We also develop an alternate heuristic approach, which
provides comparable results for the minimum forwarding
probability obtained through simulations, in Section VII-B.

However, the approximation for the expected total number
of transmissions, τk,n,δ in (9) can be evaluated with the
knowledge of the minimum forwarding probability. In Fig. 3,
we plot τk,n,δ normalized by λm2 with n, in which we use
pk,n,δ values from Fig. 1(a).

It is observed that for n . 26, both the curves match pretty
well. However, for n > 26 they diverge. This can be attributed
to the fact that as n increases, pk,n,δ decreases as in Fig
1(a) and thus λpk,n,δ ↘ λc. The estimate for the percolation
probability, θ(λ), obtained via the ergodic result in (5) may not
be accurate near the critical intensity, λc (which is itself not
exactly known). In particular, Γ251 may not be large enough
for the ergodic result in (5) to kick in, as we approach λc.

Nevertheless, this provides justification to our observation
that the expected number of transmissions indeed decreases
when we introduce coded packets along with probabilistic
forwarding. This comes with a catch that the minimum for-
warding probability for a near-broadcast behaves as in Fig 1(a).
In order to establish this, we provide a heuristic explanation
for it in the next section.

VII. DISCUSSION

A. Bounds on θext
k,n(λ, p)

We give two lower bounds for θext
k,n(λ, p). The proofs for

these are provided in the extended version of our paper [10].
A simple lower bound for θext

k,n(λ, p) can be obtained by
noting that if 0 is present in all n IECs, then 0 ∈ Cext

k,n. Using
the FKG inequality, we obtain

θext
k,n(λ, p) ≥ θ(λp)n. (12)

Note that this, along with Assumption 2, suffices to ensure
that our analysis yields non-trivial results for all values of k
and n.

We now provide a second bound. Its derivation proceeds
by constructing a new point process ΦT with marks ZT =∏
i∈T Zi

∏
j /∈T (1−Zj), and relating the IEC of ΦT to Cext

k,n.
We omit the details here. The lower bound obtained is

θext
k,n(λ, p) ≥ 1−

n∏
j=k

(
1− θ(λpj(1− p)n−j)

)(n
j) . (13)

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

               ISBN 978-3-903176-37-9 © 2021 IFIP



20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Number of coded packets (n)

0.35

0.40

0.45

0.50
from simulations
from heuristics

(a) Minimum retransmission probability

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Number of coded packets (n)

8

9

10
from simulations
from heuristics

(b) Expected total number of transmissions
Fig. 4: Simulation results compared with results obtained using (14),
(9) on RGG(4.5, 1) on Γ101 with k = 20 and δ = 0.1.

B. A heuristic approach

Motivated by the alternate interpretation for the nodes in
the IEC expounded in Remark 3 of Section V, we provide
a heuristic approach for evaluating the minimum forwarding
probability. This is discussed in detail in [10].

As before, let θext(λ, p) denote the probability that the origin
is in the IEC for a single packet transmission. Associate a new
mark Z′ = (Z ′1, Z

′
2, · · · , Z ′n) ∈ K = {0, 1}n to each vertex

of Φ. The i-th coordinate of Z′ corresponds to probabilistic
forwarding of the i-th packet. The mark Z′ is chosen such
that each of the i coordinates is either 1 with probability
θext(λ, p) (= θ(λp)) or 0 with the remaining probability,
independent of the others. Similar to the viewpoint for the
single packet transmission, our idea is to use Z ′i as a proxy
for a vertex to be present in the IEC in probabilistic forwarding
of the i-th packet. We refer to this as the mean-field model.

From the mean-field model, we obtain the following expres-
sion for the minimum forwarding probability:

p′k,n,δ = inf

{
p
∣∣∣ P(Y ≥ k)

θ(λ)
≥ 1− δ

}
(14)

where Y ∼ Bin(n, (θ(λp))2). This is plotted in Fig. 4(a) and
corresponding τk,n,δ evaluated using (9) is plotted in Fig. 4(b).
This behaviour is similar to what was obtained on the grid in
[9]. While the p′k,n,δ curve tracks the simulations well, there
is a minor difference that gets amplified when evaluating the
expected total number of transmissions. This can be attributed
to the drastic change in θ(λ) around the critical intensity λc.

C. A note on our assumptions

In this subsection, we provide some justifications for the
assumptions made in our analysis. Our interest in this paper
is to broadcast information on large and dense networks. A
basic requirement for this is that a large number of nodes in
the network must be reachable from the origin. In the sub-

critical regime, i.e. λ < λc ≈ 1.44, the clusters are finite and
small. To model large dense ad-hoc networks, we need the
graph to be connected on a large area Γm. This necessitates
λ to be in the super-critical regime and the component of the
origin within Γm to be large. In the limit as m → ∞, this
requires that the origin be present in the infinite cluster of the
underlying RGG, thus justifying Assumption 3.

Further, notice that for a near-broadcast, we need the
expected fraction of successful receivers to be close to 1,
i.e., E

[
|Rk,n(G0)∩Γm|

λθ(λ)m2

]
≥ 1 − δ for some small δ > 0 (The

denominator here is the expected number of nodes within
Γm of the infinite cluster C.). If we would like this to hold
for sufficiently large m, then the forwarding probability must
be such that Rk,n(G0) has infinite cardinality. This implies
that p must be such that there is an IEC during probabilistic
forwarding on G0. Now, since existence of an IEC implies
existence of an infinite cluster, the p value must ensure
presence of an infinite cluster. Thus λp > λc. This justifies
Assumption 2.

It can also be seen from the simulation results in Fig. 1
that τk,n,δ is minimized when the forwarding probability is
such that λpk,n,δ > λc or pk,n,δ > 0.32. Further, results
obtained from our heuristic approach in Fig. 4(a) and Fig. 4(b)
also suggest that the expected total number of transmissions is
indeed minimized when operating in the super-critical regime.
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