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Abstract—Content recommendation can be tailored by not only
personal interests, but also the incumbent content, namely the
content that a user is currently viewing. Incumbent-aware recom-
mendation adds a new dimension to optimizing content caching.
We study this optimization problem subject to user satisfaction
constraints. We prove the problem’s NP-hardness, and present
an integer linear programming formulation that enables global
optimality for small-scale instances. On the algorithmic side, we
first present a polynomial-time algorithm that delivers the global
optimum of the recommendation sub-problem, by leveraging the
problem’s inherent graph structure. Next, we propose a fast,
alternating algorithm for the overall problem. Numerical results
using synthesized and real-world data show the close-to-optimal
performance of the proposed algorithm.

Index Terms—Caching, content delivery networks, recommen-
dation.

I. INTRODUCTION

Edge caching is expected to play an important role in
future communication systems [1]. To high efficiency, network
providers tend to cache the most popular contents frequently
requested by users. The popularity of contents is determined
by many factors, among which recommendation systems [2]
form a major one. For example, it has been reported that up to
80% of requests on Netflix originate from recommendation [3].

It is natural to seek the potential of recommendation, as
a tool of reshaping content popularity, to improve the cache
efficiency. In practice, the appearance of content delivery
networks (CDNs) [4], such as Netflix Open Connect [5] and
Google Global Cache [6], enable a single entity to jointly opti-
mize caching and recommendation, instead of the conventional
scheme of addressing the two aspects separately by network
providers and content providers respectively.

Most content providers (such as Youtube, Netflix, Bilibili,
etc.) employ two recommendation schemes. One is to rec-
ommend contents based on the long-term interest of users.
Another is to recommend relevant contents with respect to
the content that is currently being viewed by a user, i.e., the
incumbent content, based on both long-term and short-term
interests. We call the latter incumbent-aware recommendation.
Apparently, this type of recommendation adds more dynamics
to the system.

In recent years, joint optimization of edge caching and rec-
ommendation is gaining growing interest. The most common

performance objective is the overall probability that the cached
items are requested; this is also referred to as the cache-hit-
ratio in some papers. For personalized content recommenda-
tion, its impact on probability distribution of context requests
has been modeled in [7], [8], based on user preference and
content features. In the resulting cache-hit-ratio maximization
problem, cache capacity, recommendation list length, and limit
on preference distortion are accounted for, and an alternating
optimization algorithm has been proposed. This framework
has been adopted in many follow-up works, such as [9]–[11].
In [9], a variation of the above problem with multiple Internet
content providers is considered. The study in [10] explores
the optimization problem with multiple caches, while [11] ad-
dresses the joint optimization of caching and recommendation
in device-to-device (D2D) scenarios. In addition, the works
in [12]–[14] emphasize on machine learning methods which
can assist on solving the joint cache and recommendation
optimization problem.

In this paper, we consider the joint optimization of caching
and incumbent-aware recommendation for improving the
caching efficiency, while accounting for user satisfaction in
respect of recommendation. The caching efficiency is repre-
sented by the overall probability that the users request cached
contents. The specific contributions consist in the following.

• We develop a system model characterizing caching and
incumbent-aware recommendation; the latter is a novel
feature of the system model under consideration, in
comparison to previous works.

• We approach the problem via a graph perspective, that
enables to analyze problem complexity. A rigorous proof
is derived for the problem’s NP-hardness.

• We formulate the problem using integer linear program-
ming (ILP), to approach optimality for small-scale in-
stances.

• For the recommendation sub-problem, we present a
polynomial-time algorithm guaranteeing global optimal-
ity. We then propose a fast, alternating algorithm for the
overall problem.

• We assess the proposed algorithms using synthetic
datasets as well as real-world datasets. Simulation results
show the strength of the algorithm in terms of high cache
efficiency.
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II. SYSTEM MODEL

Consider a set of users denoted by K = {1, . . . ,K} and a
base station (BS) equipped with a cache of capacity C. The
contents of interest form set I = {1, . . . , I}1. Content i ∈ I
is of size si. We use binary variable xi to represent whether
or not content i is cached.

Content recommendation is both personalized and
incumbent-aware. We use binary variable ykji to indicate
if content i is in the recommendation list for user k with
incumbent content j. The recommended contents form a list,
of which the length limit is denoted by B.

For content i, the probability of being requested by user
k originates from the user’s own preference as well as
incumbent-aware recommendation. For the former, we denote
by pki (pki ∈ [0, 1],

∑
i∈I pki = 1,∀k ∈ K) the probability

that user k directly requests content i without recommenda-
tion. The corresponding probability due to recommendation is∑

j∈I\i y
k
jip

k
j p

k
ji, where pkji (pkji ∈ [0, 1]) is the probability

that user k requests recommended content i, provided that
the incumbent content is j. This probability is related to the
preference of user k as well as the correlation between contents
i and j.

Requesting different contents in a recommendation list by
a user is regarded as independent events. Moreover, the likeli-
hood accessing recommended contents varies by user. Hence
we do not normalize pkji on i, for given j and k. Therefore,
the popularity of content i, denoted by qi, i.e., the overall
probability that i is requested, is the following function of
recommendation decision y.

qi(y) =
∑
k∈K

pki +
∑
j∈I\i

ykjip
k
j p

k
ji

. (1)

We maximize the overall popularity of the cached contents,
also called cache efficiency, as formulated below.

max
x,y

∑
i∈I

xiqi(y) (2)

One can observe from (2) that recommending uncached
contents gives no contribution to the objective. Thus, without
additional restrictions in the system model, the recommenda-
tion system will recommend only cached contents. However,
cached contents are not necessarily those that an individual
user is most interested in, and hence such a recommendation
strategy may lead to poor user experience. To address this, we
consider two types of user satisfaction constraints.

1) Content-level satisfaction constraint: We impose a
threshold on the correlation of the recommended con-
tents and the incumbent one. Denote the threshold of
user k by βk. The system will only consider recom-
mending contents with correlation meeting the threshold,
namely, for user k and incumbent content j, the subset

1The set of contents can be obtained via for example collaborative filter-
ing [15] and content-based models [16].

of contents {i ∈ I, i ̸= j : pkj p
k
ji ≥ βk}. In the sequel,

we use Dk
j to denote this set.

2) List-level constraint constraint: At the list level, we
introduce a constraint to ensure the overall correlation
between the incumbent and the recommended contents
(no matter cached or not) is not too low, as stated below.∑

i∈Dk
j
ykjip

k
j p

k
ji

uk
j

≥ αk, j ∈ I, k ∈ K, (3)

where uk
j is the sum of the min{B, |Dk

j |} highest values
of Dk

j , and αk ∈ [0, 1] is a threshold. The left-hand side
of (3) relates the correlation of recommended contents to
these being most relevant to the incumbent, to represent
the overall satisfaction level of the list for user k.

The optimization problem of caching and incumbent-aware
recommendation (CIAR) has the objective function (2), subject
to the above constraints for user satisfaction, as well as cache
capacity limit C and list length limit B.

III. STRUCTURAL ANALYSIS

A. A Graph Perspective for CIAR

Let us first approach CIAR with a graph perspective. As will
be clear later on, this approach will be instructive for structural
insights, analysis of problem complexity, as well as algorithm
development. We construct a content graph G = (V,E) that is
a multi-graph allowing multiple arcs between nodes, with V
and E being the sets of nodes and arcs respectively. Each node
i represents a content in I with two labels: content size si and
weight

∑
k∈K pki . For each user k, there is an arc from node

j to node i, denoted by (j, i)k, with weight pkj p
k
ji, if i ∈ Dk

j .
Denote by Gk = (V,Ek) the sub-graph of k, consisting in
node set V and the arcs defined for user k.

CIAR is equivalent to solving a node and arc selection
problem in G. From (1) and (2), we obtain (4) below, by
which we can see that the values of x and y respectively
correspond to the selection of nodes and arcs. Namely, having
xi = 1 implies to select content node i, and having ykji = 1
implies to select arc (j, i)k. Subsequently, we also refer to
the selected and unselected nodes as “cached nodes” and
“uncached nodes”, respectively.

max
x,y

∑
i∈I

∑
k∈K

xip
k
i +

∑
j∈I

∑
k∈K

∑
j∈Dk

j

xiy
k
jip

k
j p

k
ji (4)

In (4), the first term is the total weight of selected nodes, and
the second term is the total weight of selected arcs that end at
selected nodes. Note that a selected arc with an unselected tail
node will not contribute to the function value, since xiy

k
jip

k
j p

k
ji

will be non-zero only if both xi = 1 and ykji = 1.
Among the constraints of CIAR, that for content-level user

satisfaction is accounted for in the construction of graph G.
The other constraints imply the following restrictions to node
and arc selection:

• Cache capacity: The total size of selected nodes may not
exceed C.
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Figure 1: An illustration of the graph and an optimal solution
for an instance of CIAR with two users (k in {1, 2}) and four
contents (i, j, b, and d), with C = 2, B = 1, αk = 0.8,
βk = 0.02, si = sj = 1, and sb = sd = 2.

• Recommendation list length: The number of selected
arcs originating from any node in any content sub-graph
may not exceed B.

• List-level user satisfaction: The sum weight of selected
arcs originating from node j in content sub-graph Gk is
no less than αkuk

j .
Fig. 1 gives an illustration of G. The arcs corresponding to

the two users are indicated by red and blue colors respectively.
The optimal selection of nodes and arcs is indicated by solid
circles and lines. One can observe that, to account for list-
level user satisfaction, an arc may be selected because it has
higher correlation with the incumbent content, even if it has
less weight than another arc from the same node. This is the
reason for selecting arc (b, d) instead of (b, i) for user one.

B. Problem Complexity

Using the notion of graph representation of CIAR, we state
and formally prove its NP-hardness.

Theorem 1. CIAR is NP-hard, even for the special case where
|K| = 1 (i.e., one user), B = 1 (i.e., at most one recommended
content), the content size si are uniform ∀i ∈ I, and no list-
level user satisfaction constraints are present.

Proof. We use a polynomial-time reduction from the 3-
satisfiability (3-SAT) problem. The 3-SAT problem [17] is NP-
complete. Consider a 3-SAT instance with n boolean variables
w1, w2, ..., wn, and m clauses. Denote by ŵi the negation of
wi. A literal refers to a variable or its negation. Each clause
is composed by a disjunction of exactly three distinct literals,
e.g., w1∨w2∨ ŵn. The problem is to determine whether there
exists an assignment of true/false values to the variables, such
that all clauses hold true.

For any 3-SAT instance, we construct an instance of CIAR
with B = 1, |K| = 1 (superscript k can thus be dropped),
α = 0, β = 0, and si = 1, ∀i ∈ I. For clarity, we define
the CIAR instance using the graph representation. There is a
pair of nodes (wi and ŵi) and an additional node ai in respect
of each boolean variable, and there is a node corresponding to
each clause. Hence there are 3n+m contents in total. The arcs
that are present, as well as the node and arc weights are given

...0 0

1

0 0

1

0 0

1

...

2 2 2

an

Figure 2: An illustration of reduction for the literals and
one example clause, and the solution structure of the CIAR
instance.

in Fig. 2, where σ = 0.5, ϵ2 = σ/(m ∗N2) (ϵ2 is the square
of ϵ), and N is a positive number satisfying N2 > 1/σ (hence
N > 1). Let cache capacity C = 2n. With the given weights,
one can verify that the following conditions hold: σ+mϵ2 < 1,
ϵ < 1, mϵ2 < σ, and ϵ < σ.

We claim and prove the following characteristics of an
optimal solution of the CIAR instance.

1) Node ai is selected, ∀i ∈ I. Suppose the opposite and
assume some node ai is not selected. Selecting ai instead
and possibly deleting a literal node or a clause node
(depending on whether or not cache capacity has been
reached) will cause at least 1−(σ+mϵ2) improvement of
the objective function value, because ϵ < σ +mϵ2 < 1,
contradicting the solution’s optimality.

2) Exactly one of wi and ŵi is selected, ∀i ∈ I. We
prove this again using contradiction. Suppose for any
i, wi and ŵi are both selected. Then there must exist
another pair wj and ŵj that are not selected. Note that
ai and aj are both present by 1) above. Without loss
of generality, suppose wi and wj are the nodes with
lower sum weight of selected arcs ending at them, of
the two pairs respectively. In this case, arcs (ai, wi)
and (aj , wj) will not be selected at optimum because
mϵ2 < σ. By deselecting node wi and selecting node
ŵj and arc (aj , ŵj), the objective value will improve by
at least σ −mϵ2. Hence the contradiction.

3) The arc between ai and the selected node among wi

and ŵi is selected, ∀i ∈ I. This is because, if arc
(ai, wi) is selected but node wi itself is not selected,
then deselecting arc (ai, wi) and adding arc (ai, ŵi) will
increase the objective value by σ.

Fig. 2 illustrates the structure of the optimum with respect
to the above conditions. Next, observe that, without account-
ing for selected arcs emanating from the clause nodes, the
objective function value, by 1)–3), equals exactly n(σ + 1).
For the m clause nodes, at most one of the outgoing arcs may
be selected because B = 1. Moreover, selecting such an arc
contributes to the objective function by σ2, only if the arc
ends at a w-node that is selected (i.e., cached). Therefore, if
the optimal solution reaches a total objective function value of
n(σ + 1) + mϵ2, the answer to the 3-SAT instance is yes.
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Conversely, it is easy to see that if the 3-SAT instance is
satisfiable, this value will be reached for the CIAR instance at
optimum, and the theorem follows.

IV. INTEGER LINEAR PROGRAMMING

Problem CIAR can be formulated using integer linear pro-
gramming (ILP). This allows for global optimality for small-
scale instances, using cutting-edge optimization solvers such
as CPLEX [18] and GUROBI [19]. Thus for such instances
the results of ILP enable accurate performance evaluation of
any sub-optimal algorithm.

We introduce a new binary variable zkji to represent the
product xiy

k
ji at optimum. The ILP reformulation is given

below.

max
x,y,z

∑
i∈I

∑
k∈K

xip
k
i +

∑
j∈I

∑
k∈K

∑
i∈Dk

j

zkjip
k
j p

k
ji (5a)

s. t.
∑
i∈I

sixi ≤ C (5b)∑
i∈Dk

j

ykji ≤ B, j ∈ I, k ∈ K (5c)

∑
i∈Dk

j

ykjip
k
j p

k
ji ≥ αkuk

j , j ∈ I, k ∈ K (5d)

zkji ≤ ykji, k ∈ K, j ∈ I, i ∈ Dk
j (5e)

zkji ≤ xi, k ∈ K, j ∈ I, i ∈ Dk
j (5f)

xi, y
k
ji, z

k
ji ∈ {0, 1}, k ∈ K, j ∈ I, i ∈ Dk

j (5g)

The two components of (5a) are the probability of requesting
cached contents directly by the users and via recommendation,
respectively. This is a linearized formulation of (2). Inequal-
ities (5b) state cache capacity, whereas (5c) poses the length
limit on recommendation lists. Constraints (5d) formulate the
list-level user satisfaction requirement. By (5e) and (5f), zkji
can be one only if xi = 1 (i.e., content i is cached) and ykji = 1
(i.e., content i is recommended for user k and incumbent
content j).

V. OPTIMIZATION ALGORITHM

Observing ILP formulation (5), CIAR can be decomposed
into two sub-problems. The first is the recommendation prob-
lem, which amounts to optimizing the recommendation vari-
ables y under given caching x. The second is to optimize
caching with fixed recommendation, which we refer to as the
caching problem.

A. The Recommendation Problem

We denote by Ic = {i ∈ I : xi = 1} the set of cached
contents. Since Ic is known, the sum of xip

k
i in (5a) is fixed.

Hence the recommendation problem reads as follows.

1
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(and the corresponding y) for Gk

j obtained by Algorithm 1, with
|B| = 4, αk = 0.8, and βk = 0.02. In L, Lc and S, the elements
corresponding to the arcs pointing to the cached nodes are indicated
by solid rectangles, while others are indicated by dashed rectangles.

Figure 3: An example sub-graph and an optimal solution.

max
y

∑
i∈Ic∩Dk

j

ykjip
k
j p

k
ji (6a)

s.t.
∑
i∈Dk

j

ykji ≤ B, j ∈ I, k ∈ K (6b)

∑
i∈Dk

j

ykjip
k
j p

k
ji ≥ αkuk

j , j ∈ I, k ∈ K (6c)

ykji ∈ {0, 1}, i ∈ Dk
j , j ∈ I, k ∈ K (6d)

We analyze (6) from the graph perspective introduced in
Section III. Let us denote by Gk

j = (V,Ek
j ) a sub-graph

of Gk, where Ek
j is the set of arcs emanating from node

j. In Fig. 3a we illustrate an example of Gk
j , where cached

nodes are indicated by solid circles, and the arcs in Gk
j are

classified into those ending at cached nodes and those ending
at uncached nodes. The optimization task is to select at most
B arcs starting from j in Gk

j so as to maximize the sum weight
of selected arcs ending at cached nodes, subject to the list-level
user satisfaction constraints (6c) on all selected arcs.

We denote by L the list of all arcs in Gk
j , sorted by their

weights in descending order. Denoting by Lc a sublist of L
containing arcs ending at cached nodes, in the same order as
in L, we prove the following lemma.

Lemma 2. (Necessary optimality condition for (6)): If an
arc in Lc is present at optimum, then all the arcs in Lc with
strictly higher weights than this arc are present at optimum as
well.
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Proof. Suppose at optimum, arc (j, i) in Lc is present, while
arc (j, k) with a strictly higher weight in Lc is not. We
construct a new solution by including (j, k), removing (j, i),
and keeping the remaining arcs. With the new solution, both
the objective value and the list-level satisfaction are improved,
and (6b)-(6c) are satisfied. This contradicts the assumption of
optimality and hence the conclusion.

We remark that the weights of elements in Lc may not be
strictly decreasing as ties may occur. In this case multiple
optimal solutions may exist. To ease the presentation, we
define the sum function g(A, t) =

∑t
i=1 A(i), where A(i)

is the ith element in list A and 1 ≤ t ≤ |A|. Denoting by Sc

the set of the selected arcs in Lc in a solution of (6), we show
Lemma 3.

Lemma 3. (Feasibility condition for (6)): For any feasible
solution of (6), g(Lc, |Sc|) + g(L \Sc,min{B, |L|} − |Sc|) ≥
αkuk

j holds.

Proof. For any solution of (6), the list-level satisfaction as
defined in (6c) consists of the sum weight of the elements in
Sc and that of selected elements in L \Sc. By constraint (6b),
at most min{B, |L|}− |Sc| elements are in L\Sc. The use of
min-operator is because the total number of relevant contents
with respect to incumbent content j is possibly less than B.
Due to the descending order of both Lc and L \ Sc, selecting
the first |Sc| elements in Lc and the first min{B, |L|} − |Sc|
elements in L \Sc will result in the maximum achievable list-
level satisfaction g(Lc, |Sc|) + g(L \ Sc,min{B, |L|} − |Sc|).
Hence for any feasible solution satisfying (6c), the inequality
g(Lc, |Sc|)+g(L\Sc,min{B, |L|}−|Sc|) ≥ αkuk

j holds.

Next we derive the following sufficient optimality condition
for optimum of (6).

Lemma 4. (Sufficient optimality condition for (6)): For
any feasible solution of (6) that satisfies the necessary
condition defined in Lemma 2, if g(Lc, |Sc| + 1) + g(L \
S+
c ,min{B, |L|} − |Sc| − 1) < αkuk

j , where S+
c denotes the

set of the first |Sc| + 1 elements in Lc, then the solution is
optimal.

Proof. We consider a solution (called Solution 1) satisfying the
conditions in the statement of Lemma 4. By definition, Solu-
tion 1 satisfies the necessary condition stated in Lemma 2. By
Lemma 3, g(Lc, |Sc|)+g(L\Sc,min{B, |L|}−|Sc|) ≥ αkuk

j

holds. Putting together the condition g(Lc, |Sc| + 1) + g(L \
S+
c ,min{B, |L|} − |Sc| − 1) < αkuk

j , we have g(Lc, |Sc|) +
g(L \ Sc,min{B, |L|} − |Sc|) ≥ αkuk

j > g(Lc, |Sc| + 1) +
g(L \ S+

c ,min{B, |L|} − |Sc| − 1), implying that the weight
of the (|Sc|+1)th element in Lc is strictly lower than that of
the (min{B, |L|}−|Sc|)th element in L\S+

c . Furthermore, we
have αkuk

j > g(Lc, |Sc|+1)+g(L\S+
c ,min{B, |L|}−|Sc|−

1) ≥ g(Lc, |Sc| + a) + g(L \ S+a
c ,min{B, |L|} − |Sc| − a),

where S+a
c denotes the set of first |Sc| + a elements in Lc

for any 1 ≤ a ≤ |Lc| − |Sc|, because Lc and L \ Sc are in
descending order.

Algorithm 1: Optimal recommendation for given Ic
1 for k ∈ K do
2 for j ∈ I do
3 L← Sort the arcs in Gk

j in descending order of
weights

4 Lc← The list of arcs in L ending at the cached
nodes

5 S ← ∅, uk
j ← g(L,min{B, |L|})

6 Bi-section search to maximize |Sc| for set
Sc ← Lc[1, 2, . . . , |Sc|] satisfying
g(Lc, |Sc|)+g(L\Sc,min{B, |L|}−|Sc|)≥αkuk

j

7 Add the first |Sc| elements in Lc to S
8 Add the first min{B, |L|} − |Sc| elements in

L \ Sc to S for i ∈ I do
9 if (j, i) ∈ S then

10 ykji ← 1
11 else
12 ykji ← 0

13 return y

Assuming Solution 1 is not optimal, then there exists another
solution (called Solution 2) with a higher objective value than
Solution 1. We denote by Sc and S′

c to distinguish between
the selected arcs in Solution 1 and Solution 2. Since both
Solutions 1 and 2 satisfy the necessary condition in Lemma 2,
to achieve a higher objective value by Solution 2, it must be
the case that |S′

c| = |Sc|+a, where a ≥ 1. By the arguments in
the proof of Lemma 2, the list-level satisfaction in Solution 2
could not be higher than g(Lc, |S′

c|)+g(L\S′
c,min{B, |L|}−

|S′
c|) = g(Lc, |Sc|+a)+g(L\S+a

c ,min{B, |L|}−|Sc|−a) <
αkuk

j . Hence Solution 2 is not feasible, and we conclude the
lemma.

Motivated by Lemma 4, we propose a bi-section search
algorithm for the recommendation problem. The principle of
the algorithm is to construct a solution containing as many as
possible elements from the top of list Lc and meanwhile guar-
anteeing the list-level constraints being satisfied. Specifically,
we deploy bi-section search to maximize |Sc|. For each |Sc|,
the algorithm selects the first |Sc| elements in Lc and checks
if the feasibility condition in Lemma 3 is met. Then the first
min{B, |L|}−|Sc| elements in L\Sc will be selected to fulfill
the list-level constraint. The proposed algorithm is presented
in Algorithm 1, where S denotes the set of recommended
contents. An example output is shown in Fig. 3b.

Theorem 5. Algorithm 1 gives the optimum of (6).

Proof. By construction, the output of Algorithm 1 satisfies the
sufficient condition in Lemma 4, and the theorem follows.

B. The Caching Problem

We consider the second sub-problem to optimize caching
with given recommendation y. As y is fixed, the optimization
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problem becomes

max
x

∑
i∈I

xiqi(y) (7a)

s.t.
∑
i∈I

sixi ≤ C (7b)

xi ∈ {0, 1}, i ∈ I (7c)

Since qi(y) is a given value for content i, the caching
problem as defined in (7) is a knapsack problem, where each
content i is an item with weight qi(y) and the knapsack
capacity is C. To solve the caching problem, we leverage
the modified greedy algorithm for solving a generic knapsack
problem. The algorithm consists of the following three steps.
First, the algorithm computes the utility for each content i,
defined as qi(y

′)
si

, and sorts them in descending order. Second,
the algorithm greedily caches contents in the given order until
caching the jth content would exceed the cache capacity.
Third, the algorithm takes the best of caching the first j − 1
contents or the jth content. The modified greedy algorithm has
an 1

2 -approximation guarantee that can be easily established
using an argument similar to that in [20].

C. The Alternating (ALT) Optimization Algorithm

Utilizing the solutions of the recommendation problem
and the caching problem, we propose an alternating (ALT)
optimization algorithm for CIAR. The basic idea of ALT is
to alternatively optimize x and y. The first phase of ALT
is the initialization of recommendation. For any user k with
incumbent content j, we select the most relevant min{B, |Dk

j |}
contents for j under the preference of user k to form the
recommendation solution y′. By the definition of uk

j , one can
verify that y′ satisfies the list-level constraint (5d) with any
value of α ∈ [0, 1]. Secondly, the algorithm solves the caching
problem in (7) with given y′, see Sec. V-B. Now the obtained
x and y′ have formed a feasible solution of CIAR. Third,
we solve the recommendation problem in (6) with given x
by invoking Algorithm 1. The ALT algorithm then alternates
between solving the two sub-problems, and terminates if
the solution remains unchanged or after a maximum of R
iterations. Clearly, by construction ALT runs in polynomial
time in the size of the content set I for any constant R.

VI. NUMERICAL RESULTS

A. Preliminaries

In our simulation, we use a well-known movie reviews
dataset MovieLens [21] to evaluate the proposed algorithm,
with different values of cache capacity and recommendation
list length. Besides, as a supplement for testing the impact
of graph structures on algorithm performance, we also use a
synthetic dataset. Table I shows the basic parameters of the
two datasets.

1) Real-world Dataset: The value of pki (∀i ∈ I, k ∈ K) is
derived by evaluating how content i matches the preference of
user k. Specifically, we consider 18 themes for describing both
contents and users. A binary vector vi = [vi1, vi2, . . . , vi18]

T

Table I: The parameters of the two datasets

Parameters Values

R
ea

l-
w

or
ld

The number of users |K| 20
The number of contents |I| 50
Threshold αk (∀k ∈ K) 0.4
Threshold βk (∀k ∈ K) 0.01
Cache capacity C {1, 1.5, 2, 2.5}
Recommendation list length B {6, 12, 18, 24}
Content size Uniform (0.1)

Sy
nt

he
tic

The number of users |K| 20
The number of contents |I| {30, 40, 50, 60, 70}
Threshold αk (∀k ∈ K) 0.4
Threshold βk (∀k ∈ K) 0.01
Cache capacity C 4
Recommendation list length B 6
Content size [0.1, 0.9]

is used to represent the feature of content i, where an element
is one if content i is related to corresponding theme. Similarly,
vector vk = [vk1 , v

k
2 , . . . , v

k
18, ]

T shows the preference of user
k for these themes. Each element in vk is a value within [0, 1],
and a higher value means a stronger preference. Then level of
match between content i and user k is quantified by computing
the similarity between the two corresponding vectors [22], i.e.,

dki =
1

1 + ||vk − vi||2
,∀i ∈ I, k ∈ K (8)

where || · ||2 computes Euclidean distance. By normalization,
the value of pki can be computed by

pki =
dki∑
i∈I dki

,∀i ∈ I, k ∈ K (9)

For parameter pkji, its values in fact reflect the similarity
between contents i and j with respect to attracting user k,
referred to as the content correlation with respect to user
preference. We compute the value of pkji by

pkji = pkij =
1

1 + ||vk ◦ (vj − vi)||2
,∀i, j ∈ I, k ∈ K (10)

where ◦ represents element-wise product of two vectors.
2) Synthetic Dataset: The density of a content graph is

represented by the number of arcs in relation to the number
of nodes. For a content, this corresponds to the proportion of
contents that are relevant. The arcs are randomly generated
subject to the density parameter, and the values of pki and
pkji (∀i, j ∈ I, k ∈ K) are randomly generated obeying
the uniform distribution in [0, 1]. Moreover, the values of pki
(∀i ∈ I) are normalized for each user k. We consider non-
uniform content sizes for the dataset.

B. Benchmarks

Two benchmarks are used for comparison. One benchmark
is ILP, for which the optimal solution of (5) is obtained
by Gurobi [19]. Another benchmark is a popularity-based
algorithm, referred to as POP, where caching and recommen-
dation are optimized separately based on content popularity.
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Figure 4: The normalized cache efficiency as function of the
cache capacity C on dataset MovieLens when B = 6.
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Figure 5: The normalized cache efficiency as function of the
recommendation list length B on dataset MovieLens when
C = 4.
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Figure 6: The normalized cache efficiency as function of
the number of contents |I| on the synthetic dataset when
density=0.8.
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Figure 7: The normalized cache efficiency as function of the
density of arcs on the synthetic dataset when |I| = 50.

For recommendation optimization, the recommendation list is
created by sorting contents in descending order of pkji and
including the first min{B, |Dk

j |} elements into the list, for each
user k and content j. For caching optimization, the contents
are sorted in descending order of the popularity-to-size ratio
(i.e.,

∑
k∈K pki /si), and contents are greedily added into the

cache until the capacity becomes exceeded.

C. Results and Discussion
The numerical results are shown in Figs. 5-7. For each

combination of the values of parameters, we use 20 instances
and present the average result. In addition, the results are
normalized by the global optimum. Hence the numerical
performance of ILP is always one. Empirically, algorithm ALT
converges after the initialization and one iteration of solving
the two sub-problems, for all tested instances.

Overall, ALT can provide very good solutions with at most
2.4% gap to the optimum for both the real-world and synthetic
datasets. Fig. 4 and Fig. 5 show the stable performance of ALT
with varying recommendation list length and cache capacity.
Besides, ALT apparently outperforms POP, even though the

gap between them gets smaller with larger cache capacity and
longer recommendation lists. Note that two critical differences
between ALT and POP are whether or not to consider: (1)
content popularity affected by recommendation, when opti-
mizing caching, and (2) reshaping the popularity distribution to
utilize the cache efficiently, when optimizing recommendation.
The optimal recommendation will tend to largely improve the
popularity of cached contents. For ALT, compared with POP,
the advantage brought by (1) will be more obvious for smaller
B, while the advantage brought by (2) is more prominent for
smaller C. These effects can be observed in the figures. Note
that, in theory, all the three algorithms will achieve the same
value, if the cache capacity is infinity.

Fig. 6 and Fig. 7 show that the performance of ALT remains
close-to-optimal, when varying the number of contents and
density. Algorithm ALT clearly outperforms POP, in particular
with more contents and higher density. For ALT, compared
with POP, the advantage brought by (2) above is more promi-
nent with more contents. We notice that for a very low density
of 0.2, the performance of ALT and POP are close. That
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is because in this case, for a content, there are few related
contents, and the number of feasible recommendation solutions
is very limited. In other words, which algorithm to use does not
matter much, since any feasible solution is close to optimum.

VII. CONCLUSIONS

In this paper, we jointly optimize caching and incumbent-
aware recommendation for improving the caching efficiency,
considering the content-level and list-level user satisfaction
constraints. This problem is proved to be NP-hard. We ap-
proach it via a graph perspective and derive an alternating
algorithm where the recommendation sub-problem is solved
to optimum. Simulation results show the close-to-optimal
performance of the proposed algorithm, hence making content
recommendation both personalized and incumbent aware is a
promising scheme.
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