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Abstract—A fundamental problem in large-scale data centers
is to reduce the average response time of jobs. The Join-
the-Shortest-Queue (JSQ) load balancing scheme is known to
minimise the average response time of jobs for homogeneous
systems consisting of identical servers. However, heterogeneous
systems consisting of servers with different speeds, JSQ performs
poorly. Furthermore, JSQ suffers from high communication
overhead as it requires knowledge of the queue length of all
servers while assigning incoming jobs to one of the destination
servers. Therefore, the Join-the-Idle-Queue (JIQ) scheme was
introduced which not only reduces the communication overhead
but also minimises the average response time of jobs under
homogeneous systems. Despite these advantages, JIQ is still
known to be inefficient in minimising the average response time
of jobs under heterogeneous systems. In this paper, we consider a
speed-aware version of JIQ for heterogeneous systems and show
that it achieves delay optimality in the fluid limit. One of the
technical challenges to establishing this optimality is to show the
tightness of the sequence of steady-state distributions indexed
by system size. We show this tightness result by evaluating
the drift of appropriate Lyapunov functions. This approach to
proving tightness is different from the usual coupling approach
used for homogeneous systems. Another important challenge in
proving the optimality result is to establish the fluid limit which
is done using the time-scale separation technique. Finally, using
the monotonicity of the fluid process we have shown that the fluid
limit has a unique and globally attractive fixed point.

Index Terms—fluid limit, load balancing, stochastic processes,
heterogeneous systems, Lypunov functions.

I. INTRODUCTION

A key challenge for cloud computing service providers such
as Google Colab, Amazon Web Services (AWS), and Google
Cloud Platform (GCP) is to satisfy user’s demand for resources
with minimum delay; otherwise, the user drops, leading to
a loss in revenue. To overcome this challenge efficient load
balancing schemes, which assign incoming user requests to
servers based on their current loads, are required. The most
natural way of doing so is to use the JSQ scheme in which
an incoming arrival is assigned to the server having smallest
number of ongoing jobs. This scheme is known to achieve
the minimum average response time of jobs under a variety
of settings [1], [2]. However, it is difficult to implement
JSQ in large-scale data centers as they contain hundreds of
thousands of servers and finding the server with minimum
number of ongoing jobs incurs significant communication
overhead between the job dispatcher and the servers. There-
fore, many alternative load balancing schemes which require

low messaging overhead have been proposed in literature. The
Power-of-d (Pod) scheme [3] and the JIQ scheme [4] are
some examples of schemes which require less communication
between the servers and the job dispatcher. In the JIQ scheme,
the dispatcher only keeps track of the idle servers in the system
and once a job arrives, it is sent to one of the idle servers. If no
server is idle, then the job is sent to a randomly sampled server.
It has been shown that for homogeneous systems consisting of
identical servers the JIQ scheme achieves the same asymptotic
performance as the JSQ scheme.

The above mentioned optimality of JIQ holds only when
servers are identical. However, modern data centers are
equipped with different generations of CPUs, various types
of acceleration devices such as GPUs, FPGAs, and ASICs,
with various processing speeds [5], [6]. Therefore, modern data
centers are inherently heterogeneous and for such systems, JIQ
performs poorly in terms of mean response time of jobs. An ef-
ficient load balancing scheme for heterogeneous systems must
use all existing servers in the system. This is because not using
servers with lower processing speeds results in the wastage of
expensive resources that are already installed in the system.
This motivates us to consider a speed-aware load balancing
schemes for heterogeneous systems. In speed-aware schemes,
in addition to the current loads at the servers, the server’s speed
are taken into consideration while assigning incoming jobs to
servers. In addition to efficiency, we aim at designing a load
balancing scheme which has low communication overhead so
that it can be easily implemented. To this end, we consider
a speed-aware variant of the JIQ scheme, called the Speed-
Aware Join-the-Idle-Queue or SA-JIQ scheme, where instead
of sending arrivals to any available idle server, arrivals are
sent to the fastest of the idle servers. We show that this small
modification leads to significant performance enhancement for
JIQ in heterogeneous systems.

A. Main Contributions

Our main contribution in this paper is the analysis of SA-JIQ
scheme in the large system limit, i.e., as the number of server
N in the system tends to infinity. We show that the SA-JIQ
scheme achieves the minimum possible average response time
of jobs in heterogeneous systems asymptotically (as N → ∞).
Our specific contributions are listed below:

1) Stability and Tightness: We first show that the SA-JIQ
scheme is stable for all arrival rate λ < 1. We prove
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this using Lyapunov drift method. Moreover, we show
that the sequence of steady-state stationary distribution
indexed by system size is tight. We take a new approach
different from usual coupling approach and establish this
tightness result by analysing the drift of an exponential
Lyapunov function.

2) Establishing the Fluid Limit: Our next main contribution
is to establish the fluid limit of the SA-JIQ scheme. The
analysis of the fluid limit is more challenging due to the
underlying state space and the separation of two time
scale. We use martingale representation and time-scale
separation approach to establish the fluid limit of SA-JIQ.

3) Characterising the Steady-State of the Fluid Limit: Fi-
nally, we have shown that the fluid limit of SA-JIQ has a
unique fixed point and we prove it is globally stable using
monotonicity of the fluid process . Furthermore, using the
tightness result and the global stability of fixed point we
have also establish the interchange of limits.

B. Related Works

The study of efficient load balancing schemes for large
scale data centers has been a hot topic of research from
last 2-3 decades [7]. The JSQ scheme is the most rigorously
investigated scheme in which an arrival joins the minimum
queue length server. It has been shown that JSQ is optimal in
stochastic order sense [1], [2], and heavy-traffic optimal in [8].
To overcome the high messaging overhead in JSQ, alternative
schemes have been proposed such as Pod [3] and JIQ [4].
All these schemes are known to perform well in homogeneous
systems with identical servers.

Proving the optimality of load balancing schemes is more
challenging in heterogeneous systems. There are few works
considering load balancing in heterogeneous systems. The Pod
scheme for heterogeneous systems has been analyzed in [9]
for light traffic, in [10] for heavy traffic, and in [11] for
mean-field regime. Furthermore, low-complexity scheme JIQ
has also been analyzed for heterogeneous systems in [12]. It
has been shown that JIQ has asymptotic zero wait time as
N → ∞. However, this does not imply that the JIQ scheme is
asymptotically delay optimal. In [13], a scheme similar to the
SA-JIQ scheme has been considered for constrained heteroge-
neous systems with finite buffer sizes due to which tightness
and stability results follow immediately . Moreover, the drift
technique, applicable to finite-buffer systems, is difficult to
generalise to our setting.

C. General Notations

We use the following notations throughout the paper. We
denote Z̄+ = Z+

⋃
{∞}. For x, y ∈ R, we use x ∧ y, and

(x)+ to denote max(x, y), and max(x, 0). For any n ∈ N,
[n] denotes the set {1, 2, . . . , n}. For any complete separable
metric space E, we denote DE [0,∞) to be the set of all
cadlag functions from [0,∞) to E endowed with the Skorohod
topology. Moreover, the notation B(E) is used to denote the
Borel sigma algebra generated by the set E. The notation ⇒ is

used for weak convergence. We use 1(A) to denote indicator
function for set A.

II. SYSTEM MODEL

We consider a system consisting of N parallel servers, each
with its own queue of infinite buffer size. The servers are
assumed to be heterogeneous in that they can have different
service rates. Specifically, we assume that there are M different
server types. Each type j ∈ [M ] server has service rate µj . The
proportion of type j ∈ [M ] servers in the system is assumed
to be fixed at γj ∈ [0, 1] with

∑
j∈[M ] γj = 1. We further

assume without loss of generality that µ1 > µ2 > . . . > µM

and
∑

j∈[M ] γjµj = 1 (normalised system capacity is unity).
Jobs are assumed to arrive at the system according to a
Poisson process with a rate Nλ. Each job requires a random
amount of work, independent and exponentially distributed
with mean 1. The inter-arrival and service times are assumed to
be independent of each other. The queues are served according
to the First-Come-First-Server (FCFS) scheduling discipline.

A. Assignment Policy

Our main interest is to analyse the Speed-Aware Join-the-
Idle-Queue or the SA-JIQ policy. It is defined as follows. Under
the SA-JIQ policy, upon arrival of a job, it is sent to a idle
server available with maximum speed. Otherwise, a server is
selected from the pool j with probability pj/Nγj , where pj =
µjγj is the probability of selecting jth pool. Ties within servers
of different types are broken by choosing the server type with
the maximum speed and ties between servers of the same type
are broken uniformly at random.

Remark 1. Note that if we select a server uniformly at random
(as in classical JIQ) when no idle servers are available (we call
this scheme as SA-JIQ Random), then from Figure 1, it is clear
that the system under SA-JIQ Random is not even stable for
all λ < 1. The choice of pj = γjµj is crucial in the analysis
of stability and tightness. Specifically, with this choice of pj ,
we show that the drift of appropriate Lyapunov is negative
to prove stability and obtained uniform bound on stationary
queue length distribution to prove tightness.

Figure 1. Both schemes are applied to a heterogeneous system consisting of
two types of servers, i.e., M = 2. We choose N = 10, γ1 = 1− γ2 = 1/2,
and µ1 = 4µ2 = 8/5.
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III. LOWER BOUND ON MEAN RESPONSE TIME OF JOBS

To establish the optimality result of SA-JIQ, we need to
find a lower bound on the steady state mean response time
of jobs for system described in Section II for all N and
under any stationary job assignment policy Π. In the following
proposition, we state a result from [14] which provides a lower
bound on the steady-state mean response time, T̄N,Π, of jobs
in system described in previous section under any stationary
policy Π.

Proposition 1 (Proposition 4 of [14]). If λ < 1, then the
steady-state mean response time, T̄N,Π, of jobs in the system
described in Section II under any stationary policy Π satisfies

lim inf
N→∞

T̄N,Π ≥ z∗

λ
, (1)

where z∗ ≜ maxj∈[M ]

(∑j−1
i=1 γi +

λ−
∑j−1

i=1 µiγi

µj

)
.

In subsequent sections, we shall establish that the above
lower bound can be achieved with equality when SA-JIQ is
employed as the job assignment policy.

IV. SYSTEM STATE DESCRIPTION

The state of the system at any time t ≥ 0 under the SA-JIQ
policy can be described in two different ways. These are as
defined below:

1) Queue-length descriptor: We define the queue-length vec-
tor at time t ≥ 0 as Q(N)(t) = (Q

(N)
k,j (t), k ∈ [Nγj ], j ∈

[M ]), where Q
(N)
k,j (t) denotes the queue length of the kth

server of type j at time t.
2) Empirical measure descriptor: We define the empirical

tail measure on the queue lengths at time t as x(N)(t) =

(x
(N)
i,j (t), i ≥ 1, j ∈ [M ]), where x

(N)
i,j (t) denotes the

fraction of type j servers with at least i jobs at time t.
For completeness, we set x

(N)
0,j (t) = 1 for all j ∈ [M ]

and all t ≥ 0.
It follows from the Poisson arrival and exponential job size
assumptions that both processes Q(N) = (Q(N)(t), t ≥ 0) and
x(N) = (x(N)(t), t ≥ 0) are Markov. It is possible to switch
from first descriptor to the second by noting the following for
all i ≥ 1, j ∈ [M ]

x
(N)
i,j (t) =

1

Nγj

∑
k∈[Nγj ]

1

(
Q

(N)
k,j (t) ≥ i

)
. (2)

We use both descriptors above to state and prove our results.
Clearly, the process Q(N) takes values in ZN

+ and the process
x(N) takes values in the space S(N) defined as S(N) ≜ {s =
(si,j) : Nγjsi,j ∈ Z+, 1 ≥ si,j ≥ si+1,j ≥ 0 ∀i ≥ 1, j ∈
[M ]}. Note that for finite N , the space S(N) is countable since
each x

(N)
i,j can only take finitely many values. We further define

the space S as follows

S ≜ {s : 1 ≥ si,j ≥ si+1,j ≥ 0,∀i ≥ 1, j ∈ [M ], ∥s∥1 < ∞},
(3)

where the ℓ1-norm, denoted by ∥·∥1, is defined as ∥s∥1 ≜
maxj∈[M ]

∑
i≥1|si,j | for any s ∈ S. It is easy to verify that

the space S is complete and separable under the ℓ1-norm.

V. MAIN RESULTS

In this section we state the main results for the SA-JIQ
scheme. Suppose the system’s state x(N) belongs to S(N)∩S,
then there are finitely many jobs in the system. Starting with
a state in S(N) ∩ S we can ensure that chain x(N) remains in
S∩S(N) for all t ≥ 0 only if the process x(N), or equivalently
the process Q(N), is positive recurrent. Our first main result
states that this is the case when λ < 1.

Theorem 2. The process Q(N) is positive recurrent for each
λ < 1 and each N . Furthermore, for each j ∈ [M ], each
k ∈ [Nγj ], and each l ≥ 1 the following bound holds for all
θ ∈ [0,− log λ)

sup
N

P(Q(N)
k,j (∞) ≥ l) ≤ Cj(λ, θ)e

−lθ, (4)

where Q
(N)
k,j (∞) = limt→∞ Q

(N)
k,j (t) and Cj(λ, θ) = (1 −

λ)/(µjγj(1− λeθ)) > 0.

The theorem above implies that for λ < 1 the stationary
distributions of Q(N) and x(N) exist and they are unique.
Furthermore, the bound obtained in (4) is uniform in N and
essential in proving the tightness result. Let Q(N)(∞) =
limt→∞ Q(N)(t) (resp. x(N)(∞) = limt→∞ x(N)(t)) denote
the state of the system distributed according to the stationary
distribution of Q(N) (resp. x(N)). Our next set of results
characterise the asymptotic properties of the process x(N) as
N → ∞. The first result states that the sequence (x(N))N of
processes indexed by N converges weakly to a deterministic
process x = (x(t), t ≥ 0) defined on S.

Theorem 3. (Process Convergence): Assume x(N)(0) ∈ S ∩
S(N) for each N and x(N)(0) ⇒ x(0) ∈ S as N → ∞. Then,
the sequence (x(N))N≥1 is relatively compact in DS [0,∞)
and any limit x = (x(t) = (xi,j(t), i ≥ 1, j ∈ [M ]), t ≥
0) of a convergent sub-sequence of (x(N))N≥1 satisfies the
following set of equations for all t ≥ 0, i ≥ 1 and j ∈ [M ]

xi,j(t) = xi,j(0) +
λ

γj

∫ t

0

pi−1,j(x(u))du−
∫ t

0

µj(xi,j(u)

− xi+1,j(u))du, (5)

where pi−1,j(s) ∈ [0, 1] is uniquely determined for each state
s ∈ S. Furthermore, p(s) = (pi−1,j(s), i ≥ 1, j ∈ [M ]) has
following form

p0,j(s) = 1(1 = s1,1 = · · · = s1,j−1 > s1,j), (6)
pi−1,j(s) = (1− p0(s))µjγj(si−1,j − si,j), i ≥ 2, (7)

where p0(s) =
∑

j∈[M ] p0,j(s).

In the theorem above, pi−1,j(s) can be interpreted as the
limiting probability of an incoming arrival being assigned to
a type j server with queue length i− 1 when the system is in
state s ∈ S. Specifically, p0,j(s) = 1, when all servers in pools
below j are busy and there are some idle servers available in
pool j. Furthermore, if there are no idle servers available, i.e.,
p0(s) = 0 then the pool j is picked with probability µjγj and
within pool j an arrival joins the server with exactly i−1 jobs
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with probability (si−1,j − si,j). Note that from (6) and (7) it
can easily verified that

∑
j∈[M ]

∑
i≥1 pi−1,j(s) = 1, for any

s ∈ S. In our final result stated below, we show that the fixed
point x∗ is unique and globally attractive.

Theorem 4. (i) If λ < 1, the fixed point x∗ = (x∗
i,j , i ≥

1, j ∈ [M ]) of the fluid limit x described by (5) is unique in
S and is given by for all j ∈ [M ] as

x∗
1,j =

(
1 ∧

(λ−
∑j−1

k=1 µkγk)+
µjγj

)
, x∗

i,j = 0 i ≥ 2. (8)

(ii) (Global Stability): If λ < 1, then for any x(0) ∈ S
the fluid limit x given by (5) converges to x∗ component-wise,
i.e., xi,j(t,x(0)) → x∗

i,j as t → ∞ for all i ≥ 1 and for all
j ∈ [M ].

(iii) (Interchange of Limits): Let λ < 1. Then, the sequence
(x(N)(∞))N converges weakly to x∗, i.e., x(N)(∞) ⇒ x∗ as
N → ∞.

It can be easily verified that the total scaled number of jobs
in state x∗ is equal to z∗ as defined in (1). Thus, by Little’s
law, the mean response time of jobs under the SA-JIQ policy
converges to z∗/λ as N → ∞, which implies the asymptotic
optimality of the SA-JIQ policy.

VI. STABILITY AND UNIFORM BOUNDS

In this section we prove Theorem 2. To show the results of
Theorem 2, we use Lypunov drift method. For any function
f : ZN

+ → R, the drift evaluated at a state Q ∈ ZN
+ is given

by

GQ(N)f(Q) =
∑

j∈[M ]

∑
k∈[Nγj ]

[r+,N
k,j (Q)(f(Q+e

(N)
k,j )−f(Q))

+ r−,N
k,j (Q)(f(Q− e

(N)
k,j )− f(Q))], (9)

where GQ(N) is the generator of Q(N); e
(N)
k,j denotes the

N-dimensional unit vector with one in the (k, j)th position;
r±,N
k,j (Q) are the transition rates from the state Q to the states
Q ± e

(N)
k,j . Under the SA-JIQ policy, for each state Q ∈ ZN

+

and each k ∈ [Nγj ], j ∈ [M ] we have

r+,N
k,j (Q) =

{
Nλ

|Ij(Q)| , if j = j†(Q) and k ∈ Ij(Q)

λµj , if 1(Qk,j > 0∀k,∀j)
, (10)

r−,N
k,j (Q) = µj1(Qk,j > 0), (11)

where j†(Q) is the fastest speed server pool that contains a
idle server and Ij(Q) is the set of idle servers available in pool
j. Observe that from (10), j†(Q) may not always exists for
Q ∈ ZN

+ . If j†(Q) does not exists for some Q ∈ ZN
+ , in this

case all servers in system are busy, i.e., 1(Qk,j > 0∀k,∀j) =
1. Therefore, for any Q ∈ ZN

+ we have 1

(
j†E(Q)

)
= 1 −

1(Qk,j > 0∀k, ∀j), where j†E(Q) denotes that j†(Q) exists.
Proof of Theorem 2 :

1) Stability: To prove stability, we define a Lyapunov func-
tion Φ : ZN

+ → [0,∞) as

Φ(Q) =
∑

j∈[M ]

∑
k∈[Nγj ]

Q2
k,j . (12)

From (9) we have GQ(N)Φ(Q) =∑
j∈[M ]

∑
k∈[Nγj ]

[
r+,N
k,j (Q)(2Qk,j + 1) +

r−,N
k,j (Q)(−2Qk,j +1)

]
for any Q ∈ ZN

+ . Using (10) we
can write∑

j∈[M ]

∑
k∈[Nγj ]

r+,N
k,j (Q)(2Qk,j + 1) = Nλ

+ (2λ
∑

j∈[M ]

µj

∑
k∈[Nγj ]

Qk,j)1(Qk,j > 0∀k,∀j). (13)

Similarly, using (11) we can write∑
j∈[M ]

∑
k∈[Nγj ]

r−,N
k,j (Q)(−2Qk,j + 1) =

− 2
∑

j∈[M ]

µj

∑
k∈[Nγj ]

Qk,j +
∑

j∈[M ]

µjBj(Q), (14)

where Bj(Q) denotes the number of busy servers in pool
j in state Q. Hence, using (14) and (13) we have

GQ(N)Φ(Q) ≤ Nλ+ (2λ
∑

j∈[M ]

µj

∑
k∈[Nγj ]

Qk,j)

× 1(Qk,j > 0∀k, ∀j)− 2
∑

j∈[M ]

µj

∑
k∈[Nγj ]

Qk,j +N,

where the inequality follows from Bj(Q) ≤ Nγj . Now
suppose 1(Qk,j > 0∀k,∀j) = 1, then from the above
expression we have

GQ(N)Φ(Q) ≤ N(λ+1)−2(1−λ)
∑

j∈[M ]

µj

∑
k∈[Nγj ]

Qk,j .

Hence, it follows from the above that if λ < 1, then
the drift is strictly negative whenever

∑
j µj

∑
k Qk,j >

N(1+λ)
2(1−λ) . On the other side, if 1(Qk,j > 0∀k,∀j) = 0,

then the drift is bounded by N(1 + λ). Thus, using the
Foster-Lyapunov criterion for positive recurrence (see,
e.g., Proposition D.3 of [15]) we conclude that Q(N) is
positive recurrent.

2) Uniform Bounds: To obtain (4), we analyse the drift of
the Lyapunov function Ψθ : ZN

+ → R+ defined as

Ψθ(Q) ≜
∑

j∈[M ]

∑
k∈[Nγj ]

exp(θQk,j), (15)

for some θ > 0. They key idea is to show following:
first we prove that for some positive values of θ the
steady-state expected drift E[GQ(N)Ψθ(Q

(N)(∞))] of Ψθ

is non-negative. Using this, next we obtain bounds on the
weighted sum of moment generating functions (MGF)
of the stationary queue lengths of different pools, i.e.,
on E[

∑
j∈[M ] µjγj exp(θQ

(N)
k,j (∞))] for some positive θ.
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Finally, using Chernoff bounds, we then obtain the bounds
on the tail probabilities.
The steps to evaluate the drift of the above defined
Lyapunov function is similar to the previous case. Due
to space restriction, we write the final expression of the
drift GQ(N)Ψθ(Q) as

GQ(N)Ψθ(Q)

= (eθ − 1)
[
Nλ+ (λ

∑
j∈[M ]

µj

∑
k∈[Nγj ]

exp(θQk,j)

−Nλ)1(Qk,j > 0∀k, ∀j)

− 1

eθ

∑
j∈[M ]

µj

∑
k∈[Nγj ]

exp(θQk,j) +
1

eθ

∑
j

µjIj(Q)
]
.

(16)

Note that for all θ ∈ [0,− log λ), we have λeθ − 1 < 0.
Therefore, using this fact it can be easily verified from
the above expression that supQ∈ZN

+
GQ(N)Ψθ(Q) < ∞.

Now from the application of Proposition 1 of [16], we
have

E[GQ(N)Ψθ(Q
(N)(∞))] ≥ 0. (17)

Taking expectation of (16) when 1(Qk,j > 0∀k, ∀j) = 1
with respect to the stationary distribution and apply-
ing (17) we obtain

(
1− λeθ

)
E

∑
j

µj

∑
k

exp(θQ
(N)
k,j (∞))


≤ E

∑
j

µj(Nγj −Bj(Q
(N)(∞)))

 = N(1− λ),

(18)

where in the equality we have used the fact that due to
erogodicity of the process Q(N), the steady state rate of
departure from the system E[

∑
j µjBj(Q)] is equal to

the arrival rate Nλ. One important observation to make
is that the SA-JIQ policy does not distinguish between
servers of the same type. Hence, from (18) we have that
for all θ ∈ [0,− log λ)

N(1− λ)

1− λeθ
≥ NE

 ∑
j∈[M ]

µjγj exp(θQ
(N)
k,j (∞))


≥ NE

[
µjγj exp(θQ

(N)
k,j (∞))

]
.

Thus, for each j ∈ [M ] and θ ∈ [0,− log λ) we have

E
[
exp(θQ

(N)
k,j (∞))

]
≤ 1

µjγj

1− λ

1− λeθ
. (19)

Now, for each positive θ we have

P(Q(N)
k,j (∞) ≥ l) ≤

E
[
exp (θQ

(N)
k,j (∞))

]
exp(θl)

≤ (1− λ) exp(−θl)

(1− λeθ)µjγj
,

where the first inequality follows from Markov inequality
and the last inequality follows from (19). Therefore, from
above set of inequality we can write

P(Q(N)
k,j (∞) ≥ l) = Cj(λ, θ)e

−lθ. (20)

Similarly, taking expectation of (16) when
1(Qk,j > 0∀k, ∀j) = 0 and applying (17) we obtain
same bound as in (20). This completes the proof.

■

VII. PROCESS CONVERGENCE OF SA-JIQ
One of the major step to establish the asymptotic optimality

of SA-JIQ is to prove the process convergence result that is
Theorem 3. In this section, we prove that the sequence of
processes (x(N))N≥1 converges weakly to the process x. To
prove this we use martingale representation approach and the
time-scale separation technique from [17]. First we write the
martingale representation of the evolution of x

(N)
i,j (t) for all

t ≥ 0, i ≥ 1, and j ∈ [M ] as

x
(N)
i,j (t) = x

(N)
i,j (0) +

λ

γj

∫ t

0

p
(N)
i−1,j(x

(N)(s))ds

− µj

∫ t

0

(x
(N)
i,j (s)− x

(N)
i+1,j(s))ds+

1

Nγj
M

(N)
i,j (t), (21)

where M
(N)
i,j (t) = (M

(A,N)
i,j (t) − M

(D,N)
i,j (t)) with M

(A,N)
i,j

and M
(D,N)
i,j are martingales corresponding to the arrivals and

departures at the component x(N)
i,j and p

(N)
i−1,j(x

(N)(s)) is the
probability that an arrival joins a server in jth pool with exactly
i−1 jobs for finite N . The detailed definitions of M (A,N)

i,j and
M

(D,N)
i,j are given in Appendix C of [14].
To establish the fluid limit of SA-JIQ, we define the process

V(N) = (V(N)(t) = (V
(N)
1,j (t), j ∈ [M ]), t ≥ 0) with

V
(N)
1,j (t) = Nγj − Nγjx

(N)
1,j (t). The component V

(N)
1,j (t)

counts the number of idle servers of type j. Note that we can
write p

(N)
i−1,j(x) for x ∈ S, j ∈ [M ] in terms of the process

V(N) as

p
(N)
0,j (x) = 1

(
V(N) ∈ Rj

)
, (22)

p
(N)
i−1,j(x) = µjγj(x

(N)
i−1,j − x

(N)
i,j )1

(
V(N) ∈ H

)
i ≥ 2, (23)

where

Rj =
{
v ∈ Z̄M

+ : 0 = v1,1 = · · · = v1,j−1 < v1,j
}
, (24)

H =
{
v ∈ Z̄M

+ : v1,l = 0 ∀l ∈ [M ]
}
. (25)

The set Rj represents the set of states where the pool j has
some idle-servers and all servers in pools below j are busy.
Furthermore, the set H represents the set of states where all
servers in each pool are busy. Moreover, from (24) and (25)
we have H = (∪j∈[M ]Rj)

c.
It can be easily verified that V(N) is a Markov process

defined on Z̄M
+ with transition rates for j ∈ [M ] as

V(N) →

{
V(N) + ej , at rate Nγjµj(x

(N)
1,j − x

(N)
2,j ),

V(N) − ej , at rate Nλ1
(
V(N) ∈ Rj

)
,

.

(26)
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Furthermore, it is important to note that there is a difference
in the time-scale of the processes x(N) and V(N). To see this
consider a small interval [t, t+δ], the process V(N) experiences
O(Nδ) transitions whereas the x(N) changes only by O(δ).
Hence, for large N the process V(N) reaches its steady-state
while x(N) remains almost constant in this interval. The time-
scale separation between V(N) and x(N) plays an important
role in characterizing the limit integral involving p

(N)
i−1,j term.

Since the time-scales of V(N) and x(N) are different, they have
different limits as N → ∞. To treat them as a single object and
characterise its limit, we define the joint process (x(N), β(N))
where β(N) is a random measure defined on [0,∞)× Z̄M

+ as

β(N)(B1 ×B2) =

∫
A1

1

(
V(N)(s) ∈ B2

)
ds.

for any B1 ∈ B([0,∞)) and B2 ∈ B(Z̄M
+ ). Next we show

that the sequence of processes ((x(N), β(N)))N is relatively
compact in DS [0,∞) × L0 where L0 is defined as the space
of measures on [0,∞)× Z̄M

+ satisfying β([0, t]× Z̄M
+ ) = t for

each t ≥ 0 and each β ∈ L0. We equip L0 with the topology
of weak convergence of measures restricted to [0, t]× Z̄M

+ for
each t.

Lemma 5. If xN (0) ⇒ x(0) ∈ S as N → ∞, then the
sequence ((x(N), β(N)))N is relatively compact in DS [0,∞)×
L0 and the limit (x, β) of any convergent subsequence for
t ≥ 0 and j ∈ [M ] satisfies

x1,j(t) = x1,j(0) +
λ

γj
β([0, t]×Rj)− µj

∫ t

0

(x1,j(s)

− x2,j(s))ds, (27)

xi,j(t) = xi,j(0) + λ

∫
[0,t]×H

µj(xi−1,j(s)− xi,j(s))dβ

− µj

∫ t

0

(xi,j(s)− xi+1,j(s))ds, i ≥ 2. (28)

Due to lack of space the detailed proof of above lemma
follows from Lemma 14 of [14]. The final step in proving
Theorem 3 is the characterisation the limit β([0, t], Rj) ap-
pearing in (27). To do so, we define for any x ∈ S a Markov
process Vx on Z̄M

+ with transition rates for j ∈ [M ] as

Vx →

{
Vx + ej , at rate γjµj(x1,j − x2,j)

Vx − ej , at rate λ1(Vx ∈ Rj)
. (29)

From Lemma 2 and Theorem 3 of [17], it follows that the limit
β([0, t]×Rj) satisfies

β([0, t]×Rj) =

∫ t

0

πx(s)(Rj)ds, j ∈ [M ],

where πx is a stationary measure of the process Vx and
satisfies for j ∈ [M ]

πx({V ∈ Z̄M
+ : V1,j = ∞}) = 1, if x1,j < 1. (30)

Furthermore, we can write πx(H) = 1 −
∑

j∈[M ] πx(Rj),
as sets Rj’s are mutually exclusive. We set p0,j(x) = πx(Rj).

To prove Theorem 3, it is remains to show that x uniquely
determines the stationary measure πx and has form of (6)-
(7). First, note that the Markov chain given by (29) is defined
on Z̄M

+ and has 2M communicating classes. Among these
communicating classes, there is only one restricted strictly
to ZM

+ ; all other 2M − 1 classes have at least one infinite
component. To show the uniqueness πx we need to show
that it is concentrated only on a single communicating class
among these 2M classes. For this it is sufficient to show
πx(V1,j = ∞) = 0 or 1 for all j ∈ [M ]. To show this, we use
the result of the next lemma which characterises the stationary
distribution of the Markov chain Vx.

Lemma 6. Define ρj =
γjµj(x1,j−x2,j)

λ . If
∑

j∈[M ] ρj < 1,
then the Markov chain Vx is positive recurrent. Furthermore,
if π denotes the stationary distribution of the chain, then we
have π {0 = V1,1 = · · · = V1,j−1 < V1,j} = ρj , ∀j ∈ [K].

The proof of above lemma follows from Lemma 15 of [14].
Now suppose ρ1 < 1, then the component V1,1 is stable. We
show that πx(V1,1 = ∞) = 0 with contradiction. Assume
πx(V1,1 = ∞) = ϵ ∈ (0, 1]. Also, assume π̄x to be a stationary
distribution of the Markov chain Vx. Therefore, we can write

πx(R1) = (1− ϵ)π̄x(V1,1 > 0) + ϵ = (1− ϵ)ρ1 + ϵ,

where we get π̄x(V1,1 > 0) = ρ1 from Lemma 6. Now
substitute this in differential form of (5) for i = 1 at time
t, we get

dx1,1(t)

dt
= ϵ

( λ

γ1
− µ1(x1,1(t)− x2,1(t))

)
> 0,

where the last step follows as ρ1 < 1. But if x1,1(t) = 1,
we must have dx1,1(t)

dt < 0 which leads to a contradiction.
Therefore, we have πx(V1,1 = ∞) = 0. Suppose ρ1 ≥ 1, then
the component V1,1 is unstable and we have π̄x(V1,1 ≥ l) = 1
for all l ≥ 0. This shows that πx(V1,1 = ∞) = 1.

Similarly, for general j ∈ [M ], if ρj < 1−
∑j−1

k=1 ρk then the
component Y1,j is stable and we get πx(V1,j = ∞) = 0 using
the same contradiction as above, else πx(V1,j = ∞) = 1.

Next we show that πx has form of (6)-(7). From (24), we
can write πx(R1) = πx(V1,1 > 0) = 1(x1,1 < 1), where the
last equality follows from (30). Proceeding iteratively, we can
easily verify that πx(Rj) = πx(0 = V1,1 = · · · = V1,j−1 <
V1,j) = 1(1 = x1,1 = x1,2 = · · · = x1,j−1 > x1,j). Moreover,
using (28) we can write pi−1,j(x) = πx(H)µjγj(xi−1,j −
xi,j),= (1 −

∑
j∈[M ] p0,j(x))µjγj(xi−1,j − xi,j) for i ≥ 2

and j ∈ [M ].

VIII. PROPERTIES OF FLUID LIMIT

In this section, we prove Theorem 4. We first prove that the
fluid limit x described by (5) has a unique fixed point.

A. Fixed Point

From (5) it follows that for x∗ ∈ S to be a fixed point of
the fluid limit x, we must have

λ

γj
pi−1,j(x

∗) = µj(x
∗
i,j − x∗

i+1,j), i ⩾ 1, j ∈ [M ]. (31)
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Summing (31) over all i ≥ 1 and for all j ∈ [M ], we get
λ
∑

i≥1

∑
j∈[M ] pi−1,j(x

∗) =
∑

j∈[M ] µjγjx
∗
1,j . This implies

that

λ =
∑

j∈[M ]

µjγjx
∗
1,j . (32)

To prove that fixed point has form (8), we consider different
cases based on the interval in which λ belongs

1) If 0 < λ < µ1γ1: For λ ∈ (0, µ1γ1), we show that x∗
1,1 =

λ/µ1γ1 and x∗
i,j = 0 for all (i, j) ̸= (1, 1). Suppose

x∗
1,1 < 1, from (6) this means that p0,1(x∗) = 1. Hence,

summing (31) over all i ≥ 1 and for j = 1, we get
x∗
1,1 = λ/µ1γ1. Similarly, summing (31) for all i ≥ m

and for j = 1, we get x∗
m,1 = 0 for any m ≥ 2. By

similar line of arguments as above, we can easily verify
that x∗

i,j = 0 for all i ≥ 1 and for all j ∈ {2, . . . ,M}.
Now, suppose x∗

1,1 = 1. Then from (32), with x∗
1,1 = 1

implies that
∑M

j=2 µjγjx
∗
1,j = λ−µ1γ1 < 0, which leads

to a contradiction as x∗ ∈ S.
2) If

∑j−1
i=1 µiγi ≤ λ <

∑j
i=1 µiγi, for j ∈ {2, . . . ,M}:

For this case we show that x∗
1,k = 1 for all k ∈ [j − 1],

x∗
1,j = (λ −

∑j−1
i=1 µiγi)/µjγj , x1,k = 0 for all k ≥

j + 1, and x∗
l,k = 0 for all k ∈ [M ] and for all l ≥ 2.

It can be easily verified using induction that x∗
1,k = 1

for all k ∈ [j − 1]. For this an argument similar to the
previous case has to be used iteratively. Next, we prove
that x∗

1,j = (λ −
∑j−1

i=1 µiγi)/µjγj . Suppose x∗
1,j = 1.

Therefore, using (32), we have
∑M

i=j+1 γiµix
∗
1,i = λ −∑j

i=1 γiµi < 0, which is not possible as x∗ ∈ S. Hence,
we have x∗

1,j < 1. So far we have proved that x∗
1,k = 1

for all k ∈ [j − 1] and x∗
1,j < 1. Therefore, using (6) and

equation (31), we can easily get x∗
1,k = 0 for all k ≥ j+1.

Now using (32), we obtain x∗
1,j = (λ−

∑j−1
i=1 µiγi)µjγj .

Similarly, using (6) and (31), we can easily verify that
x∗
l,k = 0 for all k ∈ [M ] and for all l ≥ 2.

B. Global Stability

Next we prove that the fixed point x∗ is globally stable.
We start the proof by proving that the fluid limit process x is
monotone.

Lemma 7. Let x(·,u) = (x(t,u), t ≥ 0) denote a solution
to (5) with x(0) = u ∈ S. Then, for any u,v ∈ S satisfying
u ≤ v we have x(t,u) ≤ x(t,v) for all t ≥ 0, where the
inequality is defined component-wise.

Proof. We first write the differential form of (5) for i ≥ 1,
j ∈ [M ] as

dxi,j(t)

dt
=

λ

γj
pi−1,j(x(t))− µj(xi,j(t)− xi+1,j(t)). (33)

Next, we show that dxi,j(t)
dt = fi,j(x) is non-decreasing in

xk,l for k ̸= i and for l ̸= j. Consider the above equation
for i = 1, i.e., f1,j(x). Suppose for some x ∈ S, we have
p0,j(x) = 1(1 = x1,1 = x1,2 = · · · = x1,j−1 > x1,j) = 1 for
j ∈ [M ] and we know that x1,j ∈ [0, 1]. Therefore, x1,k

for k ∈ [j − 1] still be 1 after increment. This implies
that p0,j remains 1 after increasing x1,k for k ∈ [j −
1]. Now, suppose for some x ∈ S, we have p0,j(x) =
1(1 = x1,1 = x1,2 = · · · = x1,j−1 > x1,j) = 0 for j ∈ [M ].
Increasing x1,k for k ∈ [j − 1] can change p0,j from 0 to
1. Hence, f1,j(x) is non-decreasing in all components except
x1,j . Using the similar argument as above it can be easily
verify that fi,j(x) for i ≥ 2 and j ∈ [M ] is non-decreasing in
all components except xi,j . ■

For u ∈ S, we define vn,j(t,u) =
∑

i≥n xi,j(t,u) and
vn,j(u) =

∑
i≥n ui,j for each n ≥ 1 and j ∈ [M ].

Furthermore, let vn(t,u) =
∑

j∈[M ] γjvn,j(t,u) and vn(u) =∑
j∈[M ] γjvn,j(u) for each n ≥ 1 and u ∈ S.

Lemma 8. For u ∈ S let x(u, ·) denote a solution of (5) in
S. Then for all t ≥ 0 and for all n ≥ 1 we have

dvn(t,u)

dt
= λ

∑
j∈[M ]

∑
i≥n

pi−1,j(x(t,u))−∑
j∈[M ]

µjγjxn,j(t,u).

Proof. Multiplying (33) by γj and summing first over i ≥ n
and then over j ∈ [M ] we obtain the above expression. ■

From the monotonicity of the fluid process x it fol-
lows that for any x(0) ∈ S and any t ≥ 0 we have
x(t,min(x(0),x∗)) ≤ x(t,x(0)) ≤ x(t,max(x(0),x∗)).
Hence, to prove global stability it is sufficient to show that
the (component-wise) convergence x(t,x(0)) → x∗ holds for
initial states satisfying either of the following two conditions:
(i) x(0) ≥ x∗ and (ii) x(0) ≤ x∗.

To prove the above, we need to show that for any solution
x(·,x(0)) ∈ S, vn(t,x(0)) is uniformly bounded in t for all
n ≥ 1. Then the convergence xi,j(t,x(0)) → x∗

i,j for all i ≥ 1
and for all j ∈ [M ] will follow by showing∫ ∞

0

|xi,j(t,x(0))− x∗
i,j |dt < ∞. (34)

The proofs of uniform boundedness of vn(t,x(0)) and verify-
ing (34) are similarly followed from Appendix H of [14].

C. Interchange of Limits
To show interchange of limits, we first prove that the

sequence of stationary measures (x(N)(∞))N≥1 is tight in
S. The necessary and sufficient criterion for tightness of the
sequence (x(N)(∞))N in S under the ℓ1-norm is proved in
Lemma 22 of [14] and is given by

lim
l→∞

lim sup
N→∞

P
(
max
j∈[M ]

∑
i≥l

x
(N)
i,j (∞) > ϵ

)
= 0, ∀ϵ > 0. (35)

Using (4), we show that the sequence (x(N)(∞))N satis-
fies (35). Fix any ϵ > 0 and l ≥ 1. Using Markov inequality,
we obtain

P
(
max
j∈[M ]

∑
i≥l

x
(N)
i,j (∞) > ϵ

)
≤ 1

ϵ
E

 ∑
j∈[M ]

∑
i≥l

x
(N)
i,j (∞)

 .
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Since
(
x
(N)
i,j (∞)

)
i

is a sequence ofnon-negative random vari-
ables for each j ∈ [M ], using monotone convergence theorem
we can interchange the sum and the expectation on the RHS.
Hence, we have

P
(
max
j∈[M ]

∑
i≥l

x
(N)
i,j (∞) > ϵ

)
≤ 1

ϵ

∑
j∈[M ]

∑
i≥l

E
[
x
(N)
i,j (∞)

]
=

1

ϵ

∑
j∈[M ]

∑
i≥l

P
[
Q

(N)
k,j (∞) ≥ i

]
,

where the last equality follows from (2). Now, from (4) we
know that for any θ ∈ [0,− log λ) we have∑

j∈[M ]

∑
i≥l

P
[
Q

(N)
k,j (∞) ≥ i

]
≤ C(θ)e−lθ,

where C(θ) = (1−λ)
(1−λeθ)(1−e−θ)

∑
j∈[M ]

1
µjγj

. Since the RHS
of the above inequality is not dependent on N , therefore
the condition of tightness (35) is verified by fixing some
θ ∈ (0,− log λ) and letting l → ∞. Now, the sequence
(x(N)(∞))N is tight in S under the ℓ1-norm. Hence, the
interchange of limits follows immediately using Prohorov’s
theorem and using the global stability of fixed point x∗. For
more details see Appendix H of [14].

IX. NUMERICAL STUDIES

In this section, we present simulation results for different
load balancing schemes. For all simulations, we have assumed
M = 2 and taken the number of arrivals to be 3 × 107. In
Figure 2, we have plotted the mean response time of jobs for
different schemes as a function of the normalised arrival rate
λ. We see that with SA-JIQ we obtain up to 60% reduction
in average response time of jobs compared to classical JIQ.
As expected, the performance of SQ(2, 2) lies in between
classical JIQ and SA-JIQ. Detailed definition of SQ(2, 2) is
given in [18].

Figure 2. Mean response time as a function of normalized arrival rate λ with
N = 1000 servers. We set µ1 = 4µ2 = 20/8, γ1 = 1 − γ2 = 1/5, and
d1 = d2 = 2.

X. CONCLUSION

In this work, we have analysed the SA-JIQ scheme for the
heterogeneous systems. We have shown the delay optimality of
SA-JIQ under the fluid limit while maintaining low communi-
cation overhead between the dispatchers and servers. To obtain
this optimality result we proved that the sequence of steady-
state distributions is tight using drift methods. Furthermore, the
fluid limit of the SA-JIQ scheme has been established using
the time-scale separation technique. In last, we have show that
the fluid limit has a unique and globally stable fixed point.
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