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Abstract—Finding an optimal/near-optimal scheduling algo-
rithm to minimize the age of information (AoI) in a multi-source
G/G/1 system is well-known to be a hard problem. In this paper,
we consider this problem for the non-preemptive setting, where
an algorithm is free to choose which update to transmit, but
an update under transmission is not allowed to be preempted.
For this problem, we propose a novel randomized scheduling
algorithm and show that its competitive ratio is at most 3 plus the
maximum of the ratio of the variance and the mean of the inter-
arrival time distribution of sources. Notably, the competitive ratio
is independent of the number of sources, or their service time
distributions. For several common inter-arrival time distributions
such as exponential, uniform and Rayleigh, the competitive ratio
is at most 4.

Index Terms—age of information, scheduling, competitive ra-
tio.

I. INTRODUCTION

With the advent of modern applications such as remote
gaming, smart and connected cars, IoT, smart homes etc.,
information timeliness has become an important performance
metric. Information timeliness refers to quick and periodic
dissemination of information, for example, in networked cars,
critical safety information needs to be updated quickly and
often enough. In recent times, several metrics have been
proposed for information timeliness that include the age of
information (AoI) [1], the age of incorrect information [2],
the age of incorrect estimates [3]. Because of its simplicity
and elegance, AoI has become the de facto first choice for
analysis, where the age at time t is defined as the time elapsed
since the last received update was generated, and the AoI is
the average of age across time.

Considered Problem: In this paper, we consider a schedul-
ing problem in a G/G/1 system, where updates from different
sources arrive to a single queue. The inter-generation time of
updates for source i is assumed to be random with distribution
Gi, while the transmission (service) time distribution of an
update from source i is Di. At any time, only one update
from any source can be under transmission (service), and each
transmission by a source incurs a fixed energy/transmission
cost. We consider a cost function that is a linear combination
of the sum of the AoI across all sources and the total
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transmission cost. The objective is to find a non-preemptive
causal scheduling policy that minimizes the cost function.
Discussion on preemptive causal scheduling policies can be
found in the full version of this paper [4].

Prior Work: Early research on AoI considered M/M/1 [1],
[5] and D/G/1 [6], [7] systems where updates arrive from a
single source, and analyzed the AoI for different scheduling
policies such as FCFS, LCFS, LCFS with preemption etc.
Later, [8], [9] considered M/M/1 systems where updates arrive
from multiple sources, and characterized the mean, the distri-
bution of the AoI or the related performance metrics for each
of the sources, for fixed scheduling policies such as FCFS,
LCFS, etc. Distributional properties of AoI when the energy
used to transmit updates is sourced from renewable sources
has also been analyzed in [10], and the references therein.

An alternate AoI research direction has been towards finding
a scheduling policy that minimizes the weighted sum of
the AoI of the sources. For a single source continuous-time
generate-at-will model, where the source can generate the
update at any time, and the transmission delay/service time dis-
tribution is arbitrary, [11] derived an optimal causal scheduling
policy. With multiple sources, finding an optimal causal policy
has remained elusive, and prior works have restricted their
analysis to simpler settings, where the goal is to find causal
scheduling policies for which the competitive ratio (ratio of
the cost of the causal scheduling policy and an optimal offline
policy that is aware of the input in advance) is bounded [12]–
[15]. In this direction, [12] considered a M/G/1 system with
multiple sources, and using the memoryless property of the
exponential update inter-generation time distribution, showed
that a randomized policy has competitive ratio 3. For simpler
settings of slotted-time model, [13]–[15] derived competitive
ratio guarantees for scheduling policies, as discussed next.

In slotted-time model, in each slot, a centralized scheduler
schedules at most one source to transmit its update to the
monitor. If source i is chosen for transmission, the transmitted
update is either successfully received at the monitor in the
same slot with probability pi, or gets lost with probability
1 − pi, independent across slots. When a new update is
generated at each source in every slot, [13], [14] showed that
for a simple randomized policy, the competitive ratio is at most
2. Similar results have been extended for richer models, e.g.
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fading channel [16], multiple access channel [17], etc. When
the updates are generated in each slot with a fixed probability,
[15] derived a policy with competitive ratio 4.

Note that for AoI minimization, a source needs to transmit
frequently. However, in real-world systems, transmissions in-
cur cost (energy). Thus, there is an inherent tradeoff between
minimizing the AoI and the transmission cost, that has largely
been ignored in prior work such as [11]–[15]. In the work
that consider AoI minimization with transmission cost, the
AoI-transmission cost tradeoff has been modeled either by
considering an objective function that is a combination of the
AoI of the sources and the transmission cost [18], [19], or
by considering an additional constraint on the transmission
cost [16]. In either case, the model considered for update
generation and service times have been far simpler (compared
to the G/G/1 model in this paper) with slotted-time [19], single
source [16], [18], zero service time [18], etc.

It is worth noting that there is a large body of work on
optimal or near optimal algorithms for non-AoI scheduling
problems such as the flow-time minimization [20], the com-
pletion time problem [21], the makespan problem [22], and
the co-flow problem [23]. In terms of technical difficulty,
AoI scheduling problems are fundamentally different than the
non-AoI scheduling problems, primarily for two reasons: (i)
for AoI scheduling problems, all the updates for each of the
sources need not be transmitted/serviced (the problem is com-
binatorial in nature and need to choose the subset of updates
to transmit), and (ii) AoI depends on the difference between
the successive time instants when updates are transmitted (the
scheduling decisions across time are correlated).

Our Contributions: To solve the considered problem, we
propose a novel non-preemptive scheduling policy that consists
of two randomized subroutines: (a) SR-PMS, which at each
source ℓ, retains/discards each arriving update with a fixed
probability, and (b) SR-NSS, that among all the sources,
decides which source gets to transmit its latest (retained)
update. Critically, if the selected source ℓ has no (new) update
to transmit, the policy idles for a random period of time that
is drawn independently from the service time distribution Dℓ.

For the proposed policy, we show that its competitive ratio
is upper bounded by max{4, 3 +maxℓ{σ2

ℓ/µ
2
ℓ}}, where σ2

ℓ

and µℓ are respectively the variance and the mean of the update
inter-generation time for source ℓ. Notably, for many of the
‘nice’ distributions, e.g. exponential, uniform, Rayleigh, etc.,
the competitive ratio is upper bounded by 4. It is worth noting
that the competitive ratio upper bound is independent of the
service time distributions Dℓ’s. As far as we know, this is
first such result in the area of AoI scheduling, with general
inter-generation time and service time distributions.

We also construct a ‘tight’ example with a single source
to show that the dependence of the competitive ratio of the
proposed policy on σ2/µ2 is unavoidable.

II. SYSTEM MODEL

Consider a system consisting of N sources, where updates
(henceforth, packets) are generated at each source ℓ inter-

mittently, and the inter-generation time between the ith and
the i + 1st packet of source ℓ is Xℓi. We assume that Xℓi

is independent and identically distributed according to some
distribution Gℓ, with mean µℓ < ∞ and variance σ2

ℓ . There
is a single monitor, and all the N sources wish to send their
updates to the monitor as soon as possible. At any time, at
most one source can transmit its packet to the monitor, and
packet i’s transmission by source ℓ takes dℓi time units (called
transmission time) to complete (received at the monitor). We
assume that the transmission time dℓi, for each packet i of
source ℓ is independent and identically distributed according to
some general distribution Dℓ, with mean γℓ < ∞, independent
of everything else.

Remark 1: For different sources, Gℓ’s and Dℓ’s may belong
to different family of distributions. For example, we may have
G1 a uniform distribution, G2 an exponential distribution, D1

a Rayleigh distribution, and D2 a log-normal distribution.
There is a single centralized scheduler, and at any time t,

the scheduler has causal information of all the sources, and
gets to decide which source should transmit when the channel
becomes free (previous transmission is completed). With the
non-preemptive restriction, packets can be transmitted in any
order or discarded if their transmission has never started,
however, a packet under transmission cannot be preempted
or discarded. We relax the non-preemptive restriction in the
full version of this paper [4].

Definition 1: At any time t, the channel is said to be busy,
if a packet is already under transmission by some source.
Otherwise, the channel is free. A source can begin transmission
of a packet only when the channel is free.

At any time t ≥ 0, age of source ℓ at the monitor is ∆ℓ(t) =
t−λℓ(t), where λℓ(t) denotes the generation time of the latest
packet of source ℓ that has been received at the monitor (i.e.,
completely transmitted by source ℓ) until time t. Thus, the age
of information (AoI) ∆av

ℓ (t) of source ℓ until time t is

∆av
ℓ (t) =

1

t

∫ t

0

∆ℓ(i)di. (1)

Each time source ℓ transmits a packet, it incurs a trans-
mission cost of cℓ units, where cℓ ≥ 0 is finite constant,
and includes the cost for channel usage, as well as the
energy required to transmit the packet. Hence, the average
transmission cost incurred by source ℓ until time t is given by

Cav
ℓ (t) =

cℓUℓ(t)

t
, (2)

where, Uℓ(t) denotes the number of packets transmitted by
source ℓ until time t (including the packet under transmission).

Definition 2: A causal scheduling policy (in short, causal
policy) refers to a centralized algorithm (employed by the
scheduler) that at each time t when the channel is free, based
only on the causal information of all the sources available at
time t, schedules at most one source to transmit its packet. In
this paper, all policies are non-preemptive.

The objective is to find a causal policy (Definition 2) that
minimizes a linear combination of the AoI and the average
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transmission cost of all the sources (called the weighted sum
cost). Formally, the weighted sum cost of policy π is

Γ(π) = lim
t→∞

1

N

N∑
ℓ=1

(Cav
ℓ,π(t) + ρℓ∆

av
ℓ,π(t)), (3)

where ρℓ > 0 is a finite constant (weight parameter) corre-
sponding to the AoI of source ℓ, and Cav

ℓ,π(t) and ∆av
ℓ,π(t)

respectively denote the average transmission cost and the AoI
of source ℓ until time t, under policy π. The objective is
formulated as the optimization problem

min
π∈Π

Γ(π), (4)

where Π is the set of all causal policies π.
Remark 2: In (4), we consider the cost function (3) to be

a linear combination of the AoI and the average transmission
cost, similar to [18], [19]. An alternate formulation for (4)
could be in which the cost function is AoI, and there is an
additional constraint on the average transmission cost for each
source. However, as is well understood from the theory of
penalty functions [24], for an appropriate choice of the weights
ρℓ’s (Lagrangian multipliers that can be found in an iterative
way), the solution of the considered formulation corresponds
to that of the alternate formulation.

Remark 3: When the cost per transmission cℓ = 0 for each
source ℓ, the objective (4) simplifies to an AoI minimiza-
tion problem with multiple sources, where the packet inter-
generation times, as well as the transmission time for packets
may follow any general distribution. In past, such an AoI
minimization problem has been considered under restricted
settings, such as with single source [11], [18], generate-at-
will model [11], [13], discrete-time model, [13], [15], zero
transmission time [18], etc.

In this paper, to quantify the performance of a causal policy,
we compare it against the performance of an optimal offline
policy using the metric of competitive ratio (Definition 4).

Definition 3: A policy π⋆
OF is called an optimal offline non-

preemptive policy, if its weighted sum cost Γ(π⋆
OF ) (3) is

minimum among all non-preemptive policies that know the
generation time of all the packets (at each source) in advance.
For the reasons discussed in Remark 4, we assume that the
transmission time for each packet is realized once the packet
is transmitted, and it is not known to π⋆

OF non-causally.
Definition 4: For a causal non-preemptive policy π, its

competitive ratio CRπ is defined as the ratio of the expected
weighted sum cost (3) for policy π and the expected weighted
sum cost (3) for an optimal offline non-preemptive policy
π⋆
OF (Definition 3), where the expectation E[·] is jointly with

respect to the distributions Gℓ and Dℓ (for each source ℓ),
and the corresponding scheduling policy (i.e., π or π⋆

OF ).
Mathematically, CRπ = E[Γ(π)]/E[Γ(π⋆

OF )].
Remark 4: Compared to a causal policy, an offline policy

has access to more information, and that typically allows
lower bounding of the cost of an optimal causal policy.
However, more the extra information an offline policy has,
larger is the gap between the performance of the optimal

time (t)

∆π
ℓ (t)

gπℓ0 gπℓ1 gπℓ2 gπℓ3rπℓ1 rπℓ2, r
π
ℓ3 t

Tπ
ℓ1 Tπ

ℓ2 Tπ
ℓ3 ηπℓ (t)

Zπ
ℓ1

Zπ
ℓ2

Zπ
ℓ3

Qπ
ℓ1

Qπ
ℓ2

Qπ
ℓ3

Fig. 1: Sample age plot of source ℓ under under policy π. Since
update ℓπ3 is transmitted before update ℓπ2 , we have rπℓ2 = rπℓ3.

offline policy and a causal policy. Since the goal is to find
an optimal/near-optimal causal policy, we ideally want an
offline policy to have as little extra information as possible
over the causal policy, while allowing analytical tractability.
For the considered problem, we let an offline policy only
know the inter-generation time of updates non-causally, but
the transmission time/delay experienced by any packet that is
transmitted is revealed to it causally.

III. PRELIMINARIES

In this section, we define certain quantities that determine
the weighted sum cost (3) of any causal/offline policy. Subse-
quently, we derive a general expression for the weighted sum
cost (3) of a policy in terms of these quantities.

For any policy π (causal or offline), consider a subset of
packets Fπ

ℓ generated at source ℓ, such that the packets of
source ℓ transmitted by π lie in Fπ

ℓ . Let the packets in Fπ
ℓ

be indexed as ℓπ1 , ℓ
π
2 , ... in increasing order of their generation

times, with the generation time of packet ℓπi being gπℓi.
Remark 5: We allow Fπ

ℓ ’s to be a superset of the set of
transmitted packets to aid the analysis in Appendix C.

For each packet ℓπi , define sπℓi and rπℓi, respectively, as the
earliest time instant when the transmission of a packet ℓπj
(where j ≥ i) begins and completes, under policy π. By
definition, gπℓi ≤ sπℓi ≤ rπℓi. Also, as shown in Figure 1, sπℓi’s
and rπℓi’s may be equal for successive packets in Fπ

ℓ .
Further, let Zπ

ℓi = rπℓi − gπℓi denote the difference between
the time instant when packet ℓπi is generated, and the earliest
time instant when the transmission of a packet ℓπj (j ≥ i) is
completed. By definition,

Zπ
ℓi = (sπℓi − gπℓi) + (rπℓi − sπℓi) = wπ

ℓi + dℓi, (5)

where wπ
ℓi = sπℓi − gℓi (which we call as the waiting time for

packet ℓπi ), and dℓi = rπℓi − sπℓi ∼ Dℓ is the transmission time
of the packet whose transmission began at time sπℓi. Note that
dℓi is independent of policy π.

Next, with respect to Fπ
ℓ , we define a period as the time

interval between the generation time of two consecutive pack-
ets in Fπ

ℓ . Thus, the interval Pπ
ℓi = (gπℓ(i−1), g

π
ℓi] represents

the ith period with respect to Fπ
ℓ , and the length (duration)

of period Pπ
ℓi is Tπ

ℓi = gπℓi − gπℓ(i−1). Note that Tπ
ℓi depends on
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the choice of Fπ
ℓ , which further depends on both the packet

generation process and the packets transmitted by policy π.
Remark 6: Without loss of generality, we assume that the

age of all the sources at time t = 0 is 0 (i.e., ∆ℓ(0) = 0, ∀ℓ ∈
{1, · · · , N}). In (4), since we are interested in the weighted
sum cost over infinite time horizon, this assumption does not
affect the final solution of (4), but simplifies the analysis, and
for each source ℓ, allows us to assume gπℓ0 = 0 (i.e., the first
period of every source starts at time 0).

Remark 7: As shown in Figure 1, when gπℓ0 = 0, with respect
to Fπ

ℓ , any time t can be written as t =
∑Rπ

ℓ (t)
i=1 Tπ

ℓi + ηπℓ (t),
where Rπ

ℓ (t) denotes the number of packets in Fπ
ℓ generated

until time t, while ηπℓ (t) = t − gπℓRπ
ℓ (t)

denotes the length of
the ongoing period of source ℓ at time t.

Assumption 1: All system parameters are finite such that
there exists some causal/offline policy π for which the
weighted sum cost Γ(π) (3) is finite with probability 1.

Lemma 1: Under Assumption 1, for minimizing the
weighted sum cost Γ(π) (3), it is sufficient to consider only
those policies π (causal or offline) and subset of packets Fπ

ℓ ,
for which Tπ

ℓi (∀i) and ηπℓ (t) are finite with probability 1.
Proof: Since there exists a policy with finite weighted

sum cost (3) (Assumption 1), for the weighted sum cost
minimization problem (4), it is sufficient to consider only those
policies for which the weighted sum cost (3) is finite. Now
note that by definition, source ℓ does not transmit any packet
generated in intervals of lengths Tπ

ℓi’s and ηπℓ (t) (under policy
π). Therefore, if Tπ

ℓi or ηπℓ (t) is infinite, the age of the source
grows to infinity, making the weighted sum cost (3) infinite.
Hence, it is sufficient to consider policies π and subset of
packets Fπ

ℓ for which Tπ
ℓi’s and ηπℓ (t) are finite.

In view of Lemma 1, we restrict our attention to policies π
and corresponding subsets Fπ

ℓ , for which Tπ
ℓi (∀i) and ηπℓ (t)

are finite with probability 1, and respectively define ΠS and
ΠOF as the set of all such causal and non-causal (offline)
policies.

Remark 8: From Remark 7, we get
∑Rπ

ℓ (t)
i=1 Tπ

ℓi = t−ηπℓ (t),
where ηπℓ (t) is finite for all policies π ∈ ΠS ∪ ΠOF (by
definition of ΠS and ΠOF ). Therefore, for π ∈ ΠS ∪ ΠOF

(i.e., the policies of interest), as t → ∞, we have
∑Rπ

ℓ (t)
i=1 Tπ

ℓi =
t − ηπℓ (t) ≈ t. Hence for simplicity, in the rest of this paper,
when t → ∞, we consider

∑Rπ
ℓ (t)

i=1 Tπ
ℓi = t, i.e., any large time

t is equal to the sum of the length of periods of source ℓ (for
any ℓ ∈ {1, · · · , N}) until time t.

Next, for all policies π ∈ ΠS ∪ΠOF , Lemma 2 provides a
general expression for the weighted sum cost (3) in terms of
the quantities defined so far.

Lemma 2: For any policy π ∈ ΠS ∪ ΠOF , and the subset
of packets Fπ

ℓ , the weighted sum cost is Γ(π)

= lim
t→∞

1

N

N∑
ℓ=1

(
ρℓ
∑Rπ

ℓ (t)
i=1 (Tπ

ℓi)
2

2
∑Rπ

ℓ (t)
i=1 Tπ

ℓi

+
ρℓ
∑Rπ

ℓ (t)
i=1 Tπ

ℓiw
π
ℓi∑Rπ

ℓ (t)
i=1 Tπ

ℓi

+
ρℓ
∑Rπ

ℓ (t)
i=1 Tπ

ℓidℓi∑Rπ
ℓ (t)

i=1 Tπ
ℓi

+
cℓU

π
ℓ (t)∑Rπ

ℓ (t)
i=1 Tπ

ℓi

)
, (6)

where Uπ
ℓ (t) ≤ Rπ

ℓ (t) denotes the number of packets trans-
mitted by π (including that under transmission), until time t.
Further, Uπ

ℓ (t)’s satisfy

lim
t→∞

N∑
ℓ=1

γℓ · Uπ
ℓ (t)∑Rπ

ℓ (t)
i=1 Tπ

ℓi

≤ 1, (with probability 1). (7)

Proof: See Appendix A.
Using this formalism, we next propose and analyze a novel

randomized scheduling policy to solve problem (4).

IV. STATIONARY RANDOMIZED CAUSAL POLICY

Definition 5: At any time t, a packet ℓπi is called fresh, if its
generation time gπℓi is greater than the generation time of the
latest generated packet of source ℓ that has been completely
transmitted until time t, i.e., gπℓi > λπ

ℓ (t).
Consider a stationary randomized policy πsr (Algorithm 1),

that consists of following two subroutines: (i) SR-PMS (for
packet management), and (ii) SR-NSS (for scheduling sources
for transmission). At any time t, (i) if a packet is generated at
source ℓ, then SR-PMS marks the generated packet with prob-
ability pℓ (and discards it otherwise), and (ii) if the channel
becomes free (latest transmission is completed/received at the
monitor), SR-NSS chooses source ℓ (among all the N sources)
for transmission with probability

p̂ℓ =
(pℓ/µℓ)∑N
i=1(pi/µi)

, (8)

where the probability vector [p1, p2, ..., pN ] is obtained by
solving the following convex optimization problem

argmin
[p1,...,pN ]

N∑
ℓ=1

(
2ρℓµℓ

pℓ
+

cℓpℓ
µℓ

)
, (9)

s.t.

N∑
ℓ=1

pℓγℓ
µℓ

≤ 1, (10)

pℓ ∈ [0, 1], ∀ℓ ∈ {1, · · · , N}. (11)

If the chosen source ℓ has at least one fresh marked packet
(Definition 5), then its latest generated marked packet is
transmitted. Else, SR-NSS waits for a random time duration,
independently sampled from distribution Dℓ, before choosing
a source again.

Remark 9: The intuition for choosing pℓ’s as the solution of
(9)—(11) is that in Lemma 4, we show that the expression (9),
with some additional constant terms, is an upper bound on the
expected weighted sum cost for the proposed policy E[Γ(πsr)].
Thus the proposed policy is choosing pℓ’s to minimize an
upper bound on its weighted sum cost, under constraint (10)
that follows from (7) (that relates the number of packets that
each source may transmit). Note that (9)—(11) is convex, and
can be easily solved using tools such as the CVX in Matlab.

Remark 10: Note that if a source ℓ is chosen by SR-
NSS which does not have a fresh marked packet, then SR-
NSS waits for a random amount of time as per distribution
Dℓ, instead of choosing a different source to transmit (πsr

is non-work conserving). This is primarily to simplify the
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theoretical analysis of πsr (SR-PMS + SR-NSS) as when SR-
NSS waits for random time with distribution Dℓ (instead of
choosing a different source), the time duration between two
successive instants when any source is chosen by SR-NSS
to transmit, does not depend on the availability of marked
packets at the sources (i.e. on when SR-PMS marks the packets
at the sources). Moreover, as shown in [11], when there is
a single source with random transmission times, a non-work
conserving policy is optimal for minimizing AoI. In Section V,
we also show that when the transmission costs are large, πsr

has lower weighted sum cost (3) compared to when its waiting
times are identically 0. Thus, it is not trivially wasteful to wait.

Algorithm 1 Stationary randomized policy πsr.

1: /* SR-Packet Management Subroutine (SR-PMS) */
2: for each packet generated at source ℓ ∈ {1, · · · , N} do
3: mark the packet with probability pℓ, and discard it with

probability 1− pℓ;
4: end for
5: /* SR-Node Scheduling Subroutine (SR-NSS) */
6: for time t ≥ 0, if channel is free do
7: among the N sources, choose source ℓ with probability

p̂ℓ (8);
8: if source ℓ has at least one fresh marked packet then
9: transmit the latest marked packet of source ℓ;

10: else
11: wait for random time dℓ ∼ Dℓ;
12: end if
13: end for

The main result of this paper is as follows.
Theorem 1: The stationary randomized policy πsr (Algo-

rithm 1) has competitive ratio (against non-preemptive optimal
offline policy π⋆

OF )

CRπsr
≤ max{4, 3 + max

ℓ
{σ2

ℓ/µ
2
ℓ}}, (12)

where σ2
ℓ and µℓ respectively denote the variance and the mean

of packet inter-generation times at source ℓ.
Notably, Theorem 1 shows that the competitive ratio of

πsr is independent of the transmission time distribution Dℓ.
Intuitively, this is because the optimal offline policy π⋆

OF also
does not know the realization of the transmission times of
packets non-causally (Definition 3), and hence, the impact of
random transmission time on π⋆

OF is similar to that on πsr.
However, the competitive ratio of πsr depends on the dis-

tribution of the inter-generation time of packets. In particular,
it depends on σ2

ℓ/µ
2
ℓ , which for several common distributions,

is upper bounded by a constant.
Corollary 1: When Gℓ’s are exponential, uniform or

Rayleigh, the competitive ratio of πsr is at most 4.
Proof: For exponential, uniform and Rayleigh distribu-

tions, the variance σ2
ℓ and mean µℓ depend on same parameter,

such that σ2
ℓ/µ

2
ℓ ≤ 1. Hence, (12) implies that CRπsr

≤ 4.
Note that the dependence of πsr’s competitive ratio on

σ2
ℓ/µ

2
ℓ is unavoidable. This is because π⋆

OF knows the gener-
ation time of packets in advance, and for certain distributions,

π⋆
OF can use this information and minimize the variance of

its period lengths to 0 (irrespective of σ2
ℓ ), whereas the period

length (AoI) of πsr always depends on σ2
ℓ . Next, we make

this concrete via constructing a tight example.
Example 1: Consider a system with a single source (N = 1),

where the packet inter-generation time is distributed as

X =

{
α, with probability 0.5,

ϵ with probability 0.5,
(13)

and ϵ → 0+, while α is a large (but finite) positive constant.
Thus, the mean and the variance of the packet inter-generation
time X are µ = (α+ϵ)/2 ≈ α/2 and σ2 = (α−ϵ)2/4 ≈ α2/4,
respectively. Also, let the cost per transmission c = 0, and the
transmission time di = 0 for each packet (hence the expected
transmission time γ = 0). For this example, let Fπ

ℓ to be the
set of packets that are transmitted by policy π (thus for each
source ℓ, Tπ

ℓi’s ∀i, are the inter-generation time of packets that
are transmitted by policy π).

Consider a threshold policy πtp, that on generation of a
packet at time t, transmits it immediately if t − λ(t) ≥ α
(where λ(t) denotes the generation time of the latest packet
that got transmitted until time t), and discards it otherwise. Let
gtpi denote the generation time of the ith packet transmitted
under policy πtp. Then the period lengths under policy πtp

are T tp
i = gtpi − gtpi−1 = miα+ niϵ, where mi and ni denote

the number of packets generated in the ith period with inter-
generation time α and ϵ, respectively. Since the threshold for
transmission of packets is α, any packet i with inter-generation
time Xi = α is always transmitted. Therefore, either mi = 0
and ni = α/ϵ, or mi = 1 and ni < α/ϵ.

However, since α/ϵ → ∞ (because ϵ → 0+), and the inter-
generation time of packets take values ϵ or α, each with prob-
ability 0.5, the probability that mi = 0 and ni = α/ϵ → ∞ is
0. Hence, with probability 1, mi = 1, and ni is finite. Also,
ni < ∞ implies that as ϵ → 0+, niϵ → 0 as well. Therefore,
the period lengths T tp

i = miα + niϵ ≈ α = 2µ (a constant).
Thus, substituting N = 1, c = 0, T tp

i = 2µ and wtp
i = di = 0

∀i in (6), we get Γ(πtp) → ρµ.
Next, consider the performance of the stationary randomized

policy πsr (Algorithm 1) for the same input. Since γ = 0,
c = 0 and N = 1, from the convex optimization problem (9),
it is immediate that p = 1 (i.e., πsr marks every generated
packet). Also, since the transmission time di = 0 for every
packet, the channel is always free, and every marked packet
gets immediately transmitted. Therefore, T sr

i = Xi and
wsr

i = di = 0. Further E[Xi] = µ < ∞, which implies that
T sr
i = Xi is finite with probability 1, i.e., πsr ∈ ΠS . Thus,

substituting N = 1, c = 0, T sr
i = Xi and wsr

i = di = 0
(∀i) in (6), and using the renewal reward theorem [25], we
get Γ(πsr) = ρE[X2]/(2E[X]) = (ρ/2)(σ2 + µ2)/µ. Hence,
Γ(πsr)
Γ(πtp)

= 1
2

(
σ2

µ2 + 1
)

. Since π⋆
OF is at least as good as πtp, we

get that the competitive ratio of πsr is proportional to σ2/µ2.
Next, we present the proof of Theorem 1 in two steps.

First, we derive a lower bound on the weighted sum cost for
an optimal offline policy π⋆

OF (Definition 3), as follows.
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Lemma 3: Let hℓ(t) denote the number of packets generated
at source ℓ until time t, and an optimal offline policy π⋆

OF

transmits U⋆
ℓ (t) number of these packets. Then, the expected

weighted sum cost for policy π⋆
OF is

E[Γ(π⋆
OF )] ≥

1

N

N∑
ℓ=1

(
ρℓµℓ

2f⋆
ℓ

+ ρℓγℓ +
cℓf

⋆
ℓ

µℓ

)
, (14)

where f⋆
ℓ = limt→∞ U⋆

ℓ (t)/hℓ(t) ∈ [0, 1]. Further,∑N
ℓ=1 γℓf

⋆
ℓ /µℓ ≤ 1.

Next, we compute an upper bound on the expected weighted
sum cost of policy πsr (Algorithm 1), described as follows.

Lemma 4: The expected weighted sum cost for policy πsr

(Algorithm 1) is E[Γ(πsr)]

≤ 1

N

N∑
ℓ=1

(
2ρℓµℓ

pℓ
+

cℓpℓ
µℓ

+ ρℓγℓ −
ρℓµℓθℓ

2

)
, (15)

where θℓ = 1 − σ2
ℓ/µ

2
ℓ (σ2

ℓ and µℓ respectively denotes the
variance and the mean of packet inter-generation times at
source ℓ), and pℓ is as defined in (9)—(11) for πsr.

Proof of Theorem 1: Using Lemma 3 and 4, we complete
the proof of Theorem 1 as follows. Recall that f⋆

ℓ ’s (defined
in Lemma 3) satisfy the constraints (10) and (11). Also, under
the same constraints, pℓ’s minimize (9). Therefore,

N∑
ℓ=1

(
2ρℓµℓ

pℓ
+

cℓpℓ
µℓ

)
≤

N∑
ℓ=1

(
2ρℓµℓ

f⋆
ℓ

+
cℓf

⋆
ℓ

µℓ

)
. (16)

From (15) and (16), we get E[Γ(πsr)]

≤ 1

N

N∑
ℓ=1

(
2ρℓµℓ

f⋆
ℓ

+
cℓf

⋆
ℓ

µℓ
+ ρℓγℓ −

ρℓµℓθℓ
2

)
. (17)

Since competitive ratio (Definition 4) of πsr is CRπsr =
E[Γ(πsr)]/E[Γ(π⋆

OF )], using (14) and (17), we get

CRπsr
≤

1
N

∑N
ℓ=1

(
ρℓµℓ

2f⋆
ℓ
(4− f⋆

ℓ θℓ) + ρℓγℓ +
cℓf

⋆
ℓ

µℓ

)
1
N

∑N
ℓ=1

(
ρℓµℓ

2f⋆
ℓ
+ ρℓγℓ +

cℓf⋆
ℓ

µℓ

) ,

≤ max
ℓ

{4− f⋆
ℓ θℓ}, (18)

≤ max

{
4, 3 + max

ℓ
{σ2

ℓ/µ
2
ℓ}
}
, (19)

where we get (19) by substituting θℓ = 1 − σ2
ℓ/µ

2
ℓ , and

maximizing the R.H.S. of (18) with respect to f⋆
ℓ ∈ [0, 1].

Proof sketches for Lemma 3 and 4 are provided in Appendix
B and C, respectively. The detailed proofs are provided in the
full version of this paper [4].

V. NUMERICAL RESULTS

To analyze the stationary randomized policy πsr (Algorithm
1), we perform its parametric and comparative analysis using
numerical simulations. This includes analyzing the effect of
the system parameters (such as the number of sources N ,
transmission cost cℓ, and distributions Gℓ and Dℓ) on the
weighted sum cost Γ(πsr), as well as considering relevant

settings for AoI minimization from prior work, and comparing
the performance of πsr with other state-of-the-art policies. In
this section, we discuss some key observations, and provide
the detailed results in the full version of this paper [4].

Based on the parameters used in [15], we consider a system
with N = 4 sources, with weight [4, 4, 1, 1], mean packet
inter-generation time µ · [1, (4/3), 2, 4], mean transmission
time for packets γ · [4, 2, (4/3), 1], and cost per transmission
c · [2, 1, 1, 2], where µ, γ and c are parameters that we specify
later for each simulation. Also, to understand the effect of non-
work conserving property of SR-NSS (in πsr; Remark 10) on
the weighted sum cost Γ(πsr), we consider a work-conserving
policy πwc

sr which is identical to πsr, except that whenever
πwc
sr chooses a source to transmit which does not have a

fresh marked packet, another source is chosen immediately.
We denote the upper bound (15) on E[Γ(πsr)], and the lower
bound (14) on E[Γ(π⋆

OF )] by UBsr and LB respectively.
To analyze the effect of the mean packet inter-generation

time on Γ(πsr), we simulate the considered system in Figure
2, by fixing c = 1, γ = 2, and varying µ. Also, we assume
Gℓ’s and Dℓ’s (for all ℓ) to be the exponential distribution
(because of which σ2

ℓ/µ
2
ℓ = 1, ∀ℓ). Figure 2 shows that when

θℓ = σ2
ℓ/µ

2
ℓ are fixed for each source ℓ, Γ(πsr) increases with

increase in µ (i.e. µℓ, ∀ℓ). This is as expected because when
µℓ’s are large, sources need to wait longer for fresh packets to
get generated, and hence, they cannot transmit at optimal time
instants that would minimize Γ(πsr), even if the channel is
free. Further, in Figure 2, note that initially when µ is small,
the rate of increase in Γ(πsr) with respect to µ is small (almost
0), compared to when µ is large. This is because when µ is
small, the time instants when the sources get to transmit is
mainly restricted by their transmission times.

A critical property of πsr is that its competitive ratio (12)
is independent of the transmission time distribution Dℓ of
the sources. To verify this fact, we fix c = 1 and µ = 16,
and for each source ℓ, we choose Gℓ to be the exponential
distribution, and Dℓ to be the log-normal distribution. For each
source ℓ, defining the variance of Dℓ to be ν2, we simulate
the system with different values of parameters ν2 and γ. As
shown in Figure 3, the weighted sum cost Γ(πsr) is less than
the upper bound UBsr, and UBsr as well as the lower bound
LB increases with γ. Hence, the ratio of UBsr and LB is
a constant, less than the competitive ratio (12). Note that for
different values of ν2, the plots of Γ(πsr) overlap.

Further, we fix µ = γ = 1, and for each source ℓ, we
choose Dℓ to be the exponential distribution, and Gℓ to be the
log-normal distribution (with variance σ2

ℓ = 1). We simulate
the system for different values of c, and find that when the
cost per transmission is large, the weighted sum cost for πwc

sr

exceeds the weighted sum cost for πsr, as shown in Figure 4.

VI. CONCLUSIONS

In this paper, we have considered the scheduling problem of
finding an optimal non-preemptive policy to minimize the sum
of the AoI and the transmission cost, in the presence of multi-
ple sources, and where the inter-generation time of updates and
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Fig. 4: Γ(π) versus c.

the transmission time/delay for each update follow a general
distribution. Instead of directly finding the optimal scheduling
policy, we propose a randomized scheduling policy and upper
bound its competitive ratio (by comparing against an offline
optimal policy) by the ratio of the variance and the squared
mean of the inter-generation time of updates. Notably the
competitive ratio is independent of the transmission time/delay
distributions, and is upper bounded by 4 for exponential,
uniform, and Rayleigh inter-generation time distributions. In
addition to the upper bound, we also presented a tight example
to show that the competitive ratio of the considered algorithm
has to depend on the ratio of the variance and squared mean
of the inter-generation time of updates. Obvious question that
remains open: are there policies that have constant competitive
ratios, i.e., independent of the distribution of inter-generation
time of updates?
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APPENDIX A

Proof of Lemma 2: Figure 1 shows a general age plot for
source ℓ in terms of the quantities defined in this section so
far. Corresponding to each period Pπ

ℓi until time t, the age cost
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is Qπ
ℓi = (Tπ

ℓi)
2/2+Tπ

ℓiZ
π
ℓi. Thus, the AoI for source ℓ satisfies

lim
t→∞

∆av
ℓ,π(t) = lim

t→∞

(∑Rπ
ℓ (t)

i=1 ((Tπ
ℓi)

2/2+Tπ
ℓiZ

π
ℓi)

t +
(ηπ

ℓ (t))2

2t

)
.

Note that in the fraction (ηπℓ (t))
2/(2t), the numerator

(ηπℓ (t))
2 is finite with probability 1 (from Lemma 1), but in

the denominator, t → ∞. Thus,

lim
t→∞

∆av
ℓ,π(t) = lim

t→∞

∑Rπ
ℓ (t)

i=1 (
(Tπ

ℓi)
2

2 + Tπ
ℓiZ

π
ℓi)

t
. (20)

Substituting (20) and (2) into (3) and substituting Zπ
ℓi = wπ

ℓi+

dℓi (5) and t =
∑Rπ

ℓ (t)
i=1 Tπ

ℓi (Remark 8) in the denominator of
the resulting expression, we get (6).

To obtain (7), note that at any time at most one
packet can be under transmission, and the transmission
of packet ℓπi takes dℓi time units, where dℓi’s are inde-
pendent and identically distributed random variables with
mean γℓ. Therefore, assuming (without loss of general-
ity) that policy π transmits updates ℓπ1 , · · · , ℓπUπ

ℓ (t), we get∑N
ℓ=1

∑Uπ
ℓ (t)

i=1 dℓi ≤ t. Dividing both sides by t, and taking

limit as t → ∞, we get 1 ≥ lim
t→∞

∑N
ℓ=1

(∑Uπ
ℓ (t)

i=1 dℓi

Uπ
ℓ (t) · Uπ

ℓ (t)
t

)
.

Since the limit of a product is equal to the product
of the limits (when the limits exists, as in the above

case), we get 1 ≥
∑N

ℓ=1

(
lim
t→∞

∑Uπ
ℓ (t)

i=1 dℓi

Uπ
ℓ (t) · lim

t→∞
Uπ

ℓ (t)
t

)
(a)
=

lim
t→∞

∑N
ℓ=1

γℓU
π
ℓ (t)∑Rπ

ℓ
(t)

i=1 Tπ
ℓi

(with probability 1), where (a) follows

from the strong law of large numbers (and substituting t =∑Rπ
ℓ (t)

i=1 Tπ
ℓi from Remark 8). Note that here we could use the

strong law of large numbers because (i) dℓi’s (for all i) are
independent and identically distributed with mean γℓ, and (ii)
as t → ∞, Uπ

ℓ (t) → ∞ as well (from Corollary 2 below,
for Fπ

ℓ equal to the set of completely transmitted packets, in
which case Uπ

ℓ (t) = Rπ
ℓ (t) → ∞).

Corollary 2: For any policy π ∈ ΠS ∪ΠOF and subset Fπ
ℓ ,

when t → ∞, the number of packets in Fπ
ℓ is Rπ

ℓ (t) → ∞.
Proof: Since t =

∑Rπ
ℓ (t)

i=1 Tπ
ℓi, where Tπ

ℓi’s are finite, we
get that as t → ∞, Rπ

ℓ (t) → ∞ as well.

APPENDIX B

Proof Sketch for Lemma 3: Let Fπ
ℓ be equal to the

set of packets of source ℓ that are transmitted by policy
π. Then, Rπ

ℓ (t) = Uπ
ℓ (t). Since wπ

ℓi = sπℓi − gπℓi ≥ 0,
for a lower bound on the weighted sum cost Γ(π) for pol-
icy π ∈ ΠOF , in (6), we substitute Uπ

ℓ (t) = Rπ
ℓ (t) and

wπ
ℓi = 0, and get Γ(π) = lim

t→∞
1
N

∑N
ℓ=1

(
ρℓ

∑Rπ
ℓ (t)

i=1 (Tπ
ℓi)

2

2
∑Rπ

ℓ
(t)

i=1 Tπ
ℓi

+

ρℓ

∑Rπ
ℓ (t)

i=1 Tπ
ℓidℓi∑Rπ

ℓ
(t)

i=1 Tπ
ℓi

+
cℓR

π
ℓ (t)∑Rπ

ℓ
(t)

i=1 Tπ
ℓi

)
. Using Jensen’s inequality, we

get that ρℓ

∑Rπ
ℓ (t)

i=1 (Tπ
ℓi)

2

2
∑Rπ

ℓ
(t)

i=1 Tπ
ℓi

≥ ρℓ

∑Rπ
ℓ (t)

i=1 Tπ
ℓi

2Rπ
ℓ (t)

. Further, using the fact

that dℓi’s (∀i) are independent and identically distributed as per
distribution Dℓ (with mean γℓ), and for each i, dℓi is indepen-
dent of the inter-generation time Tπ

ℓi of transmitted packets,

we show that E
[
ρℓ

∑Rπ
ℓ (t)

i=1 Tπ
ℓidℓi∑Rπ

ℓ
(t)

i=1 Tπ
ℓi

]
= ρℓγℓ. Thus, E[Γ(π)] ≥

lim
t→∞

1
N

∑N
ℓ=1

(
E
[
ρℓ

∑Rπ
ℓ (t)

i=1 Tπ
ℓi

2Rπ
ℓ (t)

]
+ ρℓγℓ + E

[
cℓR

π
ℓ (t)∑Rπ

ℓ
(t)

i=1 Tπ
ℓi

])
.

Finally, to prove (14), we show that for π = π⋆
OF ,

Rπ
ℓ (t)∑Rπ
ℓ
(t)

i=1 Tπ
ℓi

=
f⋆
ℓ

µℓ
is the number of packets of source ℓ that

are transmitted by π⋆
OF per unit time. Further, substituting

Uπ
ℓ (t)∑Rπ
ℓ
(t)

i=1 Tπ
ℓi

=
Rπ

ℓ (t)∑Rπ
ℓ
(t)

i=1 Tπ
ℓi

=
f⋆
ℓ

µℓ
in (7), we get

∑N
ℓ=1 γℓ

f⋆
ℓ

µℓ
≤ 1.

APPENDIX C

Proof Sketch for Lemma 4: Let Fsr
ℓ be equal to the

set of packets that are marked by πsr (SR-PMS). Since the
set of packets that are transmitted by πsr is a subset of the
marked packets, we have Usr

ℓ (t) ≤ Rsr
ℓ (t). Therefore, to upper

bound Γ(πsr), in (6), we upper bound Usr
ℓ (t) by Rsr

ℓ (t). Also,
since packets of each source ℓ are marked independently with
probability pℓ, and dℓi ∼ Dℓ (with mean γℓ), we get that
T sr
ℓi ’s and dℓi’s (∀i) are independent. Using this fact, we show

that E
[
ρℓ

∑Rsr
ℓ (t)

i=1 T sr
ℓi dℓi∑Rsr

ℓ
(t)

i=1 T sr
ℓi

]
= ρℓγℓ. Then for π = πsr, from

(6) we get E[Γ(πsr)] = lim
t→∞

1
N

∑N
ℓ=1

(
E
[
ρℓ

∑Rsr
ℓ (t)

i=1 (T sr
ℓi )2

2
∑Rsr

ℓ
(t)

i=1 T sr
ℓi

]
+

E
[
ρℓ

∑Rsr
ℓ (t)

i=1 T sr
ℓi wsr

ℓi∑Rsr
ℓ

(t)

i=1 T sr
ℓi

]
+ ρℓγℓ + E

[
cℓR

sr
ℓ (t)∑Rsr

ℓ
(t)

i=1 T sr
ℓi

])
.

Let ŵsr
ℓi denote the difference between the successive time

instants when source ℓ is chosen to transmit by πsr (SR-NSS).

Then by definition, wsr
ℓi ≤ ŵsr

ℓi . Thus, E
[
ρℓ

∑Rsr
ℓ (t)

i=1 T sr
ℓi wsr

ℓi∑Rsr
ℓ

(t)

i=1 T sr
ℓi

]
≤

E
[
ρℓ

∑Rsr
ℓ (t)

i=1 T sr
ℓi ŵsr

ℓi∑Rsr
ℓ

(t)

i=1 T sr
ℓi

]
. By design, πsr is such that the packet

marking (SR-PMS) and source selection (SR-NSS) for trans-
mission are independent. Thus, T sr

ℓi and ŵsr
ℓi are mutually

independent. Also, E[ŵsr
ℓi ] ≤ E[T sr

ℓi ] = µℓ/pℓ. Hence,
E[T sr

ℓi ŵ
sr
ℓi ] = E[T sr

ℓi ]E[ŵsr
ℓi ] ≤ (µℓ/pℓ)

2. Using this fact, we

show that E
[
ρℓ

∑Rsr
ℓ (t)

i=1 T sr
ℓi ŵsr

ℓi∑Rsr
ℓ

(t)

i=1 T sr
ℓi

]
≤ ρℓ(µℓ/pℓ)

2

µℓ/pℓ
= ρℓµℓ

pℓ
. Hence,

E[Γ(πsr)] ≤ lim
t→∞

1
N

∑N
ℓ=1

(
E
[
ρℓ

∑Rsr
ℓ (t)

i=1 (T sr
ℓi )2

2
∑Rsr

ℓ
(t)

i=1 T sr
ℓi

]
+ ρℓµℓ

pℓ
+

ρℓγℓ + E
[

cℓR
sr
ℓ (t)∑Rsr

ℓ
(t)

i=1 T sr
ℓi

])
.

Since the inter-generation time of packets at source ℓ are
independent and identically distributed as per distribution Gℓ

(with mean µℓ), and every generated packet is marked with
fixed probability pℓ, we get that the inter-generation time of the
marked packets, i.e. T sr

ℓi ’s (∀i) are independent and identically
distributed such that E[T sr

ℓi ] = µℓ/pℓ and E[(T sr
ℓi )

2] =
(σ2

ℓ/pℓ) + (2 − pℓ)(µ
2
ℓ/p

2
ℓ), where σ2

ℓ is the variance of the
inter-generation time of packets at source ℓ. Thus, using the

renewal reward theorem [25], we get E
[
ρℓ

∑Rsr
ℓ (t)

i=1 (T sr
ℓi )2

2
∑Rsr

ℓ
(t)

i=1 T sr
ℓi

]
=

ρℓ

2

(
σ2
ℓ

µℓ
+ µℓ

pℓ
(2− pℓ)

)
, and using the strong law of large num-

bers, we get E
[

cℓR
sr
ℓ (t)∑Rsr

ℓ
(t)

i=1 T sr
ℓi

]
= cℓpℓ

µℓ
. Therefore, E[Γ(πsr)] ≤

lim
t→∞

1
N

∑N
ℓ=1

(
ρℓ

2

(
σ2
ℓ

µℓ
+ µℓ

pℓ
(2− pℓ)

)
+ ρℓµℓ

pℓ
+ ρℓγℓ +

cℓpℓ

µℓ

)
.

Rearranging the terms, we get (15).
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