
Scheduling for Multi-Phase Parallelizable Jobs
Rahul Vaze

School of Technology and Computer Science
Tata Institute of Fundamental Research

Mumbai, India.
rahul.vaze@gmail.com

Abstract—With multiple identical unit speed servers, the online
problem of scheduling jobs that migrate between two phases, lim-
itedly parallelizable or completely sequential, and choosing their
respective speeds to minimize the total flow time is considered.
In the limited parallelizable regime, allocating k servers to a
job, the speed extracted is k1/α, α > 1, a sub-linear, concave
speedup function, while in the sequential phase, a job can be
processed by at most one server with a maximum speed of unity.
A LCFS based algorithm is proposed for scheduling jobs which
always assigns equal speed to the jobs that are in the same
phase (limitedly parallelizable/sequential), and is shown to have
a constant (dependent only on α > 1) competitive ratio. For the
special case when all jobs are available beforehand, improved
competitive ratio is obtained.

I. INTRODUCTION

In the presence of multiple servers, how to schedule par-
allelizable jobs to minimize the sum of their response times
(called the flow time) is an incredibly important and analyt-
ically challenging problem, e.g. in large data centers. With
multiple servers, the parallelizability of job is captured by the
total speed assigned to it when processed by multiple servers
simultaneously. Let the total number of servers be N , where
each server can operate at the maximum speed of unity. Then,
typically [1], [2], [3], [4], [5], [6], [7], [8], [9], if k ≤ N is
the number of servers assigned to a job, the resulting speed
obtained is s(k) = k1/α. Depending on α (called the speed-up
exponent), i) if α = 1, the job is called fully parallelizable,
otherwise if α > 1, its called limitedly parallelizable, while
if α = ∞ for ∀ k > 1 and α = 1 for k ≤ 1, it is called
sequential.

In most practical settings [10], [11], [12], [13], [14] each job
does not necessarily have a single phase of parallelizability,
but migrates between different phases at different times during
its execution. For example in a MapReduce framework [14],
initially, jobs have full/limited parallelizability, while in the
concluding stages they become sequential. Given practical
considerations as described in detail in [15], it is reasonable to
consider the case of jobs having either limited parallelizability
[2] (called elastic phase), or are sequential (called in-elastic
phase), where 2 ≤ α ≤ 3 is the most relevant regime for
limited parallelizability.

Thus, in this paper, we consider the online problem of
scheduling jobs and how many servers to allocate to each
job being processed to minimize the flow time, where each
job has two possible types of phases of parallelizability, either
elastic or in-elastic, and where jobs arrive at arbitrary times,

have arbitrary number of elastic and in-elastic phases, and have
arbitrary job sizes for each phase. To quantify the performance
of an online algorithm, we consider the metric of competitive
ratio, that is defined as the ratio of the flow time of the
online algorithm and the optimal offline algorithm OPT (that
knows the entire input sequence in advance) maximized over
all possible inputs (worst case).

A. Prior Work

1) Single Phase: With limited parallelizability, the single
phase scheduling problem of finding how many servers to
allocate to each job that minimizes the flow time is chal-
lenging, and has been an object of immense interest [1], [2],
[3], [4], [5], [6], [9]. With limited parallelizability, the single
phase scheduling problem has been considered for two models
i) the combinatorial discrete allocation model [3], where an
integer number of servers are assigned to any job, and ii) the
continuous allocation model [4], [5], [6], [1], [2], [9], that
treats the N servers as a single resource block which can be
partitioned into any size and assigned to any job. In the con-
tinuous allocation model, for the online case where jobs arrive
over time, [9] proposed a constant competitive algorithm that
only depends on the exponent α, while an optimal algorithm
has been derived in [2] when all jobs are available at time 0.
In practice, some of the methods for server allocation include
packing based [7], and resource reservation algorithms [16].
Heuristic policies with only numerical performance analysis
can be found in [8].

2) Multiple Phases: The multiple phase scheduling prob-
lem has primarily been considered in the continuous allocation
model [4], [5], [6], where there are arbitrary number of
phases with arbitrary speed-up exponents α for each phase.
In this line of work, mostly the non-clairvoyant setting (the
algorithm is not aware of the remaining size of the jobs or the
exponent α of the current/future phases), with few exceptions
where clairvoyant setting has been studied [17], [18]. The
competitive ratio of any non-clairvoyant online algorithm (both
deterministic and randomized) is known to be at least

√
n (n is

the total number of jobs) [4], when there are arbitrary number
of phases with different exponents α.

In light of the lower bound, resource augmentation is
considered, where an algorithm is allowed more resources
than the optimal offline algorithm. Algorithms with constant
competitive ratios have been derived as a function of the
resource augmentation factor [4], [5]. In particular, algorithm

ISBN 978-3-903176-49-2 © 2022 IFIP 129

EQUI that assigns equal speed to all jobs (without knowing
even the current phase index for each job) has a constant
competitive ratio when given double the number of servers
compared to the OPT [4]. A more refined competitive ratio
result with resource augmentation was derived in [5]. Surpris-
ingly, for the special case, where all phases are strictly ρ sub-
linear for any ρ > 0, where the speed function s(k) (speed
assigned to job when allocated k servers) satisfies the relation
s(k2)
s(k1)

≤
(
k2
k1

)1−ρ
whenever k1 ≤ k2, EQUI has a competitive

ratio of 21/ρ against a clairvoyant optimal offline algorithm
without any resource augmentation [4]. Notably, the in-elastic
phase considered in this paper is not strictly ρ sub-linear.

From a practical point of view, the two phase problem is
more relevant, and for which heuristic policies, e.g., the phase-
aware FCFS [19] that schedules jobs in their arrival order,
while assigning at most speed 1 to a job that is in its in-elastic
phase, have been proposed. Some partial results have been
derived in [20] for the two-phase scheduling problem. In very
recent work, [15] characterized an optimal scheduling policy,
for the two-phase scheduling problem as studied in this paper,
however, with two strong assumptions, i) the size of jobs in
the elastic and in-elastic phases are exponentially distributed
with the same parameters for all jobs, and are independent
of each other, and ii) the job always completes when it is
in its in-elastic phase. We avoid all these assumptions in this
paper, by letting the job sizes in each phase to be arbitrary,
and the first and the last phase of a job can either be elastic
or in-elastic.

B. Our contributions

For the two-phase scheduling problem, we propose an
algorithm called FRACTIONAL-LCFS that processes a fraction
of the outstanding jobs that have arrived most recently, and
a subset of inelastic jobs, where each type of scheduled
job is executed with equal speed. The exact choice is more
refined and detailed in Section IV. The algorithm is semi
non-clairvoyant that disregards the remaining job sizes of all
remaining phases (even though they are known), and only uses
the information about the current phase each job is in.

The choice of which jobs to process by the algorithm is
defined by the number of jobs in each of the two-phases.
Compared to the algorithm [15] that always prioritises jobs
that are in their in-elastic phases, our algorithm prioritises
jobs that are in their in-elastic phase only when there are
sufficiently many of them and the total number of jobs is less
compared to the total number of servers.

We show that FRACTIONAL-LCFS has a constant com-
petitive ratio (derived in Theorem 1) that depends only on
the speed-up exponent α > 1 and not on system parameters
such as the total number of jobs, and their respective sizes,
and the number of servers. This result overcomes fundamental
challenge left open in the literature for the considered problem,
where speed augmentation was needed to prove constant
competitiveness [4]. It is worth mentioning that we do not
get any meaningful competitive ratio when α = 1 (fully-

parallizable jobs), since for this case, a lower bound of n1/3

(n is the total number of jobs) on the competitive ratio is
known [21] for any deterministic algorithm that is unaware
of the remaining sizes of the jobs, similar to the algorithm
FRACTIONAL-LCFS.

We also consider the simpler setting where all jobs are
available at time 0. Similar to the online jobs arrival case,
in this case also, we propose an algorithm that makes three
different choices on which jobs to schedule depending on the
number of jobs in the system and the number of servers.
Moreover, it assigns equal speed to all jobs that are being
processed that belong to the same phase. Compared to the
online jobs arrival case, we get a significantly improved com-
petitive ratio bound in this simpler case provided in Theorem
3. It is worth recalling that an optimal algorithm for the single
phase problem where all jobs are available at time 0 has been
derived in [2], however, no such result is known for the two-
phase problem.

In addition to the analytical results, we also present average-
case simulation results to illustrate the actual performance of
the proposed algorithm. We compare the performance of our
proposed algorithm with EQUI, the inelastic first algorithm
[15], as well as the phase aware FCFS [19], and observe that
the performance of our algorithm is comparable or better than
EQUI and the inelastic first algorithm, while outperforming
phase aware FCFS always.

II. SYSTEM MODEL

Let there be N parallel and identical servers, each with
speed 1. The set of jobs is denoted by J , where a job
j ∈ J arrives at time aj . Similar to [4], [2], we consider the
continuous allocation model, where N is treated as a single
resource block which can be divided into chunks of arbitrary
sizes and allocated to different jobs.

Each job j at any time can be in one of two phases, called
elastic or in-elastic. The sizes of job j in the ath elastic and
bth in-elastic phase are waje and wbjι, respectively. Moreover,
let Aj and Bj be the total number of elastic and in-elastic
(interleaved) phases required for each job, respectively. The
first and the last phase of any job can be either of the two
phases. We consider the online setting, where an algorithm
has only causal information about jobs, i.e. any job’s phases
and their respective sizes are revealed only once it arrives.

In the elastic phase, any job is parallelizable with concave
speedup, i.e., if job j is allotted kj(t) number of servers at
time t, then the service rate experienced by job j at time t
is sj(t) = P (kj(t)) = kj(t)

1/α, where α > 1. Since we
are considering the continuous allocation model, kj(t) < 1 is
possible. Similar to [2], [9], [15], we let s(k) = kj(t)

1/α even
when kj(t) < 1.

In the in-elastic phase, each job can be processed by at most
one server, and equivalently can be processed at speed of at
most 1. Moreover, for any job j, it transitions from the elastic
to in-elastic phase or vice versa only when its total work waje
or wbjι in the current phase is complete.

130

A job j is defined to be complete at time dj , if dj is the
earliest time at which total

∑
a≤Aj w

a
je +

∑
b≤Bj w

b
jι amount

of work has been completed for job j, and the objective is to
minimize the flow time

minF =
∑
j∈J

(dj − aj) =

∫
n(t)dt s.t.

A(t)∑
j=1

P (sj(t)) ≤ N,

(1)
where n(t) is the number of outstanding jobs at time t, and
A(t) is the set of jobs that are being processed at time t.

III. METRIC

We represent the optimal offline algorithm (that knows the
entire job arrival sequence including the number of phases,
and the respective sizes of jobs in each phase, in advance)
as OPT. Let n(t) (no(t)) be the number of outstanding jobs
with an online algorithm A (OPT). For Problem (1), we will
consider the metric of competitive ratio which for an online
algorithm A is defined as

µA = max
σ

∫
n(t)dt∫
no(t)dt

, (2)

where σ is the input sequence consisting of jobs set J .
We will propose an online algorithm A, and bound µA ≤ κ,

by showing that for each time instant t

n(t) + dΦ(t)/dt ≤ κno(t), (3)

where Φ(t) is some function called the potential function that
satisfies the boundary conditions:
• Φ(t) = 0 initially before all job arrivals and Φ(∞) = 0.
• Φ(t) does not increase on any job arrival or job departure

with the algorithm or the OPT.
Integrating (3) over time, implies that the competitive ratio of
A is at most κ.

IV. ALGORITHM FRACTIONAL-LCFS

In this section, we propose an algorithm that is semi non-
clairvoyant, that disregards the information about the remain-
ing job sizes of all the remaining phases, and only exploits
the binary information about a job being in the elastic or the
in-elastic phase, which will be compared against a clairvoyant
optimal offline algorithm in terms of the competitive ratio. At
time t, let the outstanding number of jobs in the system be
n(t), and nι(t) be the number of jobs that are in their in-
elastic phase. Thus, n(t) = ne(t) + nι(t), where ne(t) is the
number of jobs that are in their elastic phase.

Scheduling and speed selection: Let β, θ be constants with
0 < θ < β < 1.

Case I N
βn(t) ≤ 1: Process the βn(t) jobs that have arrived

most recently without distinguishing between jobs that are in
their elastic or in-elastic phase. 1 Speed: Each of the βn(t)
jobs are processed at equal speed

s(t) = P

(
N

βn(t)

)
. (4)

1If βn(t) is fractional, then we mean dβn(t)e.

Case II N
βn(t) > 1: IIa: If nι(t) ≥ θn(t)2 then process

any min{nι(t), N} jobs3 that are in their in-elastic phase, and
among the ne(t) jobs that are in their elastic phase, process
the βne(t) that have arrived most recently. Speed: s(t)

=

{
1 for each of min{nι(t), N} jobs,

P
(
N−min{nι(t),N}

βne(t)

)
for each of βne(t) jobs.

(5)
IIb:If nι(t) < θn(t) Among the βn(t) jobs that have arrived
most recently, process all the jobs that are in their elastic
phases with equal speed

s(t) = P

(
N

βn(t)

)
. (6)

Note that in this subcase, the total speed constraint of∑A(t)
j=1 P

−1(sj(t)) ≤ N need not be tight. Thus, for a practical
implementation, few more jobs can be processed, however, that
will not change the analysis.

By its very definition, algorithm FRACTIONAL-LCFS sat-
isfies the total speed constraint of

∑A(t)
j=1 P

−1(sj(t)) ≤ N , as
well as the speed constraint of unity for any job that is in its
in-elastic phase.

The main result of this paper is as follows.

Theorem 1. For any α > 1, there exists a 0 < θ < β < 1,
such that the competitive ratio of algorithm FRACTIONAL-
LCFS for Problem (1) is a constant (depends only on α)
and is independent of the number of jobs, their sizes, and the
number of servers N . The exact competitive ratio expression
is provided in (22), and using which for example in case of
α = 2, we get the competitive ratio bound of 636, choosing
β = 1

6 , and θ = 1
72 .

For each value of α > 1, how to choose β, θ such that the
competitive ratio remains a constant is discussed in Remark 4.
Note that in Remark 4 we prescribe only one possible choice
of parameters θ, β that is sufficient to make the competitive
ratio as a constant. However, there is scope for choosing the
parameters θ, β so as to minimize the competitive ratio, which
is analytically challenging, but numerically easy.

Remark 2. It is worth noting that the competitive ratio bound
in Theorem 1 increases as α→ 1. The main intuition for this
is that we are considering the worst case input, which includes
the case where jobs have no in-elastic phases, for which as
α→ 1, SRPT is an optimal algorithm that processes only one
job with the least remaining size on all servers. In contrast,
with FRACTIONAL-LCFS, potentially a large number of jobs
are parallely processed with equal speed for all values of α.

Discussion: Even though the derived competitive ratio of
FRACTIONAL-LCFS appears large, it overcomes an old tech-
nical hurdle of it being independent of system parameters. In
prior work, either speed augmentation [4] was shown to be
necessary to get similar constant competitive ratio results, or
somewhat simplistic input model had to be considered [15].

2If θn(t) is fractional, then we mean dθn(t)e.
3If N = min{nι(t), N}, then pick any N jobs out of total nι(t) jobs.

131

Moreover, given the very nature of the competitive ratio metric
being a multiplicative penalty, a large competitive ratio per
se is not limiting, as long as it does not scale with system
parameters.

The intuition as to why a fractional LCFS algorithm should
perform well is similar to that of the SRPT (shortest remaining
processing time) algorithm that requires the knowledge of re-
maining job sizes. SRPT minimizes the number of outstanding
jobs (that controls the flow time) knowing the jobs sizes, by
keeping shorter jobs in the system for less time. Fractional
LCFS on the other hand, without using the remaining job size
information, processes a fraction of the most recently arrived
jobs, and tries to keep longer jobs stay in the system for long,
thus ‘effectively’ prioritizing short jobs. It is easy to construct
‘bad’ input sequences where this is not the case, but roughly
that is what one should expect.

Moreover, the intuition for the equal speed choice can be
borrowed from [4], that explains that if an algorithm choosing
equal speed has more number of outstanding jobs than the
OPT, then progressively, it allocates fewer servers to each job
and since α > 1, it improves the utilization of servers. Since
we also have jobs that are in their in-elastic phase, this is not
precisely correct, however, provides partial explanation.

After dealing with the setting where jobs arrive at arbitrary
times, next, we consider the simpler case when all jobs are
available at time 0 and get a better competitive ratio guarantee.

V. ALL JOBS AVAILABLE AT TIME 0

In this section, except for all jobs arriving at time 0, every-
thing is identical to the system model described in Section II.
For this case, we propose an algorithm PA-EQUI that makes
the following choice for scheduling and speed selection.

Case I N
n(t) ≤ 1: Process all the n(t) (number of outstand-

ing) jobs, without distinguishing between jobs that are in their
elastic or in-elastic phase, with equal speed s(t) = P

(
N
n(t)

)
.

Case II N
n(t) > 1: IIa: For a constant 0 < δ < 1, if nι(t) ≥

δn(t) then process all nι(t) jobs that are in their in-elastic
phase dedicatedly in one server with unit speed, while process
the remaining ne(t) jobs that are in their elastic phase, each
with speed P

(
N−nι(t)
ne(t)

)
.

IIb:If nι(t) < δn(t) Process all the ne(t) jobs that are in
their elastic phase, each with equal speed s(t) = P

(
N

ne(t)

)
.

We name this algorithm PA-EQUI, since it allocates equal
speed to all jobs that belong to the same phase. In contrast,
EQUI studied in [4], [5] is BLIND-EQUI, since it is unaware
which jobs belong to which phase, and wastes speed. By its
very definition, algorithm PA-EQUI satisfies the total speed
constraint of

∑A(t)
j=1 P

−1(sj(t)) ≤ N , as well as the speed
constraint of unity for any job that is in its in-elastic phase.

The main result of this section is as follows.

Theorem 3. For α > 1, the competitive ratio of PA-EQUI
for Problem (1) when all jobs are available at time 0, is at
most

µ(α) =
1

α(1− δ)− 1

[
α(1− δ)

δ
+
α(1− δ) + δ

1− δ

]
,

where δ is the parameter to be chosen. For α = 2, choosing
δ = 1

4 , µ(2) = 50/3. Moreover, µ(α) is a decreasing function
of α > 1 for an appropriate choice of δ.

Proof is similar to that of Theorem 1 and for lack of
space is omitted. It can be found in the full version [22].
Thus, compared to the online job arrivals case (Theorem 1)
where the competitive ratio for α = 2 is 636, there is a
significant improvement in the competitive ratio when all jobs
are available at time 0. Similar conclusion can be drawn for
other values of α also.

VI. NUMERICAL RESULTS

In this section, we present simulation results for the mean
flow time (per job). We compare the performance of the
proposed algorithm FRACTIONAL-LCFS with other known
algorithms such as inelastic first IF [15], EQUI [4] and
phase-aware FCFS PA-FCFS [19]. With PA-FCFS, jobs are
processed in the order in which they arrive, and the earliest
arrived job is processed by as many servers as possible, i.e.
if a job is in its inelastic phase then one server is allocated
and other jobs are considered similarly over the remaining
number of servers, while if a job is in its elastic phase then
all the available servers are allocated to that.

For all simulations, we use α = 2. In Fig. 1, we let the
number of servers to be N = 10, and consider a slotted time
system, and plot the per-job flow time as a function of the
per-slot mean arrival rate arr, where in each slot, the number
of jobs arriving is Poisson distributed with the respective arr.
For each job, the first/last phase is equally likely to be an
elastic/in-elastic phase, and the number of phases of each job
is Poisson distributed with mean 7. The choice of 7 is dictated
by real-world datasets [10]. For each phase, each job’s size is
exponentially distributed with mean 5. For each iteration, we
generate jobs for 1000 slots, and count its flow time, and iterate
over 1000 iterations. For FRACTIONAL-LCFS, we choose θ =
1
4 . We compare the performance of different algorithms for the
same realization of random variables, and then average it out.
More results for different values of number of servers can be
found in the full version [22].

As we see from Fig. 1, the performance of FRACTIONAL-
LCFS is similar to the inelastic first IF and the EQUI [4]
algorithm, however, the mean flow time of the PA-FCFS
is approximately 2 or 3 times larger than that of the other
algorithms. With α = 2, the limitation of PA-FCFS is that
whenever the earliest arrived job in its elastic phase, the speed
dedicated to it is N1/2 and no other job is processed. All the
other three algorithms, in contrast, process multiple jobs with
total speed roughly equal to n(N/n)1/2 (n is the number of
outstanding jobs), thus having a far better performance.

In Fig. 2, we plot the performance of FRACTIONAL-LCFS
for different choices of β with θ = 1/4 and mean per-slot
arrival rate of 10, and the rest of settings are the same as in
Fig. 1. In the theoretical result we showed that for α = 2 with
β = 1/6 and θ = 1/72, the competitive ratio of FRACTIONAL-
LCFS is a constant. From Fig. 2 we observe that in fact the

132

performance of FRACTIONAL-LCFS improves by choosing
larger values of β and θ, and the choice of β = 1/6 and
θ = 1/72 was needed only for theoretical purposes. Fig. 2
shows that β = 1 has the best performance among different
choices of β for FRACTIONAL-LCFS.

Simulation results for the case when all jobs are available
at time 0 can be found in the full version [22].

VII. CONCLUSIONS

In this paper, we considered an important problem of flow
time minimization in data centers, where jobs migrate between
two phases of parallelizability (called elastic and in-elastic)
multiple times. In the elastic phase, there is flexibility of
parallelizing the job over multiple servers, while in the in-
elastic phase, the job has to be processed by a single server.
Moreover, in the elastic phase there is limited parallelizability,
and the speed increment diminishes as more and more servers
are allocated to any job. We considered the online setting,
where jobs arrive over time with arbitrary sizes and arrival
times, and proposed a LCFS type algorithm for scheduling,
that processes the scheduled jobs with equal speed. We showed
that its competitive ratio is a constant that only depends on the
speed-up exponent α as long as α > 1. With arbitrary input,
our result overcomes fundamental difficulty found in literature
where similar results were shown only in the presence of
resource augmentation or for simpler model, by exploiting the
specific structure of the problem with just two phases that is
practically well motivated.

REFERENCES

[1] B. Berg, J.-P. Dorsman, and M. Harchol-Balter, “Towards optimality
in parallel scheduling,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, vol. 1, no. 2, pp. 1–30, 2017.

[2] B. Berg, R. Vesilo, and M. Harchol-Balter, “heSRPT: Optimal
scheduling of parallel jobs with known sizes,” SIGMETRICS Perform.
Evaluation Rev., vol. 47, no. 2, pp. 18–20, 2019. [Online]. Available:
https://doi.org/10.1145/3374888.3374896

[3] S. Im, B. Moseley, K. Pruhs, and E. Torng, “Competitively scheduling
tasks with intermediate parallelizability,” ACM Transactions on Parallel
Computing (TOPC), vol. 3, no. 1, pp. 1–19, 2016.

[4] J. Edmonds, “Scheduling in the dark,” Theoretical Computer Science,
vol. 235, no. 1, pp. 109–141, 2000.

[5] J. Edmonds and K. Pruhs, “Scalably scheduling processes with arbitrary
speedup curves,” in Proceedings of the twentieth annual ACM-SIAM
symposium on Discrete algorithms. SIAM, 2009, pp. 685–692.

[6] K. Agrawal, J. Li, K. Lu, and B. Moseley, “Scheduling parallelizable
jobs online to minimize the maximum flow time,” in Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures,
2016, pp. 195–205.

[7] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems,
2015, pp. 1–17.

[8] S.-H. Lin, M. Paolieri, C.-F. Chou, and L. Golubchik, “A model-based
approach to streamlining distributed training for asynchronous sgd,” in
2018 IEEE 26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2018, pp. 306–318.

[9] R. Vaze and J. Nair, “Speed scaling with multiple servers under a sum
power constraint,” in Performance 2021, 2021.

[10] “Noisepage -the self-driving database management system.” [Online].
Available: https://noise.page

[11] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak, “The star schema bench-
mark and augmented fact table indexing,” in Technology Conference on
Performance Evaluation and Benchmarking. Springer, 2009, pp. 237–
252.

[12] N. R. Tallent and J. M. Mellor-Crummey, “Effective performance
measurement and analysis of multithreaded applications,” in Proceedings
of the 14th ACM SIGPLAN symposium on Principles and practice of
parallel programming, 2009, pp. 229–240.

[13] T. D. Nguyen, R. Vaswani, and J. Zahorjan, “Using runtime measured
workload characteristics in parallel processor scheduling,” in Workshop
on Job Scheduling Strategies for Parallel Processing. Springer, 1996,
pp. 155–174.

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 2010, pp. 1–10.

[15] B. Berg, J. Whitehouse, B. Moseley, W. Wang, and M. Harchol-
Balter, “The case for phase-aware scheduling of parallelizable jobs,”
Performance Evaluation, p. 102246, 2021.

[16] R. Ren and X. Tang, “Clairvoyant dynamic bin packing for job schedul-
ing with minimum server usage time,” in Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures, 2016, pp.
227–237.

[17] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow,
U. Schwiegelshohn, and P. S. Yu, “Scheduling parallelizable tasks to
minimize average response time,” in Proceedings of the sixth annual
ACM symposium on Parallel algorithms and architectures, 1994, pp.
200–209.

[18] J. Turek, U. Schwiegelshohn, J. L. Wolf, and P. S. Yu, “Scheduling
parallel tasks to minimize average response time,” in Proceedings of the
fifth annual ACM-SIAM symposium on Discrete algorithms, 1994, pp.
112–121.

[19] V. Leis, P. Boncz, A. Kemper, and T. Neumann, “Morsel-driven
parallelism: A numa-aware query evaluation framework for the many-
core age,” in Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 743–754.
[Online]. Available: https://doi.org/10.1145/2588555.2610507

[20] B. Berg, M. Harchol-Balter, B. Moseley, W. Wang, and J. Whitehouse,
“Optimal resource allocation for elastic and inelastic jobs,” in Proceed-
ings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures, 2020, pp. 75–87.

[21] R. Motwani, S. Phillips, and E. Torng, “Nonclairvoyant scheduling,”
Theoretical computer science, vol. 130, no. 1, pp. 17–47, 1994.

[22] R. Vaze, “Scheduling for multi-phase parallelizable jobs,” 2022.
[Online]. Available: https://arxiv.org/abs/2205.00518

APPENDIX A
A. Proof of Theorem 1

From here on we refer to algorithm FRACTIONAL-LCFS as
just algorithm. Let at time t, the set of outstanding (unfinished)
number of jobs with the algorithm be A(t) with n(t) = |A(t)|.
Similarly, let O(t) be the set of outstanding jobs with the OPT
at time t. Let at time t, the rank rj(t) of a job j ∈ A(t)
be equal to the number of outstanding jobs of A(t) with the
algorithm that have arrived before job j. Note that the rank of
a job does not change on arrival of a new job, but can change
if a job departs that had arrived earlier.

Let Q(x) = x
P (x) . which specializes to Q(x) = x1−

1
α for

P (x) = x1/α. Moreover, let {x}+ = max{x, 0}. Then we
consider the following potential function

Φ(t) = c1Φ1(t) + c2Φ2(t), (7)
where

Φ1(t) =
∑
j∈A(t)

rj(t)

P (N)Q(rj(t))

(
wAj (t)− woj (t)

)+
, (8)

and
Φ2(t) =

∑
j∈A(t)

w̄Ajι(t)−
∑
j∈O(t)

w̄ojι(t), (9)

133

arr = 5 arr = 7 arr = 9 arr = 11

100

200

300

400

500
m

ea
n

flo
w

tim
e

FRACTIONAL-LCFS β = 1

FRACTIONAL-LCFS β = 3/4
IF
EQUI
PA-FCFS

Fig. 1. Comparison of mean flow time with different algorithms as a function of mean arrival rate per slot with 10 servers.

β = 1 β = 3
4 β = 2

3 β = 1
2 β = 1

3

140

160

180

200

m
ea

n
flo

w
tim

e

Fig. 2. Comparison of flow time for FRACTIONAL-LCFS with different
choices of β for θ = 1/4 with mean per-slot arrival rate of 10 with 10
servers.

where wAj (t) (woj (t)) is the remaining size (sum of the job
sizes of all the remaining elastic and in-elastic phases) of job
j with the algorithm (OPT) at time t, while w̄Ajι(t) (w̄ojι(t)) is
the sum of the remaining size of job j in all its remaining in-
elastic phases with the algorithm (OPT) at time t, and c1, c2
are constants to be chosen later.

We next show that the potential function Φ(t) satisfies the
second boundary condition. The fact that the first boundary
condition is satisfied is trivial.

Lemma 1. Potential function Φ(t) (7) does not change on
arrival of any new job. Moreover, on a departure of a job
with the algorithm or the OPT, the potential function Φ(t)
(7) does not increase.

The proofs of Lemma 1 and 2 are provided in Appendix B.
We next bound the drift dΦ(t)/dt because of the processing

by the OPT, and the algorithm, respectively. To avoid cum-
bersome notation, we write βn(t) or θn(t) instead of dβn(t)e
or dθn(t)eeverywhere.

Lemma 2. The change in the potential function (7) because
of the OPT′s contribution

dΦ(t)/dt ≤ c1n(t)
Q(no(t))

Q(n(t))
+ c2no(t). (10)

Lemma 3. With 0 < θ + γ < β, for any t where no(t) ≤
γn(t), the change in the potential function (7) because of the
algorithm’s contribution is dΦ(t)/dt

≤

−c1 (1−β)(β−γ)n(t)

P (β) if N
βn(t) ≤ 1,

−c2 min{N,nι(t)} if N
βn(t) > 1 and nι(t) ≥ θn(t),

−c1 (1−β)(β−θ−γ)n(t)
P (β) , otherwise.

(11)

The proof of Lemma 3 is provided in Appendix C. To
prove Theorem 1, we check the running condition (3) for
the following two cases separately for a fixed γ such that
θ + γ < β (choice to be made later) : i) no(t) > γn(t) and
ii) no(t) ≤ γn(t), and show that it holds for a constant κ.

Case i) no(t) > γn(t). In this case, we only count the
OPT′s contribution to dΦ(t)/dt, which is sufficient since the
algorithm’s contribution to dΦ(t)/dt is always non-positive.
From Lemma 2, we have that

n(t) + dΦ(t)/dt ≤ n(t) + c1n(t)
Q(no(t))

Q(n(t))
+ c2no(t),

(a)

≤ n(t) + c1n(t)
Q(bn(t))

Q(n(t))
+ c2no(t),

= n(t) + c1n(t)b1−1/α + c2no(t),

(b)

≤ n(t) + c1n(t)b+ c2no(t),

= n(t) + c1no(t) + c2no(t), (12)
(c)

≤ (1/γ + c1 + c2)no(t), (13)

where in (a) we let no(t) = bn(t) and inequality (b) follows
when b > 1. Finally (c) follows since no(t) > γn(t). When
b < 1, then Q(bn(t))

Q(n(t)) < 1. Thus, similar to (13), for b < 1, we

134

get

n(t) + dΦ(t)/dt ≤ n(t) + c1n(t)
Q(no(t))

Q(n(t))
+ c2no(t),

≤ n(t)(1 + c1) + c2no(t),

≤
(

1 + c1
γ

+ c2

)
no(t). (14)

Case ii) no(t) ≤ γn(t). Let no(t) > 0.
ii-a) With N

βn(t) ≤ 1, from Lemma 2 and Lemma 3, (3) can
be bounded as n(t) + dΦ(t)/dt

≤ n(t) + c1n(t)
Q(no(t))

Q(n(t))
+ c2no(t)− c1

(1− β)(β − γ)

P (β)
n(t),

(a)

≤ c2no(t) + n(t)

(
1 + c1

(
γ1−1/α − (1− β)(β − γ)

P (β)

))
,

(b)

≤ c2no(t), (15)
where (a) follows since no(t) ≤ γn(t), while (b) follows for
choice of γ, β, c that satisfy
(1− β)(β − γ)

P (β)
> γ1−1/α and c1 ≥

−1(
γ1−1/α − (1−β)(β−γ)

P (β)

) .
(16)

ii-b) When N
βn(t) > 1 and nι(t) ≥ θn(t), from Lemma 2 and

Lemma 3, (3) can be bounded as n(t) + dΦ(t)/dt

≤ n(t) + c1n(t)
Q(no(t))

Q(n(t))
+ c2no(t)− c2 min{N,nι(t)},

(a)

≤ c2no(t) + n(t)
(

1 + c1γ
1−1/α − c2θ

)
,

(b)

≤ c2no(t), (17)
where (a) follows since no(t) ≤ γn(t), nι(t) ≥
θn(t), N

βn(t) > 1 and θ < β, while (b) follows for

c2 ≥
(1 + c1γ

1−1/α)

θ
. (18)

ii-c) Finally, when N
βn(t) > 1 and nι(t) < θn(t), from

Lemma 2 and Lemma 3, (3) can be bounded as n(t)+dΦ(t)/dt

≤ n(t) +
c1n(t)Q(no(t))

Q(n(t))
− c1(1− β)(β − θ − γ)n(t)

P (β)

+ c2no(t),

(a)

≤ c2no(t) + n(t)

(
1 + c1

(
γ1−1/α − (1− β)(β − θ − γ)

P (β)

))
,

(b)

≤ c2no(t), (19)
where (a) follows since no(t) ≤ γn(t), while (b) follows for
choice of γ, β, c that satisfy

(1− β)(β − θ − γ)

P (β)
> γ1−1/α (20)

and
c1 ≥

−1(
γ1−1/α − (1−β)(β−θ−γ)

P (β)

) . (21)

When no(t) = 0, the OPT’s contribution to dΦ(t)/dt is
zero, and we can bound (3) with smaller value of κ. Combining
(15), (17), (19), together with (13) and (14), the competitive
ratio of the proposed algorithm is at most

1 + c1
γ

+ c2 (22)

for β, θ, γ, that satisfy (16), (18), (20) and (21). Depending on
α > 1, there exists a β < 1 satisfying (16), (20) and (21) with
θ = γ = β2/2 as follows. In particular, with θ = γ = β2/2,
to satisfy (16), (20) and (21) i.e., (1−β)(β−γ)

P (β) > γ1−1/α and
(1−β)(β−θ−γ)

P (β) > γ1−1/α, it is sufficient that 1 − 2β + β2 >

β
2

1−1/α
. Since α > 1, 1−2β+β2−

(
β
2

)1−1/α
= 1 at β = 0.

Thus, using continuity, we know that there exists a 0 < β < 1
satisfying (16), (20) and (21) with θ = γ = β2/2. This implies
that the competitive ratio is a constant that only depends on α
and not on any other system parameter. Moreover, notice that
as α→ 1, the appropriate choice of β decreases implying that
the competitive ratio (22) increases.

For example, for α = 2, let β = 1
6 and θ = γ = β2/2,

c1 = −1
(γ1−1/α− (1−β)(β−θ−γ)

P (β))
= 6.06, c2 = (1+c1γ

1−1/α)
θ =

72(1 + .77) = 127.44. We get a competitive ratio of 1+c1
γ +

c2 ≤ 72× (1 + 6.06) + 127.44 = 635.76.
Analytically optimizing the competitive ratio with respect

to the variables, β, α, and γ could result in a much lower
bound, however, appears difficult. Numerically, however, one
can easily do so.

Remark 4. For any α > 1, choosing θ = γ = β2/2, and
0 < β < 1 such that 1 − 2β + β2 > β

2

1−1/α
is sufficient to

make the competitive ratio constant. Moreover, finding such a
β is easy numerically.

APPENDIX B

Proof of Lemma 1. On an arrival of a new job j, the ranks of
all the existing jobs do not change, while for the newly arrived
job j, wAj (t)−woj (t) = 0. Hence the potential function Φ1(t)
(7) does not change on arrival of any new job.

On a departure of a job with the algorithm, rank of any
remaining job can only decrease, in particular by 1. Thus,
if at time t when job k departs with the algorithm, job j’s
(j ∈ A(t+)) rank at time t+, is either rj(t+) = rj(t) or
rj(t

+) = rj(t)−1. Since function rj(t)
Q(rj(t))

is a non-decreasing
function, thus the potential function Φ1(t) does not increase
on departure of a job with the algorithm.

For the OPT, only woj (t) decreases with job processing and
that too smoothly. Thus, there is no discontinuity when a job
departs with the OPT, hence Φ1(t) does not change when a
job departs with the OPT. Moreover, for Φ2(t), on an arrival of
a new job w̄Ajι(t)− w̄ojι(t) = 0, while there is no discontinuity
when a job departs with the OPT or the algorithm, since both
w̄Ajι(t) and w̄ojι(t) decrease smoothly. Hence Φ2(t) does not
change when a new job arrives or a job departs with the OPT
or the algorithm.

Proof of Lemma 2. We begin with the following simple result
whose proof is immediate.

Lemma 4. Disregarding the unit speed constraint for any job
whose in-elastic part is being processed, the maximum speed
devoted to processing any one job by the OPT is at most

135

P (N). Moreover, the sum of the speeds with which OPT is
processing any of its k jobs is at most Q(k)P (N).

From the definition of Φ(t) (7), OPT can increase Φ1(t) at
time t only if it processes jobs that also belong to the set A(t)
(outstanding jobs with the algorithm). Thus, from Lemma 4,
the maximum sum of the speeds devoted to the set of A(t)
jobs by the OPT is at most Q(n(t))P (N), where each job
gets processed at speed P

(
N
n(t)

)
. Moreover, by definition,

OPT contains only no(t) jobs. Thus, the sum of the speeds
devoted to the n(t) jobs of the algorithm by the OPT is at most
Q(min{n(t), no(t)})P (N). From the definition of Φ1(t) (8),
the maximum increase in Φ1(t) is possible if the total speed
of the OPT that it can dedicate to jobs belonging to A(t)
is dedicated to the single job with the largest rank among
A(t), i.e., the job with rank equal to n(t). Thus, because of
processing by the OPT

dΦ1(t)/dt ≤ n(t)

P (N)Q(n(t))
×Q(min{n(t), no(t)})P (N),

≤ n(t)
Q(no(t))

Q(n(t))
. (23)

Moreover, any job that is in its in-elastic phase can be
processed with at most unit speed. Since there are at most
no(t) jobs with the OPT that are in their in-elastic phases, we
get

dΦ2/dt ≤ no(t).

APPENDIX C
Proof of Lemma 3. Case I :

(
N

βn(t)

)
≤ 1 Since the algorithm

processes the βn(t) jobs that have arrived most recently, the
rank of job i that is being processed by the algorithm is ri(t) =
n(t) − i + 1 for i = 1, . . . , βn(t). Since no(t) ≤ γn(t), and
γ < β, wAj (t)− woj (t) > 0 for at least (β − γ)n(t) jobs with
the algorithm. In the worst case, the ranks of these (β−γ)n(t)
jobs are (1− β)n(t) + i− 1 for i = 1, . . . , (β − γ)n(t).

Since the speed for any of the job processed by the
algorithm is s(t) = P

(
N

βn(t)

)
, the change in the potential

function because of the algorithm’s processing to Φ1(t) is

dΦ1(t)/dt ≤−
(1−β)n(t)+(β−γ)n(t)∑

i=(1−β)n(t)

ri(t)

P (N)Q(ri(t))
P

(
N

βn(t)

)
,

(a)

≤ −
(1−β)n(t)+(β−γ)n(t)∑

i=(1−β)n(t)

ri(t)

Q(n(t))

1

P (βn(t))
,

=−
(1−β)n(t)+(β−γ)n(t)∑

i=(1−β)n(t)

ri(t)

Q(n(t))

1

P (n(t))

1

P (β)
,

(b)
= −

(1−β)n(t)+(β−γ)n(t)∑
i=(1−β)n(t)

ri(t)

n(t)

1

P (β)
,

(c)

≤ − (1− β)(β − γ)n(t)n(t)

β

1

n(t)P (β)
,

=− (1− β)(β − γ)n(t)

P (β)
,

where (a) follows since ri(t) ≤ n(t) and

P
(

N
βn(t)

)
P (N)

≥ 1

P (βn(t))
,

while (b) follows since Q(x)P (x) = x, and finally (c) follows
since there are (β−γ)n(t) jobs that are being processed each
with rank at least (1−β)n(t). For Φ2(t), in this case, we just
bound dΦ2(t)/dt ≤ 0 because of the algorithm’s processing.

Case II :
(

N
βn(t)

)
> 1

IIa: nι(t) ≥ θn(t) In this case, for the algorithm we
will only consider the drift dΦ2(t)/dt, and trivially upper
bound dΦ1(t)/dt ≤ 0. When nι(t) ≥ θn(t), each of the
min{N,nι(t)} jobs are processed at unit speed by the algo-
rithm, and we get

dΦ2(t)/dt ≤ −min{N,nι(t)}. (24)
IIb: nι(t) < θn(t) In this case, for the algorithm we will only
consider the drift dΦ1(t)/dt and upper bound dΦ2(t)/dt ≤ 0.

In this case, the algorithm processes those jobs that are in
their elastic phases among the βn(t) jobs that have arrived
most recently. Since nι(t) < θn(t), and nι(t) +ne(t) = n(t),
at least (β − θ)n(t) jobs (that are in their elastic phases) are
being processed.

Moreover, since no(t) ≤ γn(t), for at least (β− θ−γ)n(t)
jobs that are being processed by the algorithm wAj (t)−woj (t) >
0, and the rank of each of these (β − θ − γ)n(t) jobs is at
least (1− β)n(t).

Since the speed for any of the job processed by the
algorithm is s(t) = P

(
N

βn(t)

)
, the change in the potential

function Φ1(t) because of the algorithm’s processing is

dΦ1(t)/dt ≤−
(β−θ−γ)n(t)∑

i=1

ri(t)

P (N)Q(ri(t))
P

(
N

βn(t)

)
,

(a)

≤ −
(β−θ−γ)n(t)∑

i=1

ri(t)

Q(n(t))

1

P (βn(t))
,

=−
(β−θ−γ)n(t)∑

i=1

ri(t)

Q(n(t))

1

P (n(t))

1

P (β)
,

(b)
= −

(β−θ−γ)n(t)∑
i=1

ri(t)

n(t)

1

P (β)
,

(c)

≤ − (1− β)(β − θ − γ)n(t)n(t)

β

1

n(t)P (β)
,

=− (1− β)(β − θ − γ)n(t)

P (β)
,

where (a) follows since ri(t) ≤ n(t), while (b) follows since
Q(x)P (x) = x, and finally (c) follows since there are (β −
θ − γ)n(t) jobs that are being processed each with rank at
least (1− β)n(t).

136

