
Bandit Learning-based Online User Clustering and

Selection for Cellular Networks

Isfar Tariq∗§, Kartik Patel∗, Thomas Novlan†, Salam Akoum†, Milap Majmundar†,

Gustavo de Veciana∗, Sanjay Shakkottai∗

∗The University of Texas at Austin, Austin, USA

{isfar, kartikpatel, deveciana, sanjay.shakkottai}@utexas.edu
†AT&T Research Labs, Austin, USA

{thomas novlan, salam akoum, milap majmundar}@labs.att.com

Abstract—Current wireless networks employ sophisticated
multi-user transmission techniques to fully utilize the physical
layer resources for data transmission. At the MAC layer, these
techniques rely on a semi-static map that translates the channel
quality of users to the potential transmission rate (more precisely,
a map from the Channel Quality Index to the Modulation and
Coding Scheme) for user selection and scheduling decisions.
However, such a static map does not adapt to the actual
deployment scenario and can lead to large performance losses.
Furthermore, adaptively learning this map can be inefficient,
particularly when there are a large number of users. In this work,
we make this learning efficient by clustering users. Specifically,
we develop an online learning approach that jointly clusters users
and channel-states, and learns the associated rate regions of
each cluster. This approach generates a scenario-specific map
that replaces the static map that is currently used in practice.
Furthermore, we show that our learning algorithm achieves sub-
linear regret when compared to an omniscient genie. Next, we
develop a user selection algorithm for multi-user scheduling
using the learned user-clusters and associated rate regions. Our
algorithms are validated on the WiNGS simulator from AT&T
Labs, that implements the PHY/MAC stack and simulates the
channel. We show that our algorithm can efficiently learn user
clusters and the rate regions associated with the user sets for
any observed channel state. Moreover, our simulations show that
a deployment-scenario-specific map significantly outperforms the
current static map approach for resource allocation at the MAC
layer.

Index Terms—User clustering, Online learning, User selection,
Cellular networks, Scheduling

I. INTRODUCTION

The fifth-generation (5G) wireless technology uses sophis-

ticated physical layer techniques such as Multi-User (MU)

transmission to support high-speed communication to a large

number of mobile devices. However, efficient multi-user

transmission requires optimal multi-user scheduling which,

in turn, requires learning and optimizing an unknown high-

dimensional combinatorial function, solution of which depends

on the channel observations (such as signal strength) at each

time slot.

This optimization can be made efficient by exploiting the

underlying low-dimensionality of the problem; namely, many

users in a network may have “similar” channel distributions

§The author is currently working at AT&T Research Labs. The work
presented in the paper was completed during his Ph.D. at UT Austin.

and optimal rate regions associated to scheduled user-sets. If

such similarity between the users can be identified, then the

network only needs to learn the mappings from the channel-

states to the associated rate regions for each user-cluster. We

also emphasize that the user clustering provides an important

additional benefit: in the case of dynamic user-settings, any

new user entering the system only needs to be categorized

into a cluster, and any previously learned knowledge about

the clusters can be used for the new user.

In this work, we design a user-clustering algorithm that

clusters the users based on the “similarities” in the mappings

from the channel-states to the associated rate regions. Using

these mappings for clustering (as opposed to location, device

types etc.) allows inferring the relevant information such as

optimal rates and channel-state distributions across users in the

same cluster. Note that learning these mappings from channel-

states to the rate region itself is a high-complexity problem

even for small number of users. An online epoch greedy-

based strategy has been proposed in [1] that learns the optimal

mapping from the channel-states to the rate regions. However,

the strategy presented therein scales polynomially with the

number of users in the system, thus making learning inefficient

in the settings with the large user-sets. Hence, in this work, we

build our user-clustering algorithm on top of the strategy in [1]

and extend its design to enable the support for user-clusters.

This allows our user-clustering algorithm to simultaneously

learn these mappings and exploit the similarities in them to

find optimal user-clusters. Additionally, we also develop a

cluster -based user-selection algorithm that selects the optimal

user-pairs and relative priorities for the transmission after

observing the channel in each time-slot.

We summarize our main contributions below:

Joint user-channel clustering and rate scheduling algo-

rithm: We design a user clustering model for MU scheduling

and propose an online epoch-greedy strategy that can learn

these user clusters and schedule them according to their

channel-state partitions and capacity regions. Specifically, this

epoch-greedy strategy simultaneously balances between four

tasks: (1) learning channel-state partitions, (2) learning user

clusters, (3) learning rate regions for scheduled cluster-sets

and observed channel-state partitions, and (4) exploiting the

gathered information to maximize the transmission rate. We

ISBN 978-3-903176-49-2 © 2022 IFIP 33

then derive a theoretical guarantee on the regret, a measure

of performance of our online strategy when compared to an

omniscient genie. We show that the regret of our algorithm

scales as O(T 2/3 log T) with time T , implying that it can learn

and exploit the knowledge about the underlying environment

and it converges to the optimal strategy over time.

User selection algorithm: We then propose an online user-

selection algorithm that schedules user-sets and allocates rela-

tive priorities to each user depending on the observed channel

states. This algorithm balances the task of exploring the user-

sets to gather knowledge about the underlying environment

and exploiting it to maximize the overall transmission rates.

Given the cluster of users, the user-selection algorithm only

requires learning the optimal combinations of different user

clusters instead of large combinations of user-sets, which

makes it feasible in a real-time deployment setting.

Numerical results: We use Wireless Next-Generation Sim-

ulator (WiNGS) - developed within AT&T Labs to perform

extensive simulations [1]. Using this detailed simulation sys-

tem that implements and processes packets through the 5G

(NR) PHY, MAC, RLC, and PDCP sublayers (the channel

itself is simulated), we study our proposed algorithms. We

show that our proposed algorithms can learn the optimal user

selections and identify the user clusters, their channel-state

partitions, and the associated capacity regions. Moreover, we

show that the user clustering-based strategies achieve better

performance compared to static hand-tuned policies and [1];

especially in the scenarios with higher number of users and a

larger channel-state space.

A. Related Work

Over the past few years, several machine learning ideas

have been utilized to optimize a wide variety of areas of

MU transmission scheduling such as user selection [2], beam-

forming [3], precoding [4], power allocation [5], interference

mitigation [6] and receiver design [7]. Since naively searching

the optimal user-set for transmission leads to a combinatorial

explosion in complexity [8]–[11], the main application of

machine learning for user selection is to cluster similar users

to simplify the user selection decision. The clustering of

users are based on different criteria, such as channel distribu-

tion [12], [13], user locations [14], user capacity [15] or signal

strength [16]. In this work, we use a lower level criteria for

clustering - the similarity in the channel-state distribution and

associated rate regions.

We also emphasize that the majority of the work on user

clustering requires strong assumptions such as the availability

of the perfect channel state information of the users at the

base-station [13], [17], a fixed set of users [12], [15] or a

known number of user clusters [12], [15], [16]. There do

exist some work that uses weaker assumptions; for instance,

[13] proposes a user clustering algorithm for the setting with

dynamic users and [14] proposes a user clustering algorithm

with an unknown number of clusters. However, we are not

aware of any studies that provide theoretical guarantees on

the convergence of their algorithm for user clustering in MU-

MIMO setting. In this work, our proposed algorithm does not

assume perfect channel-state information or a known number

of user clusters, and provides a theoretical guarantee on the

regret compared to a genie policy.

In our previous work [1], [18], we have proposed online

algorithm that learns the channel-state distributions and as-

sociated rate regions. In this work, we build on the model in

[1] and propose an online user clustering algorithm that learns

the channel-state distribution and associated rate regions and

uses them for user clustering. We also present a robust version

of our algorithm for a dynamic set of users. Similar to [1],

we employ the contextual multi-armed bandit framework [19]

for the design of our joint user-channel clustering and rate

scheduling algorithm.

Notation: The set [n] = {1, 2, ..., n}. Rn
+ = {v ∈ R

n : vi ≥
0, ∀i ∈ [n]}. For C ∈ R+,Bn(C) = {v ∈ R

n
+ : ||v||2 ≤ C}.

✶{.} denotes the indicator function. For a region S in a space,

|S| defines the volume of the region.

II. SYSTEM MODEL AND DEFINITIONS

The system model extends the model in [1] by introducing

the user clusters and redefining the system parameters for

the user clusters. We consider a time-slotted cellular network

containing a central network scheduler and n users indexed by

U = [n]. We assume that the set of users U can be clustered

into L non-overlapping clusters denoted by U1,U2, ...,UL

where L << n and |Ui| ≥ 1, ∀i ∈ [L]. The user clusters

are defined such that users in the same cluster provide similar

performance under similar channel conditions. We formally

define user clusters later in this section.

A. Channel states, scheduling, rate allocations

At the beginning of each time-slot t, the scheduler receives a

channel-state estimate q(t) = [q1(t), q2(t), . . . , qn(t)] from a

time-invariant distribution fU , where qi(t) ∈ Q ⊂ R
d
+ denotes

the channel-state of user i. We denote by P = Qn the set

of all possible channel-states. In practice, the Channel Quality

Indicators (CQI) reported by each user or the signal energy

measured by the physical layer can be used as a channel-state.

Based on the observed channel-state q(t), the scheduler

chooses a user-pair A(t) = (i, j) ⊂ U2 for multi-user

communication in t-th time-slot. 1 We denote the channel-state

of the user-pair A by qA(t) = [qi(t), qj(t)] when A = (i, j).
Furthermore, we denote by fA the marginal distribution of

channel-states qA and by PA ⊂ Q2 the set of all possible

channel-states qA. Without loss of generality, we assume i < j
when denoting the user-pair A = (i, j).

After scheduling the user-pair A(t) = (i, j), the scheduler

allocates the rate vector rA(t)(t) = [ri(t), rj(t)] ∈ B2(C),
where ri(t) denotes the rate of data transmission to user

i during t-th time slot and C ∈ R+ is a constant which

depends on the environment. We define the capacity region

of a channel-state qA(t) as the set of rate vectors rA(t)(t)

1We limit the discussion in this paper to two user scheduling for notational
clarity. Our work can be extended to schedule multiple users in each time-slot.

34

that results in successful transmission with high probability.

In practice, allocating the rate vector is equivalent to choosing

an appropriate Modulation Coding Scheme (MCS) for each

user in the scheduled user pair. The capacity region is defined

by the highest feasible MCS such that neither user in the user-

pair have significant errors during the transmission.

B. Channel-state partitions, capacity regions

For any user-pair A = (i, j) where i, j ∈ [n], the channel-

state space PA can be partitioned into KA sets denoted by

P1
A,P2

A, . . . ,PKA

A . We further define Ck
A to be the capacity

region of the channel-state partition qA ∈ Pk
A for all k ∈ [KA].

We assume that the capacity regions Ck
A are convex polytopes

and for any rate vectors x,y, if x ≤ y (element-wise) and

y ∈ Ck
A, then x ∈ Ck

A, ∀k ∈ [KA], ∀A. We define K such

that KA ≤ K, ∀A and assume K ≪ |P| if Q is discrete

and finite. Furthermore, we assume that the channel-states qA

in each partition Pk
A are observed sufficiently often for any

scheduled user-pair A and k ∈ [KA].

Assumption 1 (Class probabilities). We assume that for any

given user-pair A, P(QA ∈ Pk
A) > β = O

(

1
KA

)

∀ k ∈
[KA], where QA ∈ PA is a random variable with distribution

fA capturing variability in the system.

Similar to [1], we consider that the capacity regions of

different channel-state partitions are well-separated.

Assumption 2 (Separability for channel-state partitions). We

assume the for any given user-pair A and k,m ∈ [KA], k ̸=
m, the capacity regions Ck

A and Cm
A are well separated, i.e.

d(Ck
A, Cm

A) ≜
|(Ck

A \ Cm
A) ∪ (Cm

A \ Ck
A)|

|B2(C)| ≥ λ > 0. (1)

Intuitively, the parameter λ describes the fraction of the

non-overlapping volume of capacity regions Ck
A and Cm

A for

all k,m ∈ [KA], k ̸= m.

C. User clusters

We define the user clusters in terms of the similarity in the

channel-state partitions and the associated rate regions.

Definition 1. We say the users i, i′ are in the same cluster

Ua, if the following conditions are true. For any user j ∈ Ub,

and the user-pairs A = (i, j), A′ = (i′, j),

1) The channel distributions of user-pairs A and A′, i.e.

fA and fA′ , are identical.

2) The number of partitions of the channel-state spaces PA

and PA′ are same, i.e. KA = KA′ .

3) The partitions of the channel-state spaces are identical,

i.e. ∀k ∈ [KA], Pk
A = Pk

A′ .

4) The capacity regions of the channel-state partitions are

identical, i.e. ∀k ∈ [KA], Ck
A = Ck

A′ .

The definition of the user-cluster implies that the channel-

state partitions and associated capacity regions depend on the

user-cluster and not individual users. Thus, the scheduler only

needs to learn and explore channel-state partitions of at most

L(L − 1)/2 user cluster-pairs instead of n(n − 1)/2 unique

user-pairs, significantly reducing the exploration.

Since the channel-state spaces, their partitions, and associ-

ated capacity regions are identical for the users in the same

user clusters, we define the following notations for conve-

nience. We denote the set of user cluster-pair by A{a,b} =
{(i, j)|i ∈ Ua, j ∈ Ub} where a, b ∈ [L] and the set

of all user pairs as A =
⋃

∀a,b∈[L] A{a,b}. For any user

pairs A,A′ ∈ A{a,b}, we define the channel-state space as

PA{a,b}
≜ PA = PA′ , their partitions as Pk

A{a,b}
≜ Pk

A =

Pk
A′ , associated capacity regions as Ck

A{a,b}
≜ Ck

A = Ck
A′ and

number of partition as KA{a,b}
≜ KA = KA′ . Throughout this

paper, we use i, j for users, k,m for channel-state partitions,

and a, b, c for user clusters in subscript or superscript of

different parameters for better clarity. We use A{·,·} to denote

a general user cluster-pair.

In the following, we assume that the users in different

clusters have distinct “characteristics”.

Assumption 3 (Separability for different user clusters). Con-

sider three user clusters Ua, Ub, and Uc where b ̸= c. Denote

by A{a,b},A{a,c} the user cluster-pairs. Let q1 ∈ Pk1

A{a,b}
be

a random variable from distribution fA{a,b}
and q2 ∈ Pk2

A{a,c}

be a random variable from distribution fA{a,c}
. Then

1) KA{a,b}
̸= KA{a,c}

.

2) If KA{a,b}
= KA{a,c}

, then for all permutations ∆1, ∆2

there exist some k ∈ [1,K], ∆1(k) = k1 and ∆2(k) =
k2 such that

P(q1 ∈ Pk2

A{a,c}
)) ≤ γ, and P(q2 ∈ Pk1

A{a,b}
)) ≤ γ.

3) If there exist a permutation ∆1, ∆2, where for all k ∈
[1,K], ∆1(k) = k1 and ∆2(k) = k2, we have

P(q1 ∈ Pk2

A{a,c}
)) ≥ γ, or P(q2 ∈ Pk1

A{a,b}
)) ≥ γ, then

there exists a value of k such that

d(Ck1

A{a,b}
, Ck2

A{a,c}
) ≥ λ̂ > 0. (2)

The Assumption 3 states that for any two distinct user

cluster pairs, i.e. A{a,b} and A{a,c}, either their number of

channel-state partitions are different. If not, then their channel-

state partitions are sufficiently different. If their channel-

state partitions are also similar, then their associated capacity

regions of these user cluster-pairs must be well-separated.

D. Environment and channel-state classifiers

1) Environment: The environment is defined as the true

user clusters mappings Ua, ∀ a ∈ [L], the channel-

state space {PA{·,·}
}, its partitions of user cluster pairs

{Pk
A{·,·}

}k∈[KA{·,·}
] and the associated capacity regions

{Ck
A{·,·}

}k∈[KA{·,·}
] for all user cluster-pairs A{·,·}. Note that

the environment defines the “ground truth”, typically, depen-

dent on the deployment setting.

2) Index functions: In a given environment, the index

functions map a channel-state to the index of its channel-state

partition. Formally, we define index functions as follows:

35

Definition 2 (Index functions). Consider the scheduled user-

pair A = (i, j) with i ∈ Ua and j ∈ Ub, and the user cluster-

pair A{a,b}. We denote the index function of the user-pair A

by IA(q), such that q ∈ PIA(q)
A . We also define the index

function of the cluster-pair A{a,b}, denoted by IA{a,b}
(q)

where IA{a,b}
(q) ≜ IA(q) if A ∈ A{a,b}.

3) Classifiers: We assume that a set Π̂ of binary classi-

fiers/experts that maps channel-states to {0, 1} is accessible

to the algorithm. Similar to the prior works in [1], [20], we

assume that out of all available experts in set Π̂, at least

one expert can represent the true behavior of the underlying

environment by correctly partitioning the channel-state space.

Assumption 4 (Realizable setting). For κ ⊆ [KA], we define

Îκ
A(q) = ✶{IA(q) ∈ κ} as a binary function. Then, we

assume that we have access of class of binary classifier/experts

Π̂ such that Îκ
A(.) ∈ Π̂ for all user-pairs A and κ ⊆ [KA].

Furthermore, we assume that our class of experts have the VC

dimension of V [21].

Notably, Assumption 4 only implies that for any user pair,

the binary classifiers (i.e., experts) can classify between κ and

[KA]\κ. We require combining Îκ
A for several different values

of κ to recover the true index function IA of a user-pair A.

However, it is an algorithmic challenge to find the correct

experts and efficiently compose them together to learn the

index function IA in an online setting.

E. Noise Model

After every transmission, the system receives feedback from

the underlying environment. We define the feedback as the

success of the transmission to a user-pair A (and equivalent

user cluster-pair A{·,·}), with the observed channel-state q, and

the allocated rate vector r ∈ R
2. We model the feedback as

a random variable Y (q, r, A) ∈ {0, 1}, where Y (q, r, A) = 1
signifies a successful transmission. We assume that Y (q, r, A)
is an i.i.d. random variable distributed as

P(Y (q, r, A) = 1) =

1− ρA{·,·}
(q, r), if r ∈ CIA{·,·}

(q)

A{·,·}
,

ρA{·,·}
(q, r), if r /∈ CIA{·,·}

(q)

A{·,·}
.

The term ρA{·,·}
(q, r), called the noise parameter, defines the

noise during the transmission at the rate r to the users in user

cluster-pair A{·,·} when observed channel-state is q. We take

the following assumption about the noise parameter.

Assumption 5 (Noise rate). We assume that

1) ρA{·,·}
(q, r) ≤ ρ < 1/8, ∀ q, r,A{·,·}.

2) the channel-states from the same partition Pk
A{·,·}

intro-

duces similar noise in the transmission. Specifically, for

p,q ∈ Pk
A{·,·}

, ρA{·,·}
(p, r) = ρA{·,·}

(q, r). We define

ρkA{·,·}
(r) ≜ ρA{·,·}

(q, r), where k = IA{·,·}
(q) for

notational convenience.

F. Direction vectors and system evolution

1) Direction vectors and objective: We define a direction

vector, denoted by d ∈ R
2
+, ||d||1 = 1, that controls the

data rate ratio between the scheduled user-pairs. We denote

the set of the D direction vectors by D = {d1,d2, . . . ,dD}
and assume the set D is fixed for the entire duration of the

algorithm. In practice, the direction vector can define the

relative priorities of users that may be dependent on the current

queue states or Quality of Service (QoS) requirements.

The main objective for the scheduler is to learn the max-

imum possible rate along these directions for all user-cluster

pairs and their channel-state partitions. Specifically, for a

chosen direction vector d and observed channel-state q, the

scheduler should find the rate vector rA = g(q,d, A)d where

g(q,d, A) denotes the highest scalar such that rA ∈ CIA(q)
A .

Formally, g(q,d, A) = argmax
{

λ > 0|λd ∈ CIA(q)
A

}

.

2) System evolution: At each time-slot t (that contains

multiple physical layer time-slots), the system executes the

following steps:

1) It observes channel-state q(t) from the distribution fU .

2) The system schedules a user-pair A(t) and a direction

vector d(t) ∈ D.

3) The system then schedules the rate r(t) for transmission

to the user-pair A(t).
4) After transmission, the system receives binary feedback

from the environment denoted by Y (q(t), r(t), A(t)),
indicating whether the transmission was a success.

Note that the system requires the knowledge of the underlying

environment to schedule the highest achievable rate for all

observed channel-states, user pairs, and direction vectors. In

this paper, we first propose an online algorithm in Section III

that jointly clusters the users and channel-states and learns the

associated capacity regions. Thus, the scheduler can schedule

the highest possible rate in step 3. We then design the user

selection algorithm in Section IV that uses the learned estimate

of the environment to schedule the optimal user-pairs and

direction vectors in step 2.

G. Reward function and regret

Before discussing the algorithm, we first describe the reward

function and the regret definition used in the analysis of our

algorithms.

1) Expected reward function: For any user-pair A, channel-

state q, rate vector r, direction vector d, and received feedback

Y , we define the reward µ(q, r,d, A) as

µ(q, r,d, A) = |r|Y (q, r, A)✶{r · d = |r|}. (3)

Thus, if the rate vectors are aligned with the direction

vectors, then the expected reward received as a function of

the chosen magnitude of the rate vectors, i.e. h, can be

written as fd,IA(q),A(h) = hE[Y (q, hd, A)]. The reward

function fd,k,A(h) characterizes the expected data rate when

the rate vector hd is scheduled for channel-states q ∈ Pk
A

for user-pair A. Let h∗
d,k,A denote the optimal choice of

h that maximizes the expected data rate fd,k,A(h). Then,

f∗
d,k,A = fd,k,A(h

∗
d,k,A) denotes the maximum average rate

achievable by a genie policy (with full knowledge of the

environment) in the direction d. We make the following

36

assumption on the noise model that requires the maximum

expected rate fd,k,A(h) be achieved by the rate vector r = hd
located at the boundary of the associated capacity region Ck

A

along the direction d.

Assumption 6. Let ĥ∗
d,k,A = maxh{h|hd ∈ Ck

A}. Then, the

noise parameter ρkA(r) is such that ĥ∗
d,k,A = h∗

d,k,A, ∀A ∈
A, k ∈ [KA], d ∈ D.

2) Regret: Let q(t), A(t),d(t), r(t) denote the respective

quantities at time t. Then the cumulative regret of the algo-

rithm in T time slots is defined as

R(T) =

T
∑

t=1

(f∗
d(t),IA(t)(q(t)),A(t)−E[µ(q(t), r(t),d(t), A(t))])

(4)

The regret compares the performance of an online policy with

the genie policy. Our objective is to design an algorithm that

incurs a regret that scales sub-linearly with T for all large

enough T . It implies that our algorithm learns the environment

over time and converges to the genie policy.

III. JOINT USER-CHANNEL CLUSTERING AND RATE

SCHEDULING ALGORITHM

We now describe our first contribution – an online user clus-

tering algorithm for multi-user rate scheduling. This algorithm

modifies the framework of learning the channel-state partitions

and associated capacity regions used in [1] and fits in step

3 of the system evolution discussed in Section II-F2. In the

following, we first provide a brief overview of the complete

algorithm, and discuss the user-clustering algorithm. We then

derive the regret bound on the complete algorithm.

A. Algorithm overview

The structure of the algorithm is similar to the epoch greedy

strategy in [1]. An important algorithmic idea is that we can

learn about the unknown environment by simply scheduling

a rate vector r (for each user-pair A) for many channel-

state realizations q, and observing the corresponding feedback

Y (q, r, A). Specifically, these observations are used to find a

classifier π ∈ Π̂ such that it can classify the observed channel-

states q into two partitions: (1) P∗
A = {q : Y (q, r, A) = 1},

(2) (P∗
A)

c. By repeating the same process for a fix set of

rate points, we get a set of binary classifiers. The binary

classifiers are then composed together to create a binary tree,

called classification tree TA, such that each leaf of the tree

correspond to a channel-state partition indexed by IA(q) with

high probability. Furthermore, these channel-state classifiers

provide an estimate of the user channel-state partition and

capacity region. Therefore, by constructing and comparing

such classifiers for different user pairs A we can identify the

user clusters.

The algorithm starts with an initialization phase that con-

sists of two stages: (1) initializing channel-state classifiers

for all user-pairs A, (2) identifying user-clusters based on

the estimated channel-state classifiers. After the initialization

phase, the algorithm proceeds in epochs. Each epoch consists

of (1) class explore stage wherein the algorithm improves

the estimates of the classifiers for all user cluster-pairs, (2)

capacity explore stage wherein the algorithm learns capacity

regions associated to the channel-state partitions of each user-

cluster pair, and (3) exploitation stage wherein the algorithm

uses the estimated environment, i.e. user clusters, the channel-

state partitions, and associated capacity regions to schedule

transmission rate optimally.

Among these stages, the initialization of the channel-state

classifiers, class exploration, capacity exploration and exploita-

tion stages are similar to that described in [1]; with appropriate

modifications to use the user-clusters pairs instead of user-

pairs. In the following, we describe our major contribution,

the theoretically provable user-clustering algorithm while the

complete algorithm and the details of the remaining stages of

the algorithm is given in [22].

B. User clustering

After building the channel classifiers for all user-pairs, we

determine the user clusters U1, . . . ,UL and initialize the user

cluster classifiers. To find the user clusters, we use the channel

classifier πA’s (and classification tree TA’s) for all the user

pairs A generated during the initialization stage. Our algorithm

works in three stages:

1) Computing the similarity: We start by computing the

similarity between the users by comparing the similarity

between the classifiers πA for different user pairs. Specifically,

to determine if users i and j are similar, we compare the

classifiers π(i′,i) and π(i′,j) for all i′ ∈ U\{i, j}. The classifiers

π(i′,i) and π(i′,j) are similar if they satisfy the following

criteria:

1) The number of leaves for classifier π(i′,i) and π(i′,j) are

the same, i.e. K(i′,i) = K(i′,j).

2) Let n̄k
(i′,i) be the number of channel-states stored at leaf

Lk
(i′,i) of classifier π(i′,i). Let n̂k

(i′,j) be the number of

channel-states at leaf Lk
(i′,i) that are classified to leaf

Lk
(i′,j) using classifier π(i′,j). Then, ∀ k ∈ [K(i′,i)],

n̂k
(i′,j)

n̄k
(i′,i)

≥ 3+γ
4 , and

n̂k
(i′,i)

n̄k
(i′,j)

≥ 3+γ
4 .

3) The rate vectors at all nodes for classifiers π(i′,i) and

π(i′,j) are the same, i.e. the rate vector that spilt the node

N k
(i′,i) and N k

(i′,j) are the same for all k ∈ [K(i′,i) − 1].

We construct a similarity matrix in which the value at (i, j)
indicates if the user i and j are similar.

2) Iterative clustering: In this part, we first define a single

user cluster U1 containing the user 1 and place all the other

users in set U ′. We then iteratively add the users from set U ′ to

the cluster U1 if they are similar to all users in U1. If there are

still any unassigned users left in set U ′, then we create a new

cluster U2 consisting of a random unassigned user from set U ′

and iteratively add the unassigned users to the new cluster if

they are similar to the users in U2. We repeat this process of

cluster creation and assignment until all the users are assigned

to the clusters.

37

3) Channel-state classifiers for user-cluster pairs: Finally,

we generate the channel-state classifiers for all user-cluster

pairs in the system by following the procedure of initializing

channel-state classifiers (see [22]). We first create the dataset

Si
A{a,b}

by collecting the data sampled for all user pair A ∈
A{a,b}. We then use the dataset Si

A{a,b}
to build the classifier

πi
A{a,b}

for user-cluster pair A{a,b}.

C. Theoretical Result

We now provide the main theoretical result for our algo-

rithm. Given that Assumptions 1-6 are satisfied, the cumulative

regret bound for the proposed algorithm is given as follows.

Theorem 1. Given Assumptions 1-6, the regret of the proposed

algorithm scales as

R(T) = O
(

L2/3T 2/3 log

(

1

δ

)

(

D log T +K +
√
V
)

)

,

with probability of at least 1− ξKDL2δ where ξ < 15.

Proof. The detailed proof is given in [22].

Even though the regret of the proposed algorithm scales

similarly to [1] with respect to T,D and K, the major

reduction in the learning complexity is emphasized by the

factor of L2/3 that shows the dependence on the number of

user-clusters and not on the number of users.

IV. USER SELECTION ALGORITHM

In this section, we discuss our second major contribution:

the user selection algorithm, a heuristic approach to select the

user-pairs and direction vectors for scheduling based on the es-

timated environment and observed channel-state. Note that this

algorithm fits in step 2 of the system evolution as discussed

in Section II-F2. However, for the simplicity, we describe the

user-selection algorithm as a standalone algorithm, assuming it

Algorithm 1 User selection algorithm based on user clustering

1: Input: Channel-state classifiers πA{·,·}
, Epoch EA{·,·},k,d

and reward GA{·,·},k,d ∀A{·,·}, k ∈ KA{·,·}
,d ∈ D.

2: Set weights WA{·,·},k,d = w0, ∀A{·,·}, k,d.

3: For all user pair A identify channel-state partition index

k∗ = {k∗A} where k∗A is determined using channel-state

classifiers πA{·,·}
, when A ∈ A{·,·}

4: Set G∗ = argmaxA,d(GA{·,·},k
∗
A
,d) where A ∈ A{·,·}.

5: gn = |{(A, d) : GA{·,·},k
∗
A
,d = G∗, A ∈ A{·,·}, d ∈ D}|.

6: for all user pairs A and direction vector d do

7: if GA{·,·},k
∗
A
,d == G∗ then

8: Set W ∗
A,d = min

(

WA{·,·},k
∗
A
,d, w0gn

)

9: else if EA{·,·},k
∗
A
,d > ζ1 & GA{·,·},k

∗
A
,d < ζ2G

∗ then

10: Set W ∗
A,d = ∞

11: else

12: Set W ∗
A,d = WA{·,·},k

∗
A
,d

13: Sample A,d with probability pA,d ∝ 1/W ∗
A,d.

14: if EA{·,·},k∗,d > ζ3 then WA{·,·},k∗,d = WA{·,·},k∗,d+1

is used after the user-clusters and channel-state classifiers have

been estimated during the initialization phase of the joint user-

channel clustering and rate scheduling algorithm. We discuss

the details of the joint implementation of both algorithms in

[22].

The key idea behind the user-selection algorithm is to find

the optimal balance between exploitation, i.e. prioritizing user

pairs and direction vectors with high throughput, and explo-

ration, i.e. scheduling user pairs to further improve the estimate

of the environment. The pseudo-code for the algorithm for user

selection is given in Algorithm 1.

The algorithm starts with initializing the weights

WA{·,·},k,d = w0, for all user cluster pairs A{·,·}, channel-state

partitions k ∈ [KA{·,·}
] and direction vector d ∈ D in the

system. At each time step, it uses 4 features: (1) the observed

channel-state q(t), (2) the estimated channel-state classifiers

πA{·,·}
generated during the user-cluster initialization phase

(see Section III-B), (3) the epoch EA{·,·},k,d, from user

clustering algorithm, and (4) the reward GA{·,·},k,d, the

current estimate of the maximum achievable rate.

The algorithm first finds the channel-state partition index

of all cluster-pairs k∗ = {k∗A} using the classifier πA{·,·}

when A ∈ A{·,·}. Using these channel-state partitions indices

k∗ and the estimated throughput GA{·,·},k,d, the algorithm

then determines the maximum potential reward G∗. Then the

weights W ∗
A,d for different user pairs and direction vectors are

set such that the algorithm is incentivized to schedule the user-

pairs with optimal rewards, and it significantly penalizes the

users who have poor rewards even after long term explorations.

Based on the updated weights, the algorithm generates the

probability distribution pA,d on the user-pairs and direction

vectors and samples a random user-pair A and the direction

vector d from the distribution. Finally, the algorithm updates

the weight WA{·,·},k∗,d by one, for the (A{·,·},k
∗,d)-triplet

that have been sufficiently explored. The threshold on epochs

is designed so that the users and direction vectors are sampled

uniformly at first, as we have a poor estimate of their capacity

regions. However, after multiple epochs, when a sufficiently

good estimates of their rewards are available, users pair

and direction vectors are selected based on their weights to

prioritize users pairs and direction vectors with better rewards.

Note that the EA{·,·},k,d is updated at each epoch of the

joint user-channel clustering and rate scheduling algorithm and

the reward GA{·,·},k,d is updated after every capacity explore

stage of that algorithm.

V. SIMULATION RESULTS

We now present the simulation results of our algorithms

on the cellular network simulator, called WiNGS, developed

within AT&T Labs. WiNGS synthetically generates data pack-

ets and pass them through a full-fledged implementation of

PDCP, RLC, MAC, and PHY layer protocols. WiNGS then

uses wireless channel models to simulate the transmission and

provide feedback. More details about the simulator is given in

[1]. In the following, we first provide a brief overview of our

38

simulation settings before describing the simulation results.

For additional results, please refer to [22].

A. Simulation setting

The WiNGS simulator operates in discrete time steps of

size 1 ms as follows: First, it provides the set of users with

non-empty queues and corresponding user metrics (consisting

of CQI, set of pairable users and their MU-SINR, MIMO

rank, etc.) at each time step. It then selects the primary user

from this user-set based on a proportionally fair rule and the

secondary user from the set of the candidate pairable users

using our user selection algorithm (in Algorithm 1). Finally, it

allocates the resources (chooses MCS indices) for MU-MIMO

transmission according to the joint user-channel clustering

and rate scheduling algorithm. After each transmission, it

receives binary feedback indicating whether the transmission

was successful. For the implementation, we used a robust

version of our algorithm for the simulations that can schedule

the users and learn the environment dynamically as new users

arrive in the system at a later time. We have given details of

the modifications in [22].

We assume a network with a single base-station and evaluate

our algorithm with respect to the baseline AT&T scheduler and

the algorithm in [1]. We consider that the user data arrives

according to an FTP traffic model, where each user receives

a packet of size 10 Mb with an exponential arrival rate of 0.1
packets per sec. Furthermore, we use the threshold value of

0.9 during the capacity explore phase of the algorithm based

on the typical service requirement of wireless carriers. We use

naive Bayes (implemented in MATLAB) as the class of experts

for our simulations. To build the classifier, we test l0 = 20
different rate vectors, and each rate vector is scheduled l1 =
30 times for any given user-pair. For n0 = 3000 time slots,

the default AT&T policy is used for scheduling decisions. We

exclude these time slots from our results for better clarity.

We consider several different scenarios with varying user

dynamics (described later). The number of users, user-clusters,

and their locations vary across scenarios, thus, evaluating the

algorithms across different channel and interference environ-

ments. We test 3 different parameter settings for the AT&T

policies for each scenario and plot the results of the parameter

settings with the best throughput in each scenario. We consider

D = 5 direction vectors for our algorithm and the epoch

greedy algorithm from [1]. For the epoch greedy algorithm

and the user clustering algorithm without the user selection,

the simulator selects the direction vector that is most aligned

with the direction of the MCS scheduled. For the joint user

clustering and user selection algorithm, the direction vector is

selected according to Algorithm 1.

B. Results

1) Scenario 1: For the first evaluation, we consider a

system with n = 6 users and the users belonging to 2
distinct cluster of size 3. At the beginning of the simulation,

only a single user from each cluster is activated and receives

data from the base station. At the time t = 20 second, an

0 20 40 60 80 100

Time/sec

0

200

400

600

800

1000

T
o

ta
l
M

U
 T

ra
n

s
m

is
s
io

n
s

User Clustering & User Selection

User Clustering

Epoch-Greedy

AT&T Policy

(a) Number of transmissions

0 20 40 60 80 100

Time/sec

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
s
u

c
c
e

s
s
fu

l
tr

a
n

s
m

is
s
io

n

User Clustering & User Selection

User Clustering

Epoch-Greedy

AT&T Policy

(b) Probability of successful
transmission

0 20 40 60 80 100

Time/sec

0

500

1000

1500

2000

2500

3000

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

p
e

r
R

e
o

u
rc

e
 B

lo
c
k

User Clustering & User Selection

User Clustering

Epoch-Greedy

AT&T Policy

(c) Throughput per resource block

0 20 40 60 80 100

Time/sec

0

1

2

3

4

5

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

106

User Clustering & User Selection

User Clustering

Epoch-Greedy

AT&T Policy

(d) Overall throughput
Fig. 1. Performance comparison for Scenario 1 with 6 users: The overall
throughput achieved by our algorithm is 100% more than the throughput
achieved by the current state-of-art algorithm.

0 20 40 60 80 100

Time/sec

0

200

400

600

800

1000

T
o

ta
l
M

U
 T

ra
n

s
m

is
s
io

n
s

User Clustering & User Selection

User Clustering

Epoch-Greedy

AT&T Policy

(a) Number of transmissions

0 20 40 60 80 100

Time/sec

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
s
u

c
c
e

s
s
fu

l
tr

a
n

s
m

is
s
io

n

User Clustering & User Selection

User Clustering

Epoch-Greedy

AT&T Policy

(b) Probability of successful
transmission

0 20 40 60 80 100

Time/sec

0

500

1000

1500

2000

2500

3000

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

p
e

r
R

e
o

u
rc

e
 B

lo
c
k

User Clustering & User Selection

User Clustering

Epoch-Greedy

AT&T Policy

(c) Throughput per resource block

0 20 40 60 80 100

Time/sec

0

1

2

3

4

5

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

106

User Clustering & User Selection

User Clustering

Epoch-Greedy

AT&T Policy

(d) Overall throughput
Fig. 2. Performance comparison for Scenario 2 with 9 users: The overall
throughput achieved by our algorithm is 120% more than the throughput
achieved by the current state-of-art.

additional user from each cluster activates and starts receiving

data from the base station. Finally, at time t = 45, the

remaining 2 users join their corresponding clusters, and all 6
users continue receiving data until the end of the simulation.

Figure 1 summarizes the results.

2) Scenario 2: For the second evaluation, we consider a

system with n = 9 users where the users belong to 3 distinct

cluster of size 3. At the start of the scenario, only 2 users

from each cluster are activated and receive the data from the

39

base station. At the time t = 25 sec, the final user from each

cluster joins the system and begins receiving data. Figure 2

summarizes the results.

C. Summary of results

In all scenarios, we observe that our algorithms learn the

environment pretty quickly (10 sec for a 6 user system, 20
sec for a 9 user system). Moreover, in all scenarios, our

algorithms match or outperform the current baseline MU

scheduling policies used by AT&T as well as the epoch-greedy

algorithm proposed in [1]. We also observe that, given the

dynamic scenarios, the static AT&T policies require periodic

hand-tuning to achieve scenario-specific optimal results. In

contrast, the epoch-greedy strategy from [1] may converge to

sub-optimal performance. Thus, the user clustering and user-

selection algorithms are better as they require less time to learn

the environment and ensure better service quality to users. The

results show that these algorithms can learn the user clusters

and the optimal mappings from the channel-states to MCS for

different user cluster pairs in an online manner.

Finally, we compare the benefit of using the user selection

algorithm by comparing the performance of the user-clustering

algorithm with and without the user selection algorithm. From

Fig. 2, we observe a significant increase in the throughput by

the user clustering algorithm with the user selection algorithm

as compared to the user clustering algorithm without the user

selection. This is because the user selection algorithm selects

the user-pair according to the estimate of the environment,

where fractions of times the optimal user-pair are scheduled

for any given channel-state increases as knowledge of the

environment gets more accurate. Therefore, by optimally se-

lecting both the user-pairs and their corresponding rate vector,

the joint user clustering and the user selection algorithm can

achieve significantly higher throughput.

VI. ACKNOWLEDGEMENTS

This work was supported by NSF grants CNS-1910112,

CNS-2107037 and IIS-2112471, Army Futures Command

Grant W911NF-19-2-0333, and the Wireless Networking and

Communications Group Industrial Affiliates Program.

VII. CONCLUSION

In this paper, we proposed two online algorithms for MU-

MIMO systems with large and dynamic user-sets: (a) a user

clustering algorithm based on the similarity in the channel-

state distributions and associated rate regions and (b) the

heuristic-based user selection algorithm. We derived the theo-

retical guarantee for the user clustering algorithm and showed

that it achieves a sub-linear regret. Additionally, our user

selection algorithm is designed to explore and exploit the envi-

ronment to schedule the optimal user-pair and direction based

on the knowledge about the user clusters. Finally, we validated

the performance through simulations on state-of-the-art AT&T

WiNGS simulator and showed greatly improved performance

with respect to the current baselines. ;Furthermore, the user-

cluster-based online algorithms significantly reduce learning

complexity compared to those without user-clusters, especially

in the scenarios with dynamic user-sets.

REFERENCES

[1] I. Tariq, R. Sen, T. Novlan, S. Akoum, M. Majmundar, G. de Veciana,
and S. Shakkottai, “Auto-tuning for cellular scheduling through bandit-
learning and low-dimensional clustering,” IEEE/ACM Trans. Netw.,
vol. 29, no. 5, pp. 1933–1947, 2021.

[2] K. He, Z. Wang, D. Li, F. Zhu, and L. Fan, “Ultra-reliable MU-MIMO
detector based on deep learning for 5G/B5G-enabled iot,” Physical

Commun., vol. 43, p. 101181, 2020.
[3] A. Klautau, P. Batista, N. González-Prelcic, Y. Wang, and R. W. Heath,

“5G MIMO data for machine learning: Application to beam-selection
using deep learning,” in 2018 Information Theory and Applications

Workshop (ITA). IEEE, 2018, pp. 1–9.
[4] M. Chai, S. Tang, M. Zhao, and W. Zhou, “HPNet: a compressed

neural network for robust hybrid precoding in multi-user massive MIMO
systems,” in 2020 IEEE Global Commun. Conf. IEEE, 2020, pp. 1–7.

[5] M. Elsayed, K. Shimotakahara, and M. Erol-Kantarci, “Machine
learning-based inter-beam inter-cell interference mitigation in mmwave,”
in 2020 IEEE Int. Conf. Commun. IEEE, 2020, pp. 1–6.

[6] C. Ge, S. Xia, Q. Chen, and F. Adachi, “Reinforcement learning-based
interference coordination for distributed MU-MIMO,” in 2021 24th Int.

Symp. Wireless Pers. Multimedia Commun. IEEE, 2021, pp. 1–6.
[7] M. Goutay, F. A. Aoudia, J. Hoydis, and J.-M. Gorce, “Machine learning

for MU-MIMO receive processing in OFDM systems,” IEEE J. Sel.

Areas Commun., vol. 39, no. 8, pp. 2318–2332, 2021.
[8] D. Gesbert, M. Kountouris, R. W. Heath, C.-B. Chae, and T. Salzer,

“From single user to multiuser communications: Shifting the MIMO
paradigm,” IEEE Signal Process. Mag., vol. 24, no. 5, pp. 36–46, 2007.

[9] E. Castaneda, A. Silva, A. Gameiro, and M. Kountouris, “An overview
on resource allocation techniques for multi-user MIMO systems,” IEEE

Commun. Surv. & Tut., vol. 19, no. 1, pp. 239–284, 2016.
[10] K. Ko and J. Lee, “Multiuser MIMO user selection based on chordal

distance,” IEEE Trans. Commun., vol. 60, no. 3, pp. 649–654, 2012.
[11] R. Tian, Y. Liang, X. Tan, and T. Li, “Overlapping user grouping in IoT

oriented massive MIMO systems,” IEEE Access, vol. 5, 2017.
[12] F. H. C. Neto and T. F. Maciel, “SDMA grouping based on unsupervised

learning for multi-user MIMO systems,” J. Commun. and Inf. Syst.,
vol. 35, no. 1, pp. 124–132, 2020.

[13] D. Marasinghe, N. Jayaweera, N. Rajatheva, and M. Latva-Aho, “Hier-
archical user clustering for mmwave-NOMA systems,” in 2020 2nd 6G

Wireless Summit (6G SUMMIT). IEEE, 2020, pp. 1–5.
[14] J. Ren, Z. Wang, M. Xu, F. Fang, and Z. Ding, “Unsupervised user

clustering in non-orthogonal multiple access,” in 2019 IEEE Int. Conf.

Acoust., Speech and Signal Process. IEEE, 2019, pp. 3332–3336.
[15] J. Jiang, J. Chen, Y. Xie, H. Lei, and L. Zheng, “Modified-pbil based

user selection for multi-user massive MIMO systems with massive con-
nectivity,” in IEEE Conf. on Comput. Commun. Workshops (INFOCOM

WKSHPS). IEEE, 2020, pp. 1260–1265.
[16] Y. Yang, Y. Li, K. Li, S. Zhao, R. Chen, J. Wang, and S. Ci, “DECCO:

Deep-learning enabled coverage and capacity optimization for massive
MIMO systems,” IEEE Access, vol. 6, pp. 23 361–23 371, 2018.

[17] W. V. Mauricio, T. F. Maciel, A. Klein, and F. R. M. Lima, “Learning-
based scheduling: Contextual bandits for massive MIMO systems,” in
2020 IEEE Int. Conf. Commun. Workshops. IEEE, 2020, pp. 1–6.

[18] I. Tariq, R. Sen, G. de Veciana, and S. Shakkottai, “Online channel-state
clustering and multiuser capacity learning for wireless scheduling,” in
IEEE Conf. Comput. Commun. IEEE, 2019, pp. 136–144.

[19] J. Langford and T. Zhang, “The epoch-greedy algorithm for multi-armed
bandits with side information,” in Adv. in Neural Inf. Process. Syst.,
2008, pp. 817–824.

[20] A. Agarwal, M. Dudı́k, S. Kale, J. Langford, and R. Schapire, “Con-
textual bandit learning with predictable rewards,” in Artif. Intell. and

Statist., 2012, pp. 19–26.
[21] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence

of relative frequencies of events to their probabilities,” in Measures of

complexity. Springer, 2015, pp. 11–30.
[22] I. Tariq, K. Patel, T. Novlan, S. Akoum, M. Majmundar, G. de Veciana,

and S. Shakkottai, “Bandit learning-based online user clustering and
selection for cellular networks,” Technical Report, UT Austin, May
2022.

40

