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Abstract—Collaborative edge computing (CEC) is an emerging
paradigm where heterogeneous edge devices collaborate to fulfill
computation tasks, such as model training or video processing,
by sharing communication and computation resources. Nev-
ertheless, when considering network congestion, the optimal
data/result routing and computation offloading strategy of CEC
still remains an open problem. In this paper, we formulate a
flow model of partial-offloading and multi-hop routing in CEC
network with arbitrarily topology and heterogeneous communi-
cation/computation capability. In contrast to most existing works,
our model applies to tasks with non-negligible result size, and
allows data sources to be distinct from the result destination.
We propose a network-wide cost minimization problem with
congestion-aware convex cost functions. Such convex cost covers
various performance metrics and constraints, such as average
queueing delay with limited processor capacity. Although the
problem is non-convex, we provide necessary conditions and
sufficient conditions for the global-optimal solution, and devise
a fully distributed algorithm that converges to the optimum
in polynomial time. Our proposed method allows asynchronous
individual updating, and is adaptive to changes of network
parameters. Numerical evaluation shows that our method signifi-
cantly outperforms other baseline algorithms in multiple network
instances, especially in congested scenarios.

I. INTRODUCTION

Recent years have seen an explosion in the number of

mobile and IoT devices. Many of the emerging mobile applica-

tions, such as VR/AR, autonomous driving, are computation-

intensive and time-critical. Mobile devices running these ap-

plications generate a huge amount of data traffic which is pre-

dicted to reach 288EB per month in 2027 [1]. It is becoming

impractical to direct all computation requests and their data

to the central cloud due to limited backhaul bandwidth and

high associated latency. Edge computing has been proposed

as a promising solution to provide computation resources and

cloud-like services in close proximity to the mobile devices.

In edge computing, requesters offload their computation

to the edge servers, where the network topology is typically

hierarchical. Extending the idea of edge computing is a new

concept called collaborative edge computing (CEC), in which

the network structure is more flexible. In addition to point-to-

point offloading, CEC permits multiple stakeholders (mobile

devices, IoT devices, edge servers, or cloud) to collaborate

with each other by sharing data, communication resources, and

computation resources to accomplish computation tasks [2].

CEC improves the utilization efficiency of resources so that

computation-intensive and time-critical services can be better
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Fig. 1: Sample system topology involving IoT network on the edge

completed at the edge. Mobile devices equipped with com-

putation capabilities can collaborate with each other through

D2D communication [3]. Edge servers can also collaborate

with each other for load balancing or further with the central

cloud to offload demands that they cannot accommodate [4].

Furthermore, CEC is needed when there is no direct connec-

tion between devices and edge servers. Consider unmanned

aerial vehicle (UAV) swarms or autonomous cars in rural areas,

computation-intensive tasks of UAVs or cars far away from the

wireless access point should be collaboratively computed or

offloaded through multi-hop routing to the server with the help

of other devices [3], [5].

We wish to study a general framework of CEC which

enables various types of collaboration among stakeholders.

In particular, we consider a multi-hop network with arbi-

trary topology, where the nodes collaboratively finish multiple

computation tasks. Nodes have heterogeneous computation

capabilities and some are also data sources (sensors and mobile

users) that generate data for computation tasks. Each task

has a requester node for the computation result. We allow

partial offloading introduced in [6], i.e., a task could be

partitioned into multiple components and separately offloaded.

For example in video compression, the original video can be

chunked into blocks and compressed separately at multiple

devices, and the results could then be merged.

Finishing a task requires the routing of data from possibly

multiple data sources to multiple nodes for computation and

the routing of results to the destination (task requester).

We aim for a joint routing (how to route the data/result)

and computation offloading (where to compute) strategy that

minimizes the total communication and computation costs.
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Joint routing and computation offloading has been inves-

tigated in a number of prior contributions. Sahni et al. [2]

[7] adopt the model where each task is only performed once

with the exact release time known, which we refer as single-

instance model. Zhang et al. [8] consider a flow model where

data collection and computation of each task are performed

continuously, and time-averaged costs are measured based on

the rates of data and result flows. Most existing studies in CEC

assume the data of a tasks is provided by the requester itself

[5] [9] [10]. Although Sahni et al. [7] [3] consider arbitrary

data sources, the network is assumed to be fully connected,

or with predefined routing paths. The communication cost in

previous studies is often assumed to be solely due to input

data transmission [11] [2], and the results are transmitted

simply along the reverse path of input data [12] [13]. However,

the size of computation results is not negligible in many

practical applications, e.g., federated or distributed machine

learning [14], file decompression, and image enhancement. For

communication, Hong et al. [5], [15] formulate heterogeneous

link transmission speeds, and Sahni et al. [7] consider link

bandwidth constraints. However, most works assume the link

costs be linear functions of the traffic. Xiang et al. [16]

study routing and computation offloading jointly with network

slicing, and propose a heuristic algorithm. They consider a

flow model, with non-linear delay functions, but without the

consideration of computation results.

Distinct from the above studies, in this paper, our formula-

tion simultaneously 1) adopts the flow model on CEC network

with arbitrary multi-hop topology, 2) allows the requester node

to be distinct from data sources, 3) optimizes routing for

both data and results of non-negligible size, and 4) models

network congestion by considering non-linear communication

and computation costs. Our detailed contributions are:

• To the best of our knowledge, we are the first to jointly

formulate partial offloading and routing for both data and

results in arbitrary network with congestible links.

• We provide the global optimal routing and offloading

strategy for a non-convex total cost minimization prob-

lem, by studying a set of sufficient optimality conditions.

• We devise a fully distributed algorithm that converges to

the optimum with asynchronous implementation, and is

adaptive to changes of network parameters.

• Through extensive experimentation, we show the advan-

tages of the proposed algorithm over baselines in different

network instances, especially in congested scenarios.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We begin by presenting our formal model of a collabo-

rative edge computing network where multiple stakeholders

collaborate to carry out computation tasks. Such networks are

motivated by real-word applications such as IoT networks,

connected vehicles and UAV swarms. An example that in-

volves an IoT network at the edge is shown in Fig. 1. We

summarize in Table I the notation used in this paper.

Network and tasks. We model the network with a directed

and strongly connected graph G = (V,E) where V is the

G = (V,E) Network graph G, set of nodes V and links E
M Number of computation types
(d,m) Task with destination d and computation type m
S Set of all tasks
ri(d,m) Exogenous input data rate for task (d,m) at node i
O(i), I(i) Out-neighbors and in-neighbors of node i

f−
ij (d,m) Data flow rate of task (d,m) on link (i, j)

f+
ij (d,m) Result flow of rate task (d,m) on link (i, j)

gi(d,m) Computational input rate of (d,m) at i
am Ratio of result size over input data of computation m

t−i (d,m) Total data flow rate of (d,m) at i

t+i (d,m) Total result flow rate of (d,m) at i

φ−
ij(d,m) Fraction of t−i (d,m) forwarded to node j (j ̸= 0)

φ−
i0(d,m) Fraction of t−i (d,m) assigned to computation at i

φ+
ij(d,m) Fraction of t+i (d,m) forwarded to node j

gmi Sum of computational input rates of type m at i
wim Weight for computation type m at i
Fij Total flow on link (i, j)
Gi Computation workload at i
Dij(Fij) Communication cost (e.g. queueing delay) on (i, j)
Ci(Gi) Computation cost (e.g. CPU runtime) at node i
T Sum of all communication and computation costs

TABLE I: Major notations

set of nodes and E is the set of links. Computations are

performed by the nodes, mapping input data to results of

non-negligible size, e.g., image/video compression, message

encoding/decoding and model training. The input data and re-

sults for computation are transmitted through the links. Nodes

and links are assumed to have heterogeneous computation

and communication capabilities, respectively. We assume that

M ∈ N
+ different types of computations are performed.

Communication and computation are task-driven, where a

task involves 1) routing input data from potentially multiple

data sources to computation sites, 2) computing, and 3)

delivering the results to a given destination. For example, in

an IoT monitor application, data sources could be sensors on

different smart devices and the destination could be a user’s

cellphone. The data collected from the sensors is analyzed and

processed in the network before being delivered to the user.

We denote a task by a pair (d,m), where d ∈ V is the

destination node and m ∈ [M ] is the specified computation

type, where [M ] = {1, 2, . . . ,M}. We denote by S be the set

of all tasks. To incorporate partial offloading [6], we assume

the exogenous input data is chunked into data blocks of equal

size. Computation could be independently performed on each

data block, and a result block is generated accordingly. For

tasks of computation type m, we assume the result blocks are

also of equal size, which is am ∈ R
+ times the data block size.

Such assumption is adopted in many partial offloading studies

that consider result size, e.g. [12], where typically am ≤ 1.

We also allow am > 1 for special computation types with the

result size larger than input data, e.g., video rendering, image

super-resolution or file decompression.

Data and result flows. In contrast to the single-instance model

where each task is performed only once [2], we adopt a flow

model similar to [8]. We assume the exogenous input data

blocks of each task are continuously injected into the network

in the form of flows with certain rates, and the computations

are continuously performed. In the network, flows of data
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blocks, i.e. data flows, are routed as computational input to

nodes with computation resources. After computation, flows

of result blocks, i.e., result flows, are generated and routed to

corresponding destinations.
We assume the exogenous input data blocks of task (d,m)

are injected into the network with rate ri(d,m) ≥ 0 (bit/s) at
node i. 1 Let f−

ij (d,m) ≥ 0 denote the data flow rate (bit/s) on

link (i, j) for task (d,m). Let gi(d,m) ≥ 0 be the data flow
rate forwarded to node i’s computation unit for task (d,m),
referred as the computational input rate. As the size of a result
block is am times the size of a data block, the result flow
rate generated from computation at node i for task (d,m) is
amgi(d,m) (bit/s). Let f+

ij (d,m) ≥ 0 be the result flow rate

on link (i, j) for task (d,m). We further let t−i (d,m) and

t+i (d,m) be the total data flow rate and total result flow rate
for task (d,m) at node i, respectively, given as

t
−
i (d,m) =

∑

j∈I(i)
f
−
ji (d,m) + ri(d,m),

t
+
i (d,m) =

∑

j∈I(i)
f
+
ji(d,m) + amgi(d,m),

where I(i) =
{

j
∣

∣(j, i) ∈ E
}

. Similarly, we define O(i) =
{

j
∣

∣(i, j) ∈ E
}

. We demonstrate the flow model in Fig.2.

Routing and offloading strategy. The network performs hop-

by-hop multi-path routing. For routing of data and result flows,

let φ−
ij(d,m) and φ+

ij(d,m) ∈ [0, 1] be the fraction of data and

result flows forwarded to node j by node i for task (d,m),
respectively. For computation offloading, let φ−

i0(d,m) ∈ [0, 1]
be the fraction of data flow for task (d,m) forwarded to local

computation unit of i. Thus, for all (d,m) ∈ S and i ∈ V ,

f−
ij (d,m) = t−i (d,m)φ−

ij(d,m), ∀j ∈ V

gi(d,m) = t−i (d,m)φ−
i0(d,m),

f+
ij (d,m) = t+i (d,m)φ+

ij(d,m). ∀j ∈ V

Note that φ−
ij(d,m) = φ+

ij(d,m) ≡ 0 if (i, j) ̸∈ E. We denote

by vector φ the global routing and offloading strategy.

To ensure all tasks are fulfilled, every data block must be

eventually forwarded to some computation unit, and every re-

sult block must be delivered to the corresponding destination.

Specifically, the data flows are either forwarded to nearby

nodes or to local computation unit, and the result flows exit

the network at the destination. Therefore, for all (d,m) ∈ S
and i ∈ V ,

∑

j∈{0}∪V

φ−
ij(d,m) = 1,

∑

j∈V

φ+
ij(d,m) =

{

1, if i ̸= d,

0, if i = d.

(1)

Communication cost. We assume the communication cost on

link (i, j) is Dij(Fij), where Fij is the total flow rate on (i, j),

Fij =
∑

(d,m)∈S

(

f+
ij (d,m) + f−

ij (d,m)
)

,

and Dij(·) is an increasing, continuously differentiable and

convex function. Such convex costs subsume a variety of

existing cost functions including commonly adopted linear

1Note that we allow multiple nodes i for which ri(d,m) > 0, representing
multiple data sources; rd(d,m) could also be positive, representing compu-
tation offloading with locally provided data.

Fig. 2: Example of data and result flows for nodes j → i → k

cost [17]. It also incorporates performance metrics that reflect

the network congestion status. For example, provided that µij

is the service rate of an M/M/1 queue [18] with Fij < µij ,

Dij(Fij) = Fij/ (µij − Fij) gives the average number of

blocks waiting for or under transmission on link (i, j), and is

proportional to the average time for a block from entering the

queue to transmission completion. One can also approximate

the link capacity constraint Fij ≤ Cij (e.g., in [19]) by a

smooth convex function that goes to infinity when approaching

the capacity limit Cij .

Computation cost. Let gmi =
∑

d:(d,m)∈S gi(d,m) be the

total computational input rate for type m task at node i, and

define the computation workload at node i as

Gi =
∑

m∈[M ]
wimgmi ,

where wim > 0 is the weight for type m at node i. We

assume the computation cost at node i is Ci(Gi), where

Ci(·) is an increasing, continuously differentiable and convex

function. For instance, if the computation of type m requires

cm CPU cycles per bit of input data. By setting wim = cm
and Ci(Gi) = Gi, we have Ci(Gi) =

∑

m∈[M ] cmgmi ,

measuring the total CPU cycles. Alternatively, let vmi be the

computation speed of type m at i and wim = cm/vmi , we have

Ci(Gi) =
∑

m∈[M ] cmgmi /vmi , measuring the CPU runtime.

Similar to the communication cost, the convexity assumption

of Ci(·) subsumes congestion-dependent computation costs.

Note that for a network with heterogeneous computation

resources, our formulation is more flexible than that in [2]

[20], where a task always yields the same computation cost

wherever it is performed. Our model captures the fact that in

practical edge networks, the workload for a certain task may

be very different depending on where it is computed, e.g.,

some parallelizable tasks are easier at nodes employing GPU

acceleration, but slower at others.

Problem formulation. We aim at minimizing the total cost of

links and devices for both communication and computation,

min
φ

T =
∑

(i,j)∈E

Dij(Fij) +
∑

i∈V

Ci(Gi)

subject to φ ≥ 0 and (1) holds.

(2)

Note that problem (2) is not convex in φ, and we do not

explicitly impose any link or computation capacity constraints

in (2) since they are already incorporated in the cost functions.
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III. OPTIMALITY CONDITIONS

In this section, we first establish a set of KKT necessary

conditions for (2), and demonstrate by example that such nec-

essary conditions could lead to sub-optimal solutions. Then,

we establish a set of sufficient optimality conditions.

Necessary condition. We start by giving closed-form deriva-

tives of T . Our analysis follows [21] and makes non-trivial

extensions to data and result flows, as well as in-network

computation. For (i, j) ∈ E and (d,m) ∈ S, the marginal

cost for a marginal increase of φ−
ij(d,m) consists of two

components, 1) the marginal communication cost on link (i, j),
and 2) the marginal cost of increasing exogenous input rate

rj(d,m). Similarly, the marginal cost of increasing φ−
i0(d,m)

consists of the marginal computation cost at i, and the marginal

cost of increasing result traffic t+i (d,m). Formally,

∂T

∂φ−
ij(d,m)

= t−i (d,m)

[

D′
ij(Fij) +

∂T

∂rj(d,m)

]

, if j ̸= 0

∂T

∂φ−
i0(d,m)

= t−i (d,m)

[

wimC ′
i(Gi) + am

∂T

∂t+i (d,m)

]

,

(3)

and the marginal cost of increasing φ+
ij(d,m) is given by

∂T

∂φ+
ij(d,m)

= t+i (d,m)

[

D′
ij(Fij) +

∂T

∂t+j (d,m)

]

, (4)

where the term ∂T/∂ri(d,m) is a weighted sum of marginal

costs for out-going links and local computation unit, namely,

∂T

∂ri(d,m)
=

∑

j∈O(i)

φ−
ij(d,m)

[

D′
ij(Fij) +

∂T

∂rj(d,m)

]

+ φ−
i0(d,m)

[

wimC ′
i(Gi) + am

∂T

∂t+i (d,m)

]

.

(5)

Similarly, the term ∂T/∂t+i (d,m) is given by

∂T

∂t+i (d,m)
=

∑

j∈O(i)

φ+
ij(d,m)

[

D′
ij(Fij) +

∂T

∂t+j (d,m)

]

.

(6)

One could calculate ∂T/∂ri(d,m) and ∂T/∂t+i (d,m) recur-

sively by (5) and (6), since the result flow does not introduce

any marginal cost at the destination, i.e., ∂T/∂t+d (d,m) = 0.

Therefore, a set of KKT necessary conditions for the

optimal solution to (2) is given in Lemma 1.

Lemma 1: Let φ be the global optimal solution to (2), then

for all i ∈ V , (d,m) ∈ S and j ∈ {0} ∪ O(i),

∂T

∂φ−
ij(d,m)







= min
k∈{0}∪O(i)

∂T

∂φ
−

ik
(d,m)

, if φ−
ij(d,m) > 0,

≥ min
k∈{0}∪O(i)

∂T

∂φ
−

ik
(d,m)

, if φ−
ij(d,m) = 0,

and for all j ∈ O(i),

∂T

∂φ+
ij(d,m)







= min
k∈O(i)

∂T

∂φ
+

ik
(d,m)

, if φ+
ij(d,m) > 0,

≥ min
k∈O(i)

∂T

∂φ
+

ik
(d,m)

, if φ+
ij(d,m) = 0.

Proof sketch. The set of KKT conditions is attained by setting

the derivatives of Lagrangian function to 0, combined with the

complementary slackness. See [22] for the full proof. □

Note that the condition in Lemma 1 is not a sufficient

condition for optimality. An example for such non-sufficiency

is provided in Fig.3: The only task is (4,m) with exogenous

input data occurring only at node 1, the global strategy and

marginal costs are shown in the figure. It is easy to verify that

conditions in Lemma 1 are satisfied. However, by increasing

φ−
24 and decreasing φ−

23, the derivative ∂T/∂r2 will decrease

and thus ∂T/∂φ−
12 will decrease. In this case, the total cost T

could be reduced by increasing φ−
12 and decreasing φ−

14.

Fig. 3: A non-optimal situation satisfying the condition in Lemma 1

Sufficient condition. The underlying intuition for the non-

sufficiency of Lemma 1 is that the condition automatically

holds if t−i (d,m) = t+i (d,m) = 0, regardless of the ac-

tual routing/offloading strategy at node i. Nevertheless, since

t−i (d,m) and t+i (d,m) exist in (3) and (4) respectively for all

j, we remove them and propose a revised set of conditions

specified in Theorem 1, which is shown to be sufficient for

global optimality.

Theorem 1: Let φ be feasible for (2). If for all i ∈ V ,

(d,m) ∈ S and j ∈ {0} ∪ O(i),

δ−ij(d,m)







= min
k∈{0}∪O(i)

δ−ik(d,m), if φ−
ij(d,m) > 0,

≥ min
k∈{0}∪O(i)

δ−ik(d,m), if φ−
ij(d,m) = 0,

and for all j ∈ O(i),

δ+ij(d,m)







= min
k∈O(i)

δ+ik(d,m), if φ+
ij(d,m) > 0,

≥ min
k∈O(i)

δ+ik(d,m), if φ+
ij(d,m) = 0,

then φ is a global optimal solution to (2), where δ−ij(d,m) and

δ+ij(d,m) are defined as

δ−ij(d,m) =

{

D′
ij(Fij) +

∂T
∂rj(d,m) , if j ̸= 0,

wimC ′
i(Gi) + am

∂T

∂t
+

i
(d,m)

, if j = 0,

δ+ij(d,m) = D′
ij(Fij) +

∂T

∂t+j (d,m)
.

(7)

Proof sketch. The global optimality follows by a fact that T
is jointly convex in f−

ij (d,m), f+
ij (d,m) and gi(d,m), and a

mapping exists from φ to them. See [22] for the full proof. □

Theorem 1 is the main theoretical result of this paper and

leads to a practical algorithm, which is proposed in Section

IV. As a simple illustration of the difference between Theorem
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1 and Lemma 1, we further assume the network in Fig. 3 has

linear communication costs. It turns out that for any routing

scheme satisfying Theorem 1, we must have φ−
12(4,m) = 1

and φ−
24(4,m) = 1, precisely indicating the shortest path 1 →

2 → 4 for data flow.

IV. DISTRIBUTED AND ADAPTIVE ALGORITHM

In this section, we introduce a distributed algorithm that

converges to the global optimal solution of (2) specified by

Theorem 1. The proposed algorithm is a variant of scaled

gradient projection. It uses carefully designed scaling matrices

to attain better convergence property, and is adaptive to

moderate changes of exogenous input rates. It also allows

asynchronous variable update for different nodes. Our method

is based on [23], and further distinguishes data and result flows

by extending the broadcasting protocol.

Algorithm overview. Existence of routing loops generates

redundant flow circulation, wastes network resources and

causes potential instability. Therefore, we consider strategy φ

with loop-free property. For task (d,m), we say there is a data

path from node i to node j if there is a sequence of nodes

n1, · · · , nL for which (nl, nl+1) ∈ E and φ−
nlnl+1

(d,m) > 0
for l = 1, · · · , L− 1, with n1 = i and nL = j. We say φ has

a data loop if there exists some (d,m) and i, j, such that i
has a data path to j, and vice versa. The concepts of result

path and result loop are defined similarly. We say strategy φ

is loop-free if it has neither a data loop nor a result loop.2

We assume the network starts with a feasible and loop-free
strategy φ0, where the initial total cost is finite. Let

φ
−
i (d,m) ≡

[

φ
−
ij(d,m)

]

j∈{0}∪V
, φ

+
i (d,m) ≡

[

φ
+
ij(d,m)

]

j∈V
,

δ
−
i (d,m) ≡

[

δ
−
ij(d,m)

]

j∈{0}∪V
, δ

+
i (d,m) ≡

[

δ
+
ij(d,m)

]

j∈V
.

At the t-th iteration, each node i updates its routing strategy
for data flow of task (d,m), i.e., φ−

i (d,m), as follows,

φ
−
i (d,m)t+1 =

[

φ
−
i (d,m)t −

(

M
−
i (d,m)t

)−1
· δ−

i (d,m)t
]+

M
−

i
(d,m)t,D−

i
(d,m)t

,

(8)

where M−
i (d,m)t is a positive semi-definite diagonal scaling

matrix, D−
i (d,m)t is the feasible set of φ−

i (d,m)t+1, and

operator [·]+A,D denotes the vector projection scaled by matrix

A onto a convex set D, that is,

[v0]
+
A,D = argmin

v∈D
(v − v0)

TA(v − v0).

Formula (8) is equivalent to solving the following QP

(quadratic programming) [23],

φ−
i (d,m)t+1 = argmin

v∈D−

i
(d,m)t

δ−i (d,m)t · (v − φ−
i (d,m)t)

+ (v − φ−
i (d,m)t)TM−

i (d,m)t(v − φ−
i (d,m)t),

(9)
where the set D−

i (d,m)t is given by constraints φ−
i (d,m) ≥ 0

and
∑

j∈{0}∪V
φ
−
ij(d,m) = 1; φ

−
ij(d,m) = 0, ∀j ∈ B−

i (d,m)t,

2We allow loops concatenated by a data path and a result path of the same
task, which occurs in scenarios where the destination is the data source.

Algorithm 1: Scaled Gradient Projection (SGP)

1 Start with t = 0 and a loop-free φ0 with T 0 < ∞.

2 Every node i is informed of Aij(T
0) and A(T 0).

3 do

4 Perform broadcast stage 1) , obtain ∂T/∂t+i (d,m)
and h+

i (d,m) for all i and (d,m).
5 Perform broadcast stage 2), obtain ∂T/∂ri(d,m)

and h−
i (d,m) for all i and (d,m).

6 when end of iteration t;
7 do

8 Calculate δ−ij(d,m) and δ+ij(d,m) by (7).

9 Calculate B−
ij(d,m) and B+

ij(d,m).

10 Calculate M+
i (d,m) and M−

i (d,m) by (10).

11 Solve individual optimization problem (9) and

update φ−
i (d,m), φ+

i (d,m).
12 at Each node i, at beginning of iteration t+ 1;

where B−
i (d,m)t is the set of blocked nodes of data flow for

(d,m) at i, to guarantee the feasibility and loop-free property.

The result strategy φ+
i (d,m) is updated in a similar manner

as (9) with “-” replaced with “+”. Note that φ+
dj(d,m) ≡ 0 for

all j ∈ V as destinations are sinks of result flows.

The proposed method is summarized in Algorithm 1. We

emphasize that our method is not purely gradient-based, as

the gradients are replaced by δ−i (d,m) and δ+i (d,m) in (8)

(see their definition in Theorem 1). We next describe in detail

the calculation of δ−i (d,m), δ+i (d,m), scaling matrices and

blocked node sets. We then give the asynchronous convergence

result and analyze the algorithm complexity.

Marginal cost broadcast. Each node i needs to calculate

vectors δ−i (d,m) and δ+i (d,m) following (7), which requires

the knowledge of several marginal costs. Suppose the closed-

form of Dij(·) and Ci(·) are known, nodes can directly

measure D′
ij(Fij) and C ′

i(Gi) while transmitting on link

(i, j) and performing local computation. To recursively obtain

∂T/∂ri(d,m) and ∂T/∂t+i (d,m) from (5) and (6), respec-

tively, a two-stage distributed broadcast protocol is introduced:

1) Broadcast for ∂T/∂t+i (d,m): Node i first waits until

it receives messages carrying ∂T/∂t+j (d,m) from all its

downstream neighbor j ∈ O(i) for which φ+
ij(d,m) > 0.

Then, node i calculates its own ∂T/∂t+i (d,m) according to

(6) with the measured D′
ij(Fij) and received ∂T/∂t+j (d,m).

Next, node i broadcasts ∂T/∂t+i (d,m) to all its upstream

neighbors k ∈ I(i) for which φ+
ki(d,m) > 0. Note that

this stage starts with the destination d, where d broadcasts

∂T/∂t+d (d,m) = 0 to its upstream neighbors in I(d).

2) Broadcast for ∂T/∂ri(d,m): Similar as in stage 1), the

exogenous input marginal ∂T/∂ri(d,m) could be calculated

from (5) via broadcast. Note that besides all ∂T/∂rj(d,m)
from downstream neighbors j, node i must also obtain

∂T/∂t+i (d,m) before calculating ∂T/∂ri(d,m). Thus the

broadcast of ∂T/∂ri(d,m) takes place after the broadcast of

∂T/∂t+i (d,m). The broadcast of ∂T/∂ri(d,m) starts with the

last node of each data path, where at these nodes we have

∂T/∂ri(d,m) = wimC ′
i(Gi) + am∂T/∂t+i (d,m).
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With the loop-free property, the broadcast procedure above

is guaranteed to traverse throughout the network and terminate

within a finite number of steps.

Blocked nodes. To achieve feasibility and the loop-free prop-

erty, following [21], we let B−
i (d,m)t be the set of nodes to

which node i is forbidden to forward any data flow for task

(d,m) at iteration t, and let B+
i (d,m)t be the set to which i

is forbidden to forward any result flow.

The intuition behind blocked nodes is as follows: Com-

bining Theorem 1 with (5), if φ is a global optimal so-

lution to (2), ∂T/∂t+i (d,m) should be monotonically de-

creasing along any result path toward the destination node

where ∂T/∂t+d (d,m) = 0. We thus require that node i
should not forward any result flow to a neighbor j if ei-

ther 1) ∂T/∂t+j (d,m) > ∂T/∂t+i (d,m), or 2) it could

form a result path containing some link (p, q) such that

∂T/∂t+q (d,m) > ∂T/∂t+p (d,m). A similar requirement is

applied to ∂T/∂ri(d,m) and data paths.

Practically, the information needed to determine blocked

node sets could be piggy-backed on the broadcast messages

previously described with light overhead. The loop-free prop-

erty is maintained throughout the algorithm if such a blocking

mechanism is implemented in each iteration.

Scaling matrix. The scaling matrices M−
i (d,m)t and

M+
i (d,m)t are introduced to improve the convergence speed

[23]. It also guarantees the convergence from arbitrary feasible

and loop-free initial point φ0 with finite initial cost. The

intuition is to provide diagonal matrices that upper bound

the Hessian matrices, as the Hessians are typically difficult

to compute and invert. Specifically, M+
i (d,m)t is given by

M+
i (d,m)t =

t+i (d,m)t

2
× diag{Aij(T

0)+
∣

∣O(i)\B+
i (d,m)t

∣

∣h+
j (d,m)tA(T 0)}j∈O(i)\B+

i
(d,m)t ,

(10)

where T 0 initial total cost at φ0, h+
j (d,m)t is the maximum

path length among all existing result paths for (d,m) from j
to destination d, operator diag forms a diagonal matrix, and

Aij(T
0) = sup

T<T 0

D′′
ij(Fij), A(T 0) = max

(i,j)∈E
Aij(T

0).

The definition of M−
i (d,m)t is a repetition of the above, ex-

cept with “+” replaced by “-”. Note that h+
j (d,m)t, h−

j (d,m)t

could also be piggy-backed on the broadcast messages.

Asynchronous convergence. The proposed algorithm allows

the network to update the variables one node at a time. Such

asynchrony may be caused by practical constraints such as the

broadcast delay in a large-scale network. We assume that at

the t-th iteration, only one node i updates either φ−
i (d,m) or

φ+
i (d,m) for one task (d,m) ∈ S. Let

Tφ−

i
(d,m) =

{

t
∣

∣ node i update its φ−
i (d,m) at iteration t

}

,

with Tφ+

i
(d,m) defined similarly, Then Theorem 2 holds.

Theorem 2: Assume the network start with a feasible and

loop-free initial point φ0 and the initial total cost T 0 is finite.

Let φt be the variable generated by Algorithm 1 at the t-th

iteration, and T t be the corresponding total cost. Then T t+1 <
T t for all t ≥ 1. Moreover, if

lim
t→∞

∣

∣

∣
Tφ−

i
(d,m)

∣

∣

∣
= ∞, lim

t→∞

∣

∣

∣
Tφ+

i
(d,m)

∣

∣

∣
= ∞,

then the sequence
{

φt
}

t→∞
converges to a limit φ∗, where

φ∗ is feasible and loop-free, and φ∗ optimally solves (2) with

the condition in Theorem 1 holding (see [23] for the proof).

Complexity. We assume that the variables of all nodes are

updated once every time slot of duration ∆t, and every

broadcast message is sent once in every slot. There are 2|E|
transmissions of broadcast messages corresponding to a task

in one slot, and thus totally 2|S||E| transmissions per slot,

with on average 2|S|/∆t per link/second and at most 2d̄|S|
for each node, where d̄ is the largest out-degree among all

nodes. We assume the broadcast messages are sent in a out-

of-band channel. Let tc be the maximum transmission time

for a broadcast message, and h̄ be the maximum hop number

for all data paths and result paths. Then the completion time

of the broadcast procedure is at most 2h̄tc.

The number of variables for the optimization problem

in (9) is at most
(

2d̄+ 1
)

|S|. Each problem is a positive

semidefinite diagonal QP on a simplex, which can be solved

with polynomial complexity.

V. NUMERICAL EVALUATION

In this section, we evaluate the scaled gradient projection

algorithm, i.e., SGP proposed in Section IV by simulation.

We implement several baseline algorithms and compare the

performance of those against SGP over different networks and

parameter settings. We also compare with a non-scaled version

of SGP to show the improved convergence speed by using

scaling matrices. A flow-level evaluator is available at [24].

Network Parameters

Topology |V | |E| |S| |R| Link d̄ij Comp s̄i
Connected-ER 20 40 15 5 Queue 10 Queue 12
Balanced-tree 15 14 20 5 Queue 20 Queue 15

Fog 19 30 30 5 Queue 20 Queue 17
Abilene 11 14 10 3 Queue 15 Queue 10

LHC 16 31 30 5 Queue 15 Queue 15
GEANT 22 33 40 7 Queue 20 Queue 20

SW 100 320 120 10 (both) 20 (both) 20
Other Parameters M = 5, rmin = 0.5, rmax = 1.5

TABLE II: Simulated Network Scenarios

We summarize the simulation scenarios in Table II. Al-

gorithms are evaluated in the following network topologies:

Connected-ER is a connectivity-guaranteed Erdős–Rényi

graph, generated by creating links uniformly at random with

probability p = 0.1 on a linear network concatenating all

nodes. Balanced-tree is a complete binary tree. Fog is a

sample topology for fog-computing, where nodes on the same

layer are linearly linked in a balance tree [25]. Abilene is

the topology of the predecessor of Internet2 Network [26].

GEANT is a pan-European data network for the research and

education community [26]. SW (small-world) is a ring-like

graph with additional short-range and long-range edges [27].

Table II also summarizes the number of nodes |V | and edges

|E|, as well as the number of tasks |S| in each network. We
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Fig. 4: Normalized total cost for network scenarios in Table II
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Fig. 5: Topology and results in scenario Connected-ER

set am to be exponential with mean value 0.5 and truncated

into interval [0.1, 5], considering that most computations have

am smaller that 1, but special types like video rendering

have relatively larger am. Each task is uniformly assigned

at random with one computation type and one destination

node, along with |R| random active data sources (i.e., the

nodes i for which ri(d,m) > 0). The input rate ri(d,m)
of each active data source is chosen u.a.r. in [rmin, rmax].
Link is the type of link cost Dij(·), where Linear denotes

a linear link cost with unit cost dij , i.e. Dij(Fij) = dijFij ,

and Queue denotes a queueing delay with link capacity dij ,

i.e. Dij(Fij) =
Fij

dij−Fij
. Comp is the type of computation

cost Ci(Gi), where Linear denotes a weighted sum of linear

cost for each type, i.e. Ci(Gi) = si
∑

m wimgmi , and Queue

denotes a queueing delay-like computation cost with capacity

si, i.e. Ci(Gi) =
∑

m
wimgm

i

si−
∑

m
wimgm

i

, where the weights wim are

u.a.r. drawn from [1, 5]. Parameters dij are u.a.r. drawn from

[0, 2d̄ij ]. Parameters si are exponential random variables with

mean s̄i for Queue, or uniform in [0, 2s̄i] for Linear.

We implement the following baseline algorithms:
GP (Gradient Projection) is a non-scaled version of SGP,
where the scaling matrices is simply chosen as follows,

M
−
i (d,m)t =

t−i (d,m)

β
× diag {1, · · · , 1, 0, 1, · · · , 1} ,

M
+
i (d,m)t =

t+i (d,m)

β
× diag {1, · · · , 1, 0, 1, · · · , 1} ,

where the only “0” entry on the diagonal of M−
i (d,m)t

is in the j-th position where j = argmink δ
−
ik(d,m)t, and

similarly for M+
i (d,m)t. Note that GP and SGP are both

supposed to converge to global optimum of (2), but with

different convergence speeds.

SPOO (Shortest Path Optimal Offloading) fixes the routing

variables to the shortest path (measured with marginal cost

at Fij = 0, accounting for the propagation delay without

queueing effect), and studies the optimal offloading along

these paths. Namely, SPOO only optimize T over offloading

variables φ−
i0(d,m) ∈ [0, 1]. It sets φ−

ij = 1−φ−
i0 and φ+

ij = 1

for (i, j) on the shortest path, and sets φ−
ij = φ+

ij = 0 for (i, j)
not on the shortest path. A similar strategy is considered in

[12] with linear-topology and partial offloading.

LCOR (Local Computation Optimal Routing) computes all

exogenous input flows at the their data sources, and optimally

routes the result to destinations using scaled gradient pro-

jection in [28]. That is, LCOR only optimizes T over result

routing variables φ+
ij(d,m). It sets all φ−

i0(d,m) = 1 and

φ−
ij(d,m) = 0. Note that we focus on the scenarios where

such pure-local computation is feasible, i.e., the computation

costs are finite if we set all φ−
i0(d,m) = 1.

LPR (Linear Program Rounded) is the joint routing and

offloading method by [9], which does not consider partial

offloading, congestible links and result flow. To adapt linear

link costs in [9] to our schemes, we use the marginal cost at

zero flow. To ensure sufficient communication capacity for the

result flow, we assign a saturation factor of 0.7 for queueing

delay costs, i.e., the data flow could not exceed 0.7 of the real

capacity. Shortest path routing is used for result flow.

Fig.4 compares the total cost T of different algorithms in

steady state over networks in Table II (we omit GP as it has

the same steady state performance with SGP), where the bar

heights of each scenario are normalized according to the worst

performing algorithm. We test both linear cost and queueing

delay with other parameters fixed in topology SW, labeled

as SW-linear and SW-queue. Our proposed algorithm

SGP significantly outperforms other baselines in all simulated

scenarios, with as much as 50% improvement over LPR,

which also jointly optimizes routing and task offloading but

does not consider partial offloading and congestible links. The

difference of case SW-linear and SW-queue suggests that

our proposed algorithm promises a considerable improvement

over SOTA especially when the networks are congestible. Note

that LCOR and SPOO reflects the optimal objective for routing

and offloading subproblems, respectively. The gain of jointly

optimizing over both strategies could be inferred by comparing
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SGP against LCOR and SPOO. For example, LCOR performs

very poorly in topology Balanced-tree, because routing cannot

be optimized in a tree topology.

We also perform refined experiments in Connected-ER,

with the network topology and capacity shown in Fig.5a.

There are 4 major servers as labeled, and we assume server

S1 fails (communication and computation capability disabled,

stop performing as data source or destination) at the 100-th

iteration. We compare the convergence speed of GP and SGP

in Fig.5b subject to S1 failure. SGP takes many fewer itera-

tions to converge and adapt to topology change, showing the

advantages of the sophisticatedly designed scaling matrices.

Fig.5c shows the change of total cost where all exogenous

input rates ri(d,m) are scaled by a same factor, with other

parameters fixed. The performance advantage of SGP quicly

grows as the network becomes more congested, especially

against LPR.

To further illustrate why SGP outperforms baselines signif-

icantly with congestion-dependent cost, we define Ldata and

Lresult as the average travel distance (hop number) of data

blocks from input to computation, and that of result blocks

from generation to being delivered, respectively.

In Fig. 5d, we compare Ldata, Lresult for SGP over different

am with other parameters fixed. The trajectories suggest that

the average computation offloading distance grows with am.

i.e., SGP tends to offload tasks generating larger result nearer

to destination. When am ≫ 1, the cost for transmitting

results dominates the total cost, therefore the optimal strategy

yields shorter result transmission distance. In contrast when

am is small, the optimal strategy offloads tasks near data

sources or servers, since the cost of transmitting results is low.

This phenomenon demonstrates the underlying optimality of

our proposed method, reaching a “balance” among the cost

for data forwarding, result forwarding and computation, and

therefore optimizes the total cost.

VI. CONCLUSION

We propose a novel joint routing and computation offload-

ing model incorporating the result flow, partial offloading and

multi-hop routing for both data and result. To the best of

our knowledge, this is also the first flow model analysis of

computation offloading with congestion-dependent link cost

and arbitrary network topology. We propose a non-convex total

cost minimization problem and optimally solve it by providing

sufficient optimality conditions. We devise a fully distributed

and scalable algorithm that reaches the global optimal.
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