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Abstract—Autonomous vehicles (AVs) are attractive for ride
service providers (RSPs) in part because they eliminate the
need to compete for human drivers. We investigate a scenario
where two RSPs with AVs compete for customers. We model the
problem as a game where the RSPs select prices for each origin-
destination pair over multiple time periods in an underlying
graph representing the customers’ desired trips. Each RSP also
decides the number of AVs to be stationed at each node at each
time period to serve the customers’ demands. The number of
customers who avail service of a RSP depends on the price
selected by the RSP and its competitor. Since the strategy choices
available to a RSP depends on its competitor, we seek to compute
a Generalized Nash equilibrium (GNE). We show that there may
be multiple GNEs. However, when a RSP selects prices in order
to deter its competitor when it is not serving a source-destination
pair, the game has a potential function and admits a unique GNE.
We also compare the competitive prices with a monopoly price
where only one RSP is in the market. Numerically, we show
that if a network consists of two equal size spatial clusters of
demand where the demand between clusters is low, the RSPs may
partition the market, i.e, one cluster is served by only one RSP.
Hence, the competitive price may become close to the monopoly
price.

I. INTRODUCTION

The transportation system is going through disruptive
changes. Ride service providers (RSPs) (e.g., Uber, and Lyft)
are increasingly serving passengers in most cities across the
world [1], [2]. RSPs are exploring using autonomous vehicles
(AVs), in part because in traditional human driven vehicles,
they need to compete with other RSPs for drivers and com-
pensate them for their time spent driving. Instead, they can
reduce operation costs by owning the fleet of AVs. The RSPs
can control and dispatch AVs in order to meet the customers’
demands.

If RSPs own AVs, they will no longer compete for drivers.
This may result in RSPs lowering prices to compete for
customers. Whether customers see this benefit will depend in
turn on how competitive the RSP market is and if RSPs, for
example, have an incentive to segment the market geographi-
cally to reduce competition. We seek to gain insight into this
question.

We consider a stylized model where two RSPs operate
over a region consisting of multiple locations. We formulate
the region as a graph with the locations as the nodes. We
assume that each RSP dispatches vehicles in order to satisfy
the estimated demand at different locations. The demand seen
by a certain RSP for an origin-destination pair (j, l) depends

on the price selected by the RSP, its competitor, the willingness
to stick to a RSP, and the total number of customers willing
to go from origin j to destination l at each time. Each RSP
decides the prices and the number of available vehicles it
would dispatch for each origin-destination pair at each time
instance in order to maximize the total profit over a given time
horizon. We formulate the competition among the RSPs as a
game theoretic problem and show that the strategy space of
a RSP is also constrained by the strategy of other RSP. We
seek to obtain a Generalized Nash equilibrium (GNE) [3]. We
show that there can be multiple GNEs depending on the action
of the competitor when it is not serving an origin-destination
pair. We show that when a RSP “tries to deter” its competitor
maximally, the resulting game has a potential function and
such a GNE can be obtained by solving a convex optimization
problem. Other GNEs appear to be more difficult to obtain
(computationally).

In order to investigate whether competition would exist
among the RSPs, we compare the outcome in the duopoly
scenario with another scenario where there is only one
(monopoly) RSP. The RSP selects a price for each origin-
destination pair (j, l). In this case, the demand solely depends
on the price of the monopoly RSP. We formulate a convex
optimization problem where the monopoly RSP decides prices
and the number of free vehicles to dispatch for each origin-
destination pair in order to maximize its revenue. We denote
the price selected by the RSP as the monopoly price. We char-
acterize when the equilibrium prices selected in the duopoly
model and the monopoly price for each origin-destination pair
become identical.

In Section IV, we numerically investigate a network consist-
ing of two clusters of demand. The demand from one cluster
to another one is varied. We show that when the demand is not
balanced and the capacities of the RSPs are small, RSPs may
partition the market between them. i.e., a cluster is served
by only one RSP. Hence, the price becomes equal to the
monopoly price even thought there are two RSPs. However,
as the demand becomes more balanced, the price decreases.
The price also decreases when the capacities of each RSP
becomes high.

Related Literature: Characterizing optimal price mech-
anisms for a RSP is of great interest. Our work is related
to several works on platform price design for a RSP [4]–
[8]. These papers model the stochasticity of the driver’s
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opportunity cost and the demand, and determine optimal price
mechanisms for a ride-sharing platform. However, the above
papers did not consider the spatial and temporal structure
of the underlying demand. Further, the above papers did
not model the competition among multiple RSPs. In [9], a
competition model among RSPs was considered. The strategic
interaction between a regulator and an RSP was studied in
[10]. However, [9], [10] did not consider the spatial variation
of the demand.

Recently, [11]–[13] investigated the spatial variation of
prices across a network for a RSP. However, these papers did
not consider a competition model as there is only one RSP.
Further, [11], [12] did not consider any temporal variation of
demand at a location. Thus, they also did not consider the
time vehicles take going from one location to another, and so
they did not model the routing decision of vehicles and its
potential impact on the pricing. In [13], the travel time was
considered, however, the temporal variation of demand was not
modeled. In [14], the optimal supply pattern for a taxi service
provider over a network was considered for a fixed price set
by the government. However, the dynamic nature of the price
and the impact of competition among multiple RSPs on the
pricing as well as the supply behavior was not considered.

In other related literature, competition in a network model
is widely studied by employing the Cournot network game
[15]–[17]. However, in a transportation network, one needs to
consider the routing decision of vehicles based on the origin
and destination, which is not modeled in the Cournot game.
The Cournot model assumes that the price is determined by the
total supply and the price is same for the firms participating
in the market at the same location. In contrast, we consider
a competition model among RSPs where the prices can vary
across the origin-destination pairs and may be different for
different RSPs even for the same origin-destination pair.

II. SYSTEM MODEL

We assume that 2 RSPs are competing for customers in a
region consisting of several locations. The region is modeled
as a graph G = {V, E}. For example, if the region is a city,
then the city can be divided into a grid graph where every
node represents each square block of the city. The edges are
directed. If an edge exists from node i to node j, then traffic
can flow from node i to node j. We assume that the graph is
strongly connected.

Each RSP i has a given number of AVs. A RSP can dispatch
vehicles to several locations in order to satisfy the demand.
The overall time horizon is T and time is slotted with each
slot of duration ∆. The specific duration of a slot can be of
any fixed value. The demand for travel to location l from
location j is denoted as Dj,l,t which is estimated by the RSPs.
We assume that the estimation is correct throughout the T
time periods. In Section II-H we discuss how our analysis
can be extended to the setting where the RSPs only know the
distribution of the demand within a time window.

RSP i selects a price pi,j,l,t at location j towards location l
at time t. There exists an upper limit pmax on the price. If a
price exceeds the upper limit, no customer would choose the

RSP. The customers would choose one of the other RSPs or
not to ride according to the demand model described next.

A. Demand Model

The demand of customers for each RSP i at location j
towards destination l is assumed to be the following

Di,j,l,t = max{Dj,l,t(
1

2
− 1

pmax
pi,j,l,t +

1

2pmax
pk,j,l,t), 0}

(1)

where pk,j,l,t is the price set by the RSP k, k ̸= i. Several
characteristics should be noted. The demand for RSP i would
increase if pk,j,l,t increases since more customers would prefer
RSP i compared to RSP k. On the other hand, as the price
pi,j,l,t increases the demand for RSP i would decrease. Note
that, compared to the basic Bertrand model for price com-
petition, all the customers here do not necessarily select the
RSP with the lowest price. This captures other preferences that
customers may have regarding a given RSP such as likeness,
and other preferential services that can arise in a practical
market. Such a demand model has been widely considered in
the literature, e.g. [18]–[20].

The demand for RSP i is impacted more by the change in
the price pi,j,l,t compared to the price of RSP k, pk,j,l,t. Hence,
the co-efficient corresponding to pi,j,l,t is higher compared
to the co-efficient corresponding to pk,j,l,t in the demand
expression. For the ease of exposition, we consider that the
co-efficient corresponding to pi,j,l,t is exactly twice that of
the co-efficient corresponding to pk,j,l,t. Our analysis will go
through for any ratio of the co-efficient values greater than 1.

At any price greater than or equal to pmax customers will
not avail any service. Thus, pmax is the least upper bound on
the prices at which customers are willing to avail a service.
When pk,j,l,t = pmax, this is equivalent to a scenario where
RSP k is not present in the market from source j to destination
l during time interval t. Thus, RSP i can enjoy a monopoly
power and its demand Di,j,l,t will only be zero when pi,j,l,t =
pmax. In general, note that Di,j,l,t is zero when

pi,j,l,t ≥
pmax

2
+

pk,j,l,t
2

. (2)

Hence, if pk,j,l,t < pmax, the demand Di,j,l,t can be 0 even
when pi,j,l,t < pmax since the other RSP is more attractive to
the customers.

If both Di,j,l,t > 0 and Dk,j,l,t > 0, then the total number
of customers who avail either of the RSPs’ services is given
by

Dj,l,t(1−
1

2pmax
pi,j,l,t −

1

2pmax
pk,j,l,t). (3)

If both pi,j,l,t and pk,j,l,t are equal to 0, the total demand
reaches the maximum value, Dj,l,t. Note that when the de-
mand is lower than Dj,l,t, then the remaining customers would
take another mode of transportation to reach the destination
or may choose not to travel at all.
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B. Pricing strategy of the RSPs
Since the RSPs only have AVs, they do not need to select

any prices for human drivers. However, they need to select
prices for the customers who are availing the services. Each
RSP decides the prices for each source-destination pair at time
t in order to maximize its revenue. The revenue of RSP i is

T∑
t=1

∑
j

∑
l

pi,j,l,tDi,j,l,t. (4)

Note that the demand for a RSP depends on the price selected
by the other RSP (cf. (1)).

Note that in practice, the RSPs may optimize for a smaller
time window T since the estimate for demand may be accurate
for a smaller time-scale and can employ a sliding window
approach by optimizing first from t = 1, . . . , T , then t =
2, . . . , T + 1 and so on.

C. Routing of the vehicles by the RSPs
Each RSP also needs to route its vehicles in order to meet

the demand. Note that a RSP can only serve customers at a
certain location at a given time if it has vehicles at that location
at that time. If a vehicle is not serving any customer, then, the
vehicle is a free vehicle and can be routed by the RSP to
some other location for picking up customers. Let ui,j,l,t be
the number of free vehicles which have been routed by RSP
i to location l from location j at time t. Let xi,j,t be the total
number of vehicles operated by RSP i at time t at location j.

A RSP can indirectly control the number of customers it
would serve to a destination at a certain time. For example,
if the demand at certain location is very small, the RSP may
select a higher price for that location which would drive down
the demand to that location so that it may instead deploy
vehicles to other locations.

A vehicle takes a certain time to move from one location
to another. We define the tensor At that specifies the exact
number of time slots a vehicle takes to move from location
i to location j at time slot t. For example, if it takes 2 time
slots to go from location i to location j at time t, then in the
tensor At, the element At

i,j,2 is 1. We assume that at the start
of the horizon each RSP knows all of the elements of At for
all time t within the horizon. Note that if the time horizon T
is small, this is a reasonable assumption, as the RSPs can have
accurate predictions regarding the time a vehicle takes to go
from one node to another node.

Formally,

At
j,l,τ =


1, if it takes exactly τ slots

to reach to location l from j,
0, otherwise.

We assume that At
j,l,0 = 0 for all source-destination pairs.

Thus, vehicles take at least one time slot to travel over link
(j, l). Note that a vehicle may take different times to reach
node l from node j and to reach node j from node l; hence,
At

j,l,τ may not be symmetric. For all customers who have
chosen RSP i at time t to travel from j towards l, those
vehicles will again be available after τ time slots at location

l if At
j,l,τ = 1. Thus, the number of vehicles owned by RSP i

that reach location j at time t because of the rides from other
locations towards location j is given by∑

τ<t

∑
l

Di,l,j,τA
τ
l,j,t−τ . (5)

Similarly, the number of free vehicles that will reach location
j when free vehicles are routed by the RSP i from other
locations to location j is given by

∑
τ<t

∑
l ui,l,j,τA

τ
l,j,t−τ .

Therefore, the number of available vehicles of RSP i at the
end of time t is given by

xi,j,t = xi,j,t−1 +
∑
τ<t

∑
l

Di,l,j,τA
τ
l,j,t−τ +∑

τ<t

∑
l

ui,l,j,τA
τ
l,j,t−τ −

∑
l

Di,j,l,t −
∑
l

ui,j,l,t. (6)

The last two terms represent the number of rides from location
j to other locations at time t and the number of free vehicles
routed to other locations from location j at time t. We assume
that xi,j,0 is given and known to all the RSPs. Hence, the initial
locations of the vehicles owned by RSP i are known. Note
that since we have assumed that Aτ

l,j,0 = 0, for any origin-
destination pair (l, j), thus, Dj,j,τA

τ
j,j,t−τ = 0 for t = τ .

Furthermore, we assume that the vehicle supplies must
satisfy the following two constraints:

xi,j,t ≥ 0, ui,j,l,t ≥ 0. (7)

The constraints in (7) represent that the number of free
vehicles which are routed and the number of available vehicles
at any location can not be negative. The constraints ensure
that the demand can not exceed the total number of available
vehicles. Note that since the initial locations of the vehicles are
given, the constraint in (7) will ensure that the total number of
vehicles (sum of the number of vehicles which are in transit
and which are free) never exceed the capacity Ci of RSP i.

Finally, we require the price pi,j,l,t must be non-negative
and less than or equal to pmax:

0 ≤ pi,j,l,t ≤ pmax. (8)

D. Strategy of Each RSP
We formulate the RSP’s price selection and routing decision

as a game theoretic problem where each RSP takes its decision
in order to maximize its own profit. Hence, RSP i solves the
following

P : maximize Fi = (
∑

t

∑
j

∑
l pi,j,l,tDi,j,l,t − cj,l,tDi,j,l,t

−c′j,l,tui,j,l,t)

subject to (6), (7), (8).

Here, cj,l,t represent the cost of routing one vehicle from
j to i at time t, so that the second term in the objective
represents the cost for all trips from location j to location
l. Likewise, c′j,l,t represents the per-vehicle cost of routing a
free vehicle from j to i at time t, which in general we allow to
be different from ci,j,t, e.g., if it requires less energy to route a
free vehicle. Hence, the third term in the objective represents
the total cost for rerouting free vehicles from one location to

211



other location. The decision variables are pi,j,l,t and ui,j,l,t.
The parameters Di,j,l,t and xi,j,t depend implicitly on the two
decision variables.

We assume that vehicles move from location j to location
l by taking the path with the shortest time. For example, the
vehicles may be equipped with an app like Google Maps that
provides this information. The decision of how to optimally
choose paths for each route is beyond the scope of this paper.

Definition 1. For i = 1, 2, let Si = {pi,j,l,t, ui,j,l,t} be the
strategy of RSP i and let Si be the strategy space of the RSP.
Let S−i be the strategy of the RSP other than i and let S−i

be the strategy space of the RSP other than i.

Note from (1) that the demand Di,j,l,t inherently depends
on the strategy of the other RSP (pk,j,l,t). Specifically, given
the price pk,j,l,t, k ̸= i, the price pi,j,l,t completely specifies
the demand Di,j,l,t.

The strategy space Si for i = 1, 2 is characterized by the
set of constraints of the optimization problem P . Note from
(6) that the strategy space Si depends on the strategy S−i

since the demand Di,j,l,t depends on the price selected by the
RSP k ̸= i. At times to make this explicit, we will denote
RSP i’s strategy space as Si(S−i). When the strategy space
of a player also depends on the strategy of other player, the
appropriate solution concept is a generalized Nash equilibrium
(GNE) instead of a Nash equilibrium. In the following, we
define the strategy profile which constitutes a GNE.

Definition 2. A Generalized Nash equilibrium (GNE) strategy
profile for the RSPs is the strategy vector {S1, S2} such that
for each RSP i = 1, 2

Fi(S
′
i, S−i) ≤ Fi(Si, S−i) ∀S′

i ∈ Si(S−i). (9)

where Fi(·) is the objective of RSP i of the optimization
problem P .

E. Multiple GNEs

Note from (2) that if Di,j,l,t = 0, there can be multiple
values of pi,j,l,t for which Di,j,l,t = 0. Hence, different
strategies can give the same demand for a RSP. Note that the
price selected by RSP i, i = 1, 2 when Di,j,l,t = 0 can impact
the strategy space S−i. Thus, there may be multiple GNEs.

Assumption 1. We consider that when Di,j,l,t = 0 for i = 1, 2
the price pi,j,l,t satisfies

pi,j,l,t =
pmax

2
+

pk,j,l,t
2

(10)

for k ∈ {1, 2}, k ̸= i.

In an equilibrium when Di,j,l,t = 0, any price pi,j,l,t as
in (2) would not influence the revenue of RSP i. However, it
would influence the strategy S−i. Specifically, when the price
is set as in (10), it is the smallest price the RSP i can set when
Di,j,l,t = 0. Thus, RSP k ∈ {1, 2}, k ̸= i, also needs to lower
its price in order to maintain the same demand Dk,j,l,t. This
corresponds to “maximum way” RSP i can deter RSP k or a
‘credible threat’ from RSP i. In a non-cooperative competitive
setting, a RSP may want to inflict maximum harm on its

competition. Assumption 1 represents the above behavior of a
RSP.

Note that if Di,j,l,t > 0 for i = 1, 2 and for all (j, l),
then the prices of the RSPs becomes unique. We later show
that under Assumption 1, by solving a convex optimization
problem we obtain a GNE. However, for other price choices
when Di,j,l,t = 0, the strategy space becomes non-convex.
Thus, determining a GNE may become more computationally
challenging.

F. Convex Optimization

Note from (1) that the objective in Problem P is not
concave due to the piecewise linear structure of Di,j,l,t. In
the following, we give an equivalent representation which is
a convex optimization problem. First, we introduce a notation

Definition 3. Let F̃i(Si, S−i) be

F̃i(Si, S−i) =
∑
t,j,l

pi,j,l,tDj,l,t

(
1

2
− pi,j,l,t

pmax
+

pk,j,l,t
2pmax

)
− cj,l,tDj,l,t

(
1

2
− pi,j,l,t

pmax
+

pk,l,j,t
2pmax

)
− c′j,l,tui,j,l,t. (11)

F̃i depends on the prices selected by the RSP k. The
optimization problem in P is equivalent to the following form:

P1 : maximize F̃i(Si, S−i)

subject to (6), (7), (8)

Di,j,l,t = Dj,l,t

(
1

2
− pi,j,l,t

pmax
+

pk,l,j,t
2pmax

)
(12)

Di,j,l,t ≥ 0. (13)

The difference between this and the previous formulation in
P is that here the maximization with 0 in (1) is dropped in the
objective and instead moved into the constraints. The objective
F̃i is concave in the decision variable pi,j,l,t; however, it also
depends on the prices (strategy) selected by RSP k. Further, the
set of constraints makes the strategy space Si(S−i) a closed
compact convex set for any choice of S−i ∈ S−i.

Because of the constraint Di,j,l,t ≥ 0, we observe that

pi,j,l,t ≤
pmax

2
+

pk,j,l,t
2

. (14)

Thus, the solution of the optimization problem gives pi,j,l,t =
pmax

2
+

pk,j,l,t
2

when Di,j,l,t = 0. Hence, it satisfies Assump-
tion 1.

G. Potential Game

Let G1 denote the game corresponding to P1. With a slight
abuse of notation, we will continue to use Si to denote player
i’s strategy set in this game (as given by the constraints in
P1). We next show that G1 is a potential game, i.e., it admits
a potential function as defined next.

Definition 4. A function Φ(·) is a potential for G1, if
Φ(Si, S−i) − Φ(S′

i, S−i) = F̃i(Si, S−i) − F̃i(S
′
i, S−i) for all

Si and S′
i in Si(S−i) and all i.
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For differentiable functions, the above definition is equiva-
lent to [21]

∂Φ

∂Si
=

∂F̃i

∂Si
∀i,

Consider the function

Φ =
∑
t

∑
j

∑
l

pi,j,l,tpk,j,l,tDj,l,t

2pmax
+

∑
i

∑
t

∑
l

∑
j

pi,j,l,tDj,l,t(
1

2
− 1

pmax
pi,j,l,t)

+ cj,l,tDj,l,t(
1

pmax
pi,j,l,t)− c′j,l,tui,j,l,t. (15)

Theorem 1. G1 is a concave potential game with potential Φ.
Solution of the following optimization problem gives a GNE
strategy profile under Assumption 1:-

Ppot : maximize Φ

subject to (6), (7), (12), (13) ∀i = 1, 2. (16)

The decision variables are pi,j,l,t, ui,j,l,t for i = 1, 2.

Proof. Observe that for all i,

∂Φ

∂pi,j,l,t
=

∂F̃i

∂pi,j,l,t
,

∂Φ

∂pi,j,l,t
=

∂F̃i

∂ui,j,l,t
. (17)

This ensures that Φ is a potential function of the game by
Definition 4.

Also observe that Φ has a bilinear term. However, Φ is still

concave because
∂2Φ

∂pi,j,l,t∂pk,j,l,t
=

Dj,l,t

2pmax
and

∂2Φ

∂p2i,j,l,t
=

−2Dj,l,t

pmax
. Thus, the Hessian is negative definite.

Further, when we restrict our strategy profile to follow
Assumption 1, the strategy space of each RSP becomes equal
to that of the constraints in Ppot. Hence, the solution of Ppot

is a GNE under Assumption 1.

Remark 1. Since the potential function is strictly concave and
the strategy space is closed, compact, and convex, thus, the
solution of Ppot is unique. The GNE obtained from the solution
of the Ppot is also known as Normalized Nash equilibrium [22]
or variational-GNE [23].

Remark 2. If there is a GNE strategy profile which satisfies
Assumption 1, that will also be the solution of Ppot. If GNE is
unique and satisfy Assumption 1, then GNE and the solution
of the optimization problem in Ppot are the same. Also note
that the solution of Ppot is GNE only under Assumption 1, i.e.,
when a RSP i has 0 demand, its price must be

pmax

2
+
pk,j,l,t

2
,

where k ∈ {1, 2}, k ̸= i. If we relax this assumption, the
solution may not be a GNE.

Remark 3. Note that Φ is not equal to the sum of the Fi’s.
Hence, an equilibrium to the potential game is not the same as
the outcome obtained when the two RSPs collude to maximize
the sum of their profits.

The above result depicts a GNE when each RSP chooses
prices under Assumption 1. In the GNE obtained by the
solution of Ppot, the prices for both the RSPs may be different.
The next result identifies the condition in which the solution
of optimization problem in Ppot gives a symmetric GNE.

Theorem 2. If C1 = C2 and all the vehicles are at the same
location initially for all the RSPs, then, if the optimal solution
in Ppot is such that for all source-destination pairs (j, l) either
all the RSPs have positive demand or zero demand at all time,
i.e., either Di,j,l,t > 0, Dk,j,l,t > 0 or Di,j,l,t = Dk,j,l,t = 0,
then it must be that pi,j,l,t = pk,j,l,t and Di,j,l,t = Dk,j,l,t.

The above result indicates that when both the RSPs have
the same number of vehicles starting from the same location
then there exists a symmetric GNE where the strategies are
identical under the condition that no source-destination pair
is served by one of the RSPs alone. The result indicates that
if all the source-destination pairs are served by the RSPs, in
the GNE they can not offer different prices. Further, the total
number of customers served is equally divided between the
two RSPs. Intuitively, under symmetric conditions where both
the RSPs are identical, in the equilibrium both of them should
behave similarly.

H. Extension: Non-Deterministic Demand

Throughout this paper we assume that the RSPs estimation
for the potential demand between any two locations. Our
analysis will go through when the RSPs only know the
distribution of the demand between any two nodes j and l,
Dj,l,t. Specifically, we formulate the optimization problem for
each RSP as a scenario-based stochastic optimization problem
where a scenario m denotes the joint demand is Dm

j,l,t across
the time-periods t = 1, . . . , T and the location pairs (j, l). The
scenario m occurs with probability qm. For each such scenario,
we can define the set of constraints corresponding to scenario
m with Dm

i,j,l,t in place of Dm
j,l,t. The detailed analysis has

been relegated to our extended version [24] owing to the space
constraint.

I. Extension: More than 2 RSPs

When there are n RSPs are there, we can modify the
demand function (1) as the following

Di,j,l,t = max{Dj,l,t[
1

n
− pi,j,l,t

pmax
+

(n− 1)
∑

k ̸=i pk,j,l,t

npmax
], 0}

Here, the demand for RSP i linearly increases with the sum
of the prices of the other RSPs. Our analysis can be extended
to the above demand function.

III. MONOPOLY SCENARIO

We, now, consider the scenario where there is only one
(monopoly) RSP. We formulate the monopolist’s optimization
problem and the strategy of the monopoly. Subsequently, we
characterize a condition under which monopolist’s strategy
will be the same as the equilibrium profile in a duopolist
setting.
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Since there is only one RSP, we remove i ∈ {1, 2} from the
subscript of pi,j,l,t and simply denote the price from source j
to destination l at time t as pj,l,t.

The demand model is now given by the following

D̂j,l,t = Dj,l,t(1−
1

pmax
pj,l,t). (18)

Such linear demand response model has been considered in
the literature [25], [26]. Note that the demand expression is
similar to (3) and it is equivalent to (3) when pi,j,l,t = pk,j,l,t
and Di,j,l,t, Dk,j,l,t > 0. Here, we assume that pj,l,t ≤ pmax,
thus, D̂j,l,t ≥ 0.

We denote the number of free vehicles routed from node
j to node l during time slot t as uj,l,t. Let the number of
available vehicles at location j be xj,t.

Then, similar to (6), the number of available vehicles at a
location j at time t is given by,

xj,t = xj,t−1 +
∑
τ<t

∑
l

D̂l,j,τA
τ
l,j,t−τ+∑

τ<t

∑
l

ul,j,τA
τ
l,j,t−τ −

∑
l

D̂j,l,t −
∑
l

uj,l,t. (19)

Here, (19) represents the vehicle flow model when there is
only one RSP. xi,j,0 is the initial location of the vehicles of
the monopoly RSP and is assumed to be known.

The routing of vehicles also must satisfy the following two
constraints:

xj,t ≥ 0, uj,l,t ≥ 0. (20)

The constraints in (20) represents the fact that number of
available vehicles and the free vehicles that are routed can not
be negative. Again, (19) and (20) together imply that the total
number of vehicles is less than the capacity of the monopoly
RSP.

Thus, the monopoly RSP solves the following optimization
problem:

Pm : maximize
∑

j

∑
t pj,l,tDj,l,t(1−

1

pmax
pj,l,t)

−cj,l,tDj,l,t(1−
1

pmax
pj,l,t)− c′j,l,tuj,l,t (21)

subject to (19), (20), 0 ≤ pj,l,t ≤ pmax.

The above optimization problem is convex. We represent
optimal strategy of the RSP as (p∗j,l,t, u

∗
j,l,t). We can directly

compare the solution of the monopoly setting with the duopoly
setting for example from the solution of the potential game
Ppot (cf. (16)).

A. Equivalence between Monopoly and Duopoly

We now describe a condition under which the monopoly
price strategy and duopoly price strategy coincide at all the
origin-destination pairs for all time. Thus, competition will
not have any impact on the pricing strategy. Note that a
social planner or regulator may want to maximize the users’
surplus which increases as the prices decrease. Thus, the
social planner or regulator may want to regulate the market in

avoid conditions where competition does not impact the price.
Hence, such a study will be important to the social planner.

Suppose that the total vehicles are partitioned into two sets
N1 and N2. Let xi

j,t be the available vehicles at location j

at time t that belong to Ni, for i = 1, 2. Further, let D̂i
j,l,t

be the demand which will be satisfied by the vehicles in set
Ni and let ui

j,l,t be the number of free vehicles among the
xi
j,t vehicles which are routed from location j to l. Then, xi

j,t

changes as

xi
j,t = xi

j,t−1 +
∑
τ<t

∑
l

D̂i
l,j,τA

τ
l,j,t−τ+∑

τ<t

∑
l

ui
l,j,τA

τ
l,j,t−τ −

∑
l

D̂i
j,l,t −

∑
l

ui
j,l,t (22)

where
∑

j x
i
j,t ≤ |Ni| and |Ni| is the cardinality of Ni. Here,

xi
j,0 is the initial locations of the vehicles in the set Ni at

location j.
Now, consider the following optimization problem

Pm,1 : maximize
∑
j

∑
t

pj,l,tDj,l,t

(
1− 1

pmax
pj,l,t

)
− cj,l,tDj,l,t

(
1− 1

pmax
pj,l,t

)
−

c′j,l,t(u
1
j,l,t + u2

j,l,t)

subject to D̂1
j,l,t + D̂2

j,l,t = Dj,l,t

(
1− 1

pmax
pj,l,t

)
D̂i

j,l,t ≥ 0 ∀i
(22), 0 ≤ pj,l,t ≤ pmax, ui

j,l,t ≥ 0.

This is essentially the same as the monopolist optimization
problem presented earlier in Pm, except here we track which
vehicle is in each of the two partitions. The next result
characterizes when the monopoly and the duopoly price will
be the same. We denote the optimal solution to Pm,1 as
(p∗j,l,t, u

∗,1
j,l,t, u

∗,2
j,l,t). Likewise, u∗,1

i,j,l,t+u∗,2
j,l,t gives the optimal

solution u∗
j,l,t of the optimization problem Pm (cf. (21)).

Theorem 3. Suppose that the solution of the optimization
problem in Pm,1 is such that D̂i

j,l,tD̂
k
j,l,t = 0 ∀(j, l, t). Then,

the optimal solution is also a GNE profile of the duopoly
scenario when xi

j,0 = xi,j,0, and |Ni| = Ci, for i = 1, 2

with the GNE strategy profile pi,j,l,t = pj,l,t if D̂i
j,l,t > 0,

pi,j,l,t = pmax if D̂i
j,l,t = 0, ui

j,l,t = ui,j,l,t for i = 1, 2.
Under the above GNE strategy profile, Di,j,l,t = D̂i

j,l,t for
i = 1, 2.

Note that in order to have the monopoly price equal to the
duopoly price in a GNE, the price must be set at pi,j,l,t = pmax

when Di,j,l,t = 0 which violates Assumption 1. Hence, the
above solution will not be equal to the GNE given by the
solution of Ppot (cf. (16)).

Intuitively, when pi,j,l,t = pmax, the demand for RSP k,
k ̸= i, k ∈ {1, 2} becomes equal to the expression of D̂j,l,t

with pk,j,l,t = pj,l,t. Hence, if an optimal solution in Pm,1 is
such that D̂i

j,l,tD̂
k
j,l,t = 0, then in the duopoly setting we have

a GNE which is same as the monopoly solution.
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Cluster	1
Cluster	2

Fig. 1. Two clusters: each cluster has 10 nodes. Every node is connected to
every other node in the graph. However, the time taken to go from one node
within a cluster to a node of different cluster is 2 units compared to time
taken to go between any two nodes within a cluster which is 1 unit.

Note that when D̂i
j,l,tD̂

k
j,l,t = 0 for every source destination

pair (j, l), the monopoly RSP also partitions the total demand
into two mutually exclusive sets where each set of demand is
served by only one set of vehicles. Thus, an optimal solution
for the monopoly is such that each set of demand can be served
by the set of vehicles Ni i = 1, 2 with the same cardinality
as the capacity of RSP i and same initial locations as of the
vehicles of RSP i. It follows that the optimal solution also
induces a GNE in the duopoly scenario such that in the GNE
strategy profile pi,j,l,t = pmax when Di,j,l,t = 0.

Note that if the condition D̂i
j,l,tD̂

k
j,l,t = 0 for all pairs (j, l)

is not satisfied in any optimal solution of Pm,1, then it may
not induce the GNE even when in the GNE strategy profile
pi,j,l,t = pmax when Di,j,l,t = 0.

IV. NUMERICAL SIMULATIONS

A. Set Up
In this section, we numerically evaluate the pricing strategy

when there are two RSPs and compare with the monopoly
price. Towards this end, we consider a network consisting of
two cluster of nodes (Fig. 1). Each cluster consists of n = 10
nodes. Nodes in each cluster are connected with each other.
The time unit taken from any node of the cluster to any other
node within the cluster is 1. There also exists an edge from
each node of the cluster to every other node of the other cluster.
However, the time required to travel between clusters is 2.

We consider total time period T = 4. Total outgoing
demand from each node is the same, Dm,t at time t. We
consider that the demand towards every node within the cluster
as (1 − q)Dm,t/(n − 1) and the demand towards each node
of the other cluster is qDm,t/n where q ∈ (0, 0.5). Note that
when q = 0.5, the demand becomes balanced as the demand
towards any node from a given node is the same. When q is
near 0, there is little outgoing demand towards the nodes of
the other cluster. Note that such a demand can be prevalent in
a city consisting of two highly populated suburban areas, and
the demand within each area can be considered to be uniformly
distributed where as the demand from one sub-urban area to
another may vary over time.

We assume that demand is Dm,1 = 40, Dm,2 = 20, Dm,3 =
40, Dm,4 = 20. Thus, the demand oscillates between a high
value and a low value. We assume that each RSP has the same
capacity Ci. However, the initial locations of the vehicles of the
RSPs may be different. Similar to the demand, we consider that
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Fig. 2. Variation of Prices at time
periods 2, and 4 (low demand regime)
between any two nodes within cluster
1 with q. pi denotes the prices of RSP
i, i = 1, 2. pm denotes the monopoly
price.
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Fig. 3. Variation of Prices at time
periods 1 and 3 (high demand regime)
between any two nodes within cluster
1 with q. pi denotes the prices of RSP
i, i = 1, 2. pm denotes the monopoly
price.
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Fig. 4. Variation of Prices at time
periods 1 and 3 (low demand regime)
between any node from one cluster in
cluster 1 to a node at cluster 2 with
q. pi denotes the prices of RSP i,
i = 1, 2.
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Fig. 5. Variation of Prices at time pe-
riod 4 (high demand regime) between
any two nodes within cluster 1 with
q and with Ci = 800. pi denotes the
prices of RSP i, i = 1, 2. pm denotes
the monopoly price.

at each node in the cluster i, initially RSP i has (1− q)Ci/n
vehicles and at every node of the other cluster the number of
vehicles is qCi/n. Again as q increases, the initial positions
of the vehicles become more uniformly distributed over all the
locations. The cost cj,l,t = 0.1 (c′j,l,t = 0.05) for all origin-
destination pairs within the cluster and cj,l,t = 0.2 (c′j,l,t =
0.1) for all origin-destination pairs which originate from one
node in a cluster and ends in a different cluster. We consider
pmax = 1. We compare the prices with the monopoly setting
where we assume that a single RSP serves the customers with
combined capacity of the RSPs (i.e, C1 + C2) and with the
same initial locations as that of the vehicles of RSP 1 and RSP
2.

B. Results

1) Impact of q: We compare the prices for any origin-
destination pair within the same cluster. In Fig. 2, we show
the price for demand which originates and ends within cluster
1. Recall that when q is small, the demand is small from
one cluster to another cluster. Also note that when q is small,
RSP 1 has most of its initial vehicles stationed at the nodes
within cluster 1. Thus, RSP 1 chooses very high price for
every demand within cluster 1 since it faces little competition
from RSP 2. Hence, RSP 2 and 1 divide the entire region
with RSP 1 serving cluster 1 and RSP 2 serving cluster 2.
Note that when q is small, the prices almost become equal to
the monopoly prices.

Note that when q increases, the prices of both the RSPs
decrease even for the origin-destination pairs which originate
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and end within the same cluster. Thus, the competitive price
becomes different from the monopoly price. When q increases,
the demand becomes more balanced and the initial locations
of the vehicles of the RSPs also become more balanced over
the network. Hence, competition increases. When q becomes
0.5, the maximum competition is reached where the prices for
both the RSPs become the same which is in accordance of our
theoretical findings in Theorem 2.

Fig. 3 shows the prices when a demand originates from
node within a cluster and ends at a node in the other cluster.
The price is higher compared to the price for the demand
originating and ending within the same cluster. Since, here, a
RSP utilizes fewer vehicles to serve the demand as it takes
more time to reach the destination which may result in a
potential loss of revenue. Similar to Fig. 2, here, as q increases
the prices of the RSPs decrease sharply and become equal
when q = 0.5.

2) Impact of High Demand: Since the demand becomes
higher during the first and third time period, the corresponding
prices are also higher. Fig. 4 depicts how RSP 1 selects prices
for the origin-destination pairs within the same cluster. The
price of RSP 1 is smaller compared to RSP 2 similar to Fig. 2.
The prices of both the RSPs decrease as q increases.

Note that in the high demand period, the price from any
demand originating from one node in a cluster to a node in
other cluster reaches the maximum price pm. Hence, the RSPs
only compete for customers who want to travel only within
its own cluster. This shows that in a high demand regime, the
RSPs may not even serve some demand from one location to
a distant location even if the demand is uniformly distributed.

3) Impact of High capacity: In Fig. 5, we consider the
scenario where the RSPs have a larger number of vehicles.
Specifically, we consider that C1 = C2 = 800. The figure
shows that since the number of vehicles becomes very large,
the RSPs would compete more fiercely for nearly all values
of q. Hence, the prices become almost independent of q, and
the prices are much lower compared to the monopoly price.

V. CONCLUSIONS

We considered a model for competition among RSPs that
accounts for their pricing and routing decisions over time.
Under an assumption about how vehicles price when demand
is zero, we showed that this game admits a potential function
and used this to characterize a GNE of the game. We also
compared a market with a single monopoly RSP to one
with two competitive RSPs and showed that the impact of
competition may depend on the spatial distribution of demand
and the size of the RSPs.

The consideration of other demand model has been left for
the future. The extension to partial information game also
constitutes a future research direction.
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