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Abstract—To fully utilize the abundant spectrum resources in
millimeter wave (mmWave), Beam Alignment (BA) is necessary
for large antenna arrays to achieve large array gains. In
practical dynamic wireless environments, channel modeling is
challenging due to time-varying and multipath effects. In this
paper, we formulate the beam alignment problem as a non-
stationary online learning problem with the objective to maximize
the received signal strength under interference constraint. In
particular, we employ the non-stationary kernelized bandit to
leverage the correlation among beams and model the complex
beamforming and multipath channel functions. Furthermore, to
mitigate interference to other user equipment, we leverage the
primal-dual method to design a constrained UCB-type kernelized
bandit algorithm. Our theoretical analysis indicates that the
proposed algorithm can adaptively adjust the beam in time-
varying environments, such that both the cumulative regret
of the received signal and constraint violations have sublinear
bounds with respect to time. This result is of independent interest
for applications such as adaptive pricing and news ranking.
In addition, the algorithm assumes the channel is a black-box
function and does not require any prior knowledge for dynamic
channel modeling, and thus is applicable in a variety of scenarios.
We further show that if the information about the channel
variation is known, the algorithm will have better theoretical
guarantees and performance. Finally, we conduct simulations to
highlight the effectiveness of the proposed algorithm.

Index Terms—mmWave beam alignment, Gaussian Process
bandit, non-stationary bandit

I. INTRODUCTION

In the era of big data, the demand for high-speed com-
munication is significantly increasing. Various data-hungry
applications, such as virtual and augmented reality, high-
resolution mobile video streaming, and delay-sensitive online
gaming, come with significant traffic demands and incentivize
existing cellular network to seek larger bandwidths by com-
municating at higher frequencies. Millimeter wave (mmWave)
band, spanning from 30 to 300 GHz, is a promising technology
to support such high demand.

There are three fundamental challenges which can hinder
fully utilizing of the mmWave system: (I) Sample complexity.
The propagation loss is severe due to high atmospheric atten-
uation, which increases at higher frequencies. To overcome
this, beamforming with a large antenna array is leveraged to
form a directional beam and reduce the channel loss, which
could provide a higher throughput for a certain direction.

Beam alignment between transmitter and receiver is therefore
needed before data transmission [1]. Usually, time-consuming
exhaustive searches are performed and many samples are
required to find the optimal beam direction. (II) Time-varying
complicated function. Signals reach the receiver via multiple
paths, including one line-of-sight (LOS) path and several non-
line-of-sight (NLOS) paths. To this end, the received signal
strength is a non-linear non-convex function with respect to
beamforming vectors, and the Channel State Information (CSI)
for multi paths is difficult to obtain and estimate. In practical
environments and mobile scenarios, the mmWave channel be-
comes time-varying and estimating the channel gain becomes
more challenging, as existing paths may quickly disappear and
new paths may appear [2]. (III) Interference Constraints.
Although the beam is directional, in heterogeneous environ-
ments with multiple transmitters, users in neighboring cells
still have high interference if they use the same frequency
[3], particularly users who are located close to the cell’s edge
[4]. Therefore, some beam candidates cannot be used for data
transmission. In dynamic environments, it is more difficult to
check their eligibility with time-varying channels.

In the presence of these challenges, we pose the following
question: In a non-stationary multi-path environment, can
we learn to find the optimal interference-constrained beam
alignment configuration in a sample-efficient manner?

We cast this problem as a sequential decision-making prob-
lem, where the objective is to maximize the received signal
strength, under a time-varying constraint on the interference
at other users’ terminals. We use the kernelized multi-armed
bandits (i.e. Gaussian Process bandit) [5] to model this prob-
lem, where each sample point represents a beamforming vector
on an array of fixed-phase antennas. As different beamforming
vector leads to various beam directions and interference levels,
the received signal and the interference change accordingly.
We aim at designing a sequential query point selection (i.e.,
beamforming vector selection) strategy that maximizes the
reward (i.e., received signal strength) in a time-varying channel
with a small violation in the soft interference constraint.

Our constrained kernelized bandit model addresses the
above three challenges in a unified way. Since the reward
(received signal) function is continuous, it can be uniformly
approximated by a function in the reproducing kernel Hilbert
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space (RKHS) [6] (under a proper choice of the kernel). To
utilize this representation power of RKHS, we further assume
that the reward function is within a RKHS induced by a kernel.
With this assumption, the complicated multi-path channel in
challenge (II) could be represented by one function within the
RKHS. Such kernel-based modeling is also used in WLAN
[7] and wireless sensor networks [8]. As the channel is time-
varying, the reward function varies from time to time within
the RKHS. Further, since similar beamforming vectors lead
to similar beam and received signal strength, this assumption
automatically utilizes the beam correlation information [9] as
RKHS is kernel-based and correlation-embedded. Therefore,
we significantly reduce the search space, compared to the
exhaustive search in challenge (I). Moreover, we model the
interference-based beam eligibility in challenge (III) as a
constraint function. When the received signal at each non-
target user is less than a threshold, the constraint is satisfied
and the beam is eligible. As the channel is time-varying, this
constraint also changes with time. Finally, we develop the
constrained kernelized bandit based on the primal-dual method
and Gaussian Process agnostic setting. The proposed algorithm
periodically restarts to overcome the non-stationarity in the
environment. We further provide theoretical bounds on the
performance of reward and constraint violations for any kernel.

In summary, our major contributions are as follows:
1) Algorithm Design: Using the online learning framework,

we propose a novel constrained kernelized bandit algorithm
with restart for beam alignment in time-varying environments.
In particular, we first leverage the inherent correlation and
representation power of kernelized bandits, where the reward
function supports general multi-path scenarios and various
channel models. Second, we model the interference as a con-
strained bandit via the primal-dual method. Third, we propose
a restart schedule to handle the time-varying environments.

(2) Theoretical Results: We provide theoretical guarantees
on the cumulative regret and constraint violations, where the
regret is the loss compared with the optimal algorithm. In
particular, our proofs overcome technical challenges posed
by time-varying environments. We further provide sublinear
bounds for a general non-stationary constrained kernelized
bandit framework, which is a missing part of the state-of-
art kernelized bandit. Additionally, the proposed algorithm
is performed without prior knowledge about total channel
variation. If this knowledge is provided, we show that the
algorithm can further improve performance and both regret
and constraint violations bounds become tighter.

II. RELATED WORK

A. Beam Alignment

To reduce the beamforming overhead, there is a large
amount of work on digital and analog beamforming [10] and
channel selection [11]. The authors in [1] exploit the inher-
ent correlation in beamforming and leverage this contextual
information to reduce the search space for beam alignment.
However, its assumption of unimodal function with respect
to beam directions only holds in single path situations and

fails in multi-path scenarios. Wu et. al. [9] utilize the prior
knowledge of the channel fluctuation to accommodate reward
uncertainty. Specifically, they assume that the variance of the
channel fluctuation is known and as a result, less exploration is
needed and the beam alignment is accelerated. The authors in
[2] leverage stationary stochastic bandits to sense the change
of the environment in dynamic beamforming. In their model,
actions (arms) are designed based on the difference (offset)
of the indices of the optimal beams in two adjacent time
slots, which measures the rate of change of the environments.
They further assume that the reward of each arm is from
a fixed distribution depending on the arm but not on the
time slot (therefore, there exists a best arm that captures
the best rate of changes), which limits its generalization to
model dynamic environments. In [12], non-stationary multi-
armed bandits are leveraged for time-varying channels in beam
alignment, where they use a sliding window-based algorithm
and weight penalty-based algorithm. However, in their model,
arms are independent of each other and prior knowledge
of the number of breakpoints (when the reward distribution
changes) is required, which means it can only handle abruptly
change scenarios rather than slowly-changing scenarios and
the correlation between beams is not utilized. In contrast
to previous works, we focus on the interference-constrained
beam selection in a general time-varying environment, where
changes are time-dependent and it includes both abruptly
changes and slowly changes. The proposed algorithm can be
performed without any prior knowledge about changes.

B. Non-stationary bandit

Multi-armed bandit (MAB) is a general framework in se-
quential decision-making, where the agent needs to select a
query point at each time slot to maximize the cumulative
reward [13]. The unknown reward function is usually a black-
box function defined over a large domain space. In real-
world scenarios, the reward function is often not fixed and
varies over time. For example, in stochastic linear bandit
(the black-box function is linear and query points are non-
orthogonal), three common techniques are leveraged to tackle
time-varying rewards: (i) periodically restarting the learning
process [14], (ii) regression based on the data within a sliding
window [15], (iii) putting a time-dependent weight across all
data [16]. Recently, kernelized bandits (i.e. Gaussian process
bandits) have become popular, as they generalize traditional
MAB and linear bandit, by allowing the reward function
to be non-linear and non-convex [5]. Similarly, to tackle
non-stationarity, there are mainly three methods: restart [17],
sliding window [17] and weight penalty [18]. This problem
becomes more challenging in practical applications where
there are unknown soft constraints [19]. In this paper, we
generalize previous non-stationary results to the case with a
general unknown time-varying constraint function. We further
show that the restart method works with constraint bandits and
cast the interference-constrained beam alignment problem as
a constrained bandit model in time-varying environments.
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III. PROBLEM STATEMENT

We consider a millimeter wave (mmWave) point-to-point
communication system, where the transmitter (BS) is equipped
with phased array antennas and the receiver (UE) uses a
single antenna. Before data transmission, beam alignment is
needed to achieve the array gains and high throughput. Due
to the high power consumption in digital beamforming, we
focus on an analog beamforming structure that relies on a
single radio-frequency (RF) chain and one analog-to-digital
converter (ADC) with less power consumption. In practical
dynamic environments, the mmWave channel varies fast and
the change becomes faster in mobile scenarios, where either
the transmitter or the receiver is moving. Let xt ∈ CM denote
the beamforming weight vector at time t with M antennas.
We assume that xt ∈ X is in the predefined codebook,
where the number of beams |X| is finite. By controlling xt,
we have various beams with different directions and widths.
The transmitted pilot signal is s for all time slots. Since the
receiver has the omni-directional beam, the received signal
at the receiver is the weighted combination of the message s
across all antennas at the transmitter. For user equipment (UE)
A, we have the noise-free received signal strength (RSS) as

yt = |Htxts| =: ft(xt),

where Ht =
∑L

l=1 H
l
t denotes multipath time-varying channel

gain for UE A with L paths, which is a location-dependent
unknown function of time t. We assume that UE A observes
a noisy signal strength with an additive Gaussian noise nt,
without any estimates of the channel gain Ht. Therefore, we
have the observation at time t as rt = ft(xt) + nt. Besides
UE A, we further consider a group of UEs J . As UE A is
the target the beam wants to focus on, UEs in J do not want
to suffer from interference. We formulate the constraint of
interference as follows.

For UE j ∈ J , we have multipath time-varying chan-
nel Ht,j . The noise-free received signal strength is yt,j =
|Ht,jxts|, which is required to be less than a threshold ξj .
This constraint aims at reducing interference [4] and achieving
a large SINR for all UEs in J . We define the constraint for UE
j as ct,j = yt,j − ξj ≤ 0,∀j ∈ J . Combining |J | constraints
through defining the maximum cost as a fixed function

gt(xt) = max
j∈J

{ct,j}.

We further assume that the observation is noisy with Gaussian
noise ϵt, then, we have the interference constraint as follows

ct = gt(xt) + ϵt ≤ 0. (1)

In summary, we want to control the beamforming vector
xt, to find the beam which achieves largest RSS ft(xt)
for UE A while making RSS for UEs in J less than a
threshold, i.e., constraint gt(xt) ≤ 0. Both ft and gt are time-
varying unknown functions and the observations rt and ct
are noisy such that E[rt] = ft(xt) and E[ct] = gt(xt). In
heterogeneous environments with multiple transmitters, this

setting is common as J includes UEs in the same cell in
which A resides and UEs in the neighboring cells.

With different beamforming vectors xt, the transmitter can
turn the beam in various directions and widths. Our goal is to
find the best beam setting xt to maximize the received energy,
with time-varying interference constraints and non-stationary
channel conditions. Let T denote the time period for beam
alignment before downlink data transmission. We formulate
this beam alignment into an online constrained stochastic
optimization problem. Here, the algorithm picks beamforming
weight sequence {xt}Tt=1 to maximize the expected received
signal strength E[rt] subject to a constraint on the violation of
interference constraint E[ct] ≤ 0. We thus have an optimiza-
tion problem with a constraint at time t ∈ [1, T ] as follows:

max
xt

ft(xt) s.t. gt(xt) ≤ 0. (2)

At every time t, we want to use the past observations
{(r1, c1), . . . , (rt−1, ct−1)} to estimate the channel gains for
each beam and pick an appropriate beamforming vector xt that
maximizes the above optimization problem. In other words, we
want to determine a learning policy πt, which takes as input
{(r1, c1), . . . , (rt−1, ct−1)} and outputs xt, without knowing
time-varying functions ft and gt.

IV. CONSTRAINED NON-STATIONARY GAUSSIAN PROCESS
BANDIT MODEL

A. Preliminaries

Regularity Assumptions: As similar beamforming vectors
will produce similar beams, the beamforming vector xt is
highly correlated. We use the Reproducing Kernel Hilbert
Space (RKHS) induced by a kernel to model this correlation.
This formulation is different from the traditional multi-armed
bandit, where each beamforming vector is modeled as orthog-
onal arms and the correlation information between them can
not be modeled. We assume that ft is a fixed function in a
RKHS with a bounded norm. The RKHS, denoted by Hk(X),
is completely specified by its kernel function k(·, ·), with
an inner product ⟨·, ·⟩Hk

satisfying the reproducing property:
ft(x) = ⟨ft, k(x, ·)⟩Hk

for all ft ∈ Hk(X). Similar argument
holds for constraint gt with kernel k̃, and gt ∈ Hk̃(X).

Assumption 1 (Boundedness). We assume that ft at each
time t is bounded by ∥ft∥Hk

≤ B and k(x, x) ≤ 1 for a
fixed constant B. Similarly, we assume that ||g||Hk̃

≤ G and
k̃(x, x) ≤ 1 with a constant G.

Different from the restrictive assumption on unimodal re-
ward function in [1], our assumption supports both single-path
and multi-path channel and various channel models. This is
because an arbitrary continuous function can be approximated
by an element in this RKHS under the supremum norm
[6]. Moreover, it holds for practically relevant kernels. One
concrete example is Squared Exponential kernel, defined as
kSE(x, x

′) = exp(−s2/2l2) where scale parameter l > 0 and
s = ∥x − x′∥2 specifies distance between two points. In the
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following assumption, we assume that there exists one beam
satisfies the constraint in (1).

Assumption 2 (Slater Condition). There exists a constant τ >
0 such that for any t, there exists πo

t such that Eπo
t
gt(x) ≤ −τ .

This is a mild assumption since it only requires the existence
of a policy at time t such that the constraint is less than
a strictly negative value. From interference perspective, it is
satisfied if one beamforming vector xt has gt(xt) ≤ −τ .

Time-varying Budget: As the channel condition under
mobility is time-varying, we assume that the total variation
between ft and ft+1 satisfies the following budget, which
includes both abruptly-changing and slowly-changing environ-
ments. As the channel for UEs in J is also non-stationary, a
similar budget holds for the constraint gt as well.

Assumption 3 (Varying Budget). We assume that the vari-
ations in reward and constraint functions are bounded, i.e.∑T−1

t=1 ∥ft+1 − ft∥Hk
≤ Bf and

∑T−1
t=1 ∥gt+1 − gt∥Hk̃

≤ Bg .

The variation budget will show up in the upper bounds
of regret and constraint violation. In the next subsection, we
develop Algorithm 1 without prior knowledge of this budget.
In Corollary 2 of Section V, we show that the algorithm will
have a better performance guarantee if we know this budget.

Gaussian Process agnostic setting: We recall the surrogate
model in standard GP-UCB algorithm (Kernelized bandit) [5].
Gaussian process (GP) and Gaussian likelihood models are
used to design this algorithm only. GP (0, k(·, ·)), a Gaussian
process with zero mean and covariance k, is the prior for the
reward function ft. The noise nt is drawn independently from
N (0, λ). Conditioned on the history Ht, it has the posterior
distribution of ft as GP

(
µt(·), σ2

t (·)
)
, where the posterior

mean and variance are defined as follows.

µt(x) = kt(x)
T (Kt + λI)−1r1:t. (3)

σ2
t (x) = k(x, x)− kt(x)

T (Kt + λI)−1kt(x). (4)

where r1:t ∈ Rt is the reward vector [r1, . . . , rt]
T . For set

of sampling points At = {x1, . . . , xt}, the kernel matrix is
Kt = [k(x, x′)]x,x′∈At

∈ Rt×t for kernel function k and the
vector kt(x) = [k(x1, x), . . . , k(xt, x)]

T ∈ Rt.
Similarly, for constraint gt, we have an associated posterior

mean µ̃t and posterior variance σ̃2
t , where r1:t is replaced by

c1:t and kernel k is replaced by k̃. The GP prior and Gaussian
likelihood are only used for algorithm design and do not affect
the setting of reward function ft ∈ Hk(X), constraint function
gt ∈ Hk̃(X), and sub-Gaussian noise nt, ϵt. We further define
the maximum information gain [20] as follows.

Definition 1. For a given kernel k(x, x′), the maximum infor-
mation gain at time t is γt := maxA⊂X:|A|=t I(yA; fA) =
maxA⊂X:|A|=t

1
2 log det(It + λ−1KA), where KA =

[k(x, x′)]x,x′∈A and It is t× t identity matrix.

In the definition, I(yA; fA) denotes the mutual information
between fA = [f(x)]x∈A and yA = fA+nA, which quantifies
the reduction in uncertainty about f after observing yA at

Algorithm 1: Restart GP-UCB with Constraints

Input : Kernel k(·, ·), k̃(·, ·), γt, λ, δ, restart
interval W , ρ = 4B

τ , η = ρ

G
√
T

1 , for t ≥ 1 do
2 if t mod W = 1 then
3 reset to the initialization state, t0 = t
4 end
5 Set βt−1 = B + 1√

λ
R
√
2 log(1δ ) + 2γt−t0 ,

β̃t−1 = G+ 1√
λ
R
√

2 log(1δ ) + 2γ̃t−t0 ;

6 Let f̂t(x) = Proj[−B,B]µt−1(x) + βt−1σt−1(x),
and ĝt(x) = Proj[−G,G]µ̃t−1(x)− β̃t−1σ̃t−1(x);

7 Define acquisition: ẑϕt
(x) = f̂t(x)− ϕt ĝt(x);

8 Choose beamform vector xt = argmaxx∈X ẑϕt
(x),

Observe received signal rt = ft(xt) + nt, observe
interference constraint ct = gt(xt) + ϵt;

9 Update µt(x), σt(x) and µ̃t(x), σ̃t(x) in (3) and
(4) with data (xt, rt, ct) from t0 to t;

10 Update dual ϕt+1 = Proj[0,ρ][ϕt + ηĝt(xt)].
11 end

points A. We have γt = O(d log t) for linear kernel, and γt =
O((log t)d+1) for Squared Exponential kernel [20].

B. Algorithm

We devise here a learning policy πt that employs restarting
for dealing with learning in time-varying environments and a
primal-dual method for solving the constrained optimization.
The restart schedule is shown in lines 1 to 3 in Algorithm 1.
After W time slots, we will discard previous estimates and
restart to build a new estimate. The actual value of W will be
discussed in the next section.

Second, we construct an optimistic estimate on received
signal ft and interference constraint gt based on Upper Confi-
dence Bound (UCB) bandit. Specifically, the UCB-type explo-
ration combines mean and variance µt−1(x) + βt−1σt−1(x)
for ft(x), and µ̃t−1(x) − β̃t−1σ̃t−1(x) for gt(x) towards
negative constraint in line 6. These estimates will be truncated
according to their bounds B and G respectively.

Third, we employ the primal-dual optimization to solve
the constrained optimization problem. Let the baseline prob-
lem at time t be given by maxπt

{Eπt
ft(x) : Eπt

gt(x) ≤
0}. Then the associated Lagrangian is L(πt, ϕt) =
Eπt [ft(x)] − ϕtEπt [gt(x)] and the dual problem is D(ϕt) =
maxπt

L(πt, ϕt). If we approximate Eπt
[ft(x)] with f̂t(x) and

Eπt
[gt(x)] with ĝt(x), then acquisition ẑϕt

(x) = f̂t(x) −
ϕtĝt(x) is close to L(πt, ϕt). Therefore, we can get the prox-
imate optimal solution to D(ϕt) as xt = argmaxx∈X ẑϕt(x),
as shown in line 7 and 8 in Algorithm 1.

Fourth, we update the posterior mean and variance via
standard Gaussian Process regression in (3) and (4), which
works for both ft and gt with kernel k and k̃ respectively.

Finally, we design a dual variable update towards minimiz-
ing D(ϕt). As the gradient of ẑϕt

(x) (approximating D(ϕt))
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with respect to ϕt is −ĝt(x), we take a projected gradient
descent with step size η. The projected upper bound is selected
to be ρ ≥ 4B

τ , which utilizes the information that the optimal
dual ϕ∗ is within range [0, 2B

τ ]. The final dual update becomes
ϕt+1 = Proj[0,ρ][ϕt + ηĝt(xt)].

Except for using the restart strategy [14], [17] to leverage
the time-varying environment, other forgetting methods will
also work within our framework, such as the sliding window
[15], [17] and the exponentially increasing weights [16], [18].

V. PERFORMANCE ANALYSIS

In this section, we assess the performance of Algorithm 1
and provide theoretical bounds for both signal strength and
interference constraint. In the online and non-stationary set-
ting, it is difficult to directly solve the problem defined in (2)
by choosing the best policy at time t. This is because both
the reward and constraint function are time-varying and the
noisy observation is revealed only after a policy is executed.
In addition, since the constraint function gt is unknown,
the constraint gt(xt) ≤ 0 may not be satisfied in every
time t. Instead, we aim to satisfy the long-term constraint∑T

t=1 gt(xt) ≤ 0 over a given period T [19]. We define
the dynamic regret R(T ) as the difference of total reward
between our policy {xt}Tt=1 and the best policy {π∗

t }Tt=1. We
also define the constraint violation V (T ) as the cumulative
violation of constraint over period T . We will show that the
proposed algorithm achieves both small R(T ) and V (T ).

R(T ) =

T∑
t=1

Eπ∗
t
ft(x)−

T∑
t=1

ft(xt).

V (T ) =

[
T∑

t=1

gt(xt)

]
+

.

where [·]+ := max{·, 0}. π∗
t is defined as the best policy

at time t which maximizes Eπtft(x) =
∫
x∈X

ft(x)πt(x)dx
while satisfying the constraint Eπt

gt(x) =
∫
x∈X

gt(x)πt(x)dx
≤ 0. We highlight that the optimal policy π∗

t is time-dependent
and may change over time, as ft and gt change over time.

In the following theorem, we obtain upper bounds on the
regret of the received signal strength R(T ) and the interference
constraint violation V (T ), both of which are on the order of
T

3
4 . Combining the kernel of the reward function ft and the

constraint function gt, we further define combined maximum
information gain γ̂T = max{γT , γ̃T } and combined variation
budget B∆ = max{Bg, Bf}. We first state the result without
any prior knowledge of the combined variation budget B∆.

Theorem 1. If the restart period W = γ̂
1
4

T T
1
2 , for any ρ ≥ 4B

τ ,
the regret R(T ) and constraint violation V (T ) in Algorithm 1
at time T are bounded by:

R(T ) ≤ O
(
ρG

√
T + ργ̂

7
8

T B∆T
3
4

)
.

V (T ) ≤ O

((
1 +

1

ρ

)
γ̂

7
8

T B∆T
3
4 +G

√
T

)
.

Proof: The complete proof is provided in Section VII.

If the combined variation budget B∆ is known, the order
of B∆ in the upper bounds can be reduced from 1 to 1

4 , with
a different value of restart period W .

Corollary 2. If restart period W = γ̂
1
4

T T
1
2B

− 1
2

∆ , we have
tighter upper bounds for both regret and constraint violation.

R(T ) ≤ O
(
ρG

√
T + ργ̂

7
8

T B
1
4

∆T
3
4

)
.

V (T ) ≤ O

((
1 +

1

ρ

)
γ̂

7
8

T B
1
4

∆T
3
4 +G

√
T

)
.

Remark 1. Our dynamic regret bounds match the order
of the regret in the nonstationary Gaussian Process bandits
without any constraints [17], [18], [21]. It also generalizes
the kernelized bandits with constraints [19] in stationary
environments to the time-varying case.

VI. NUMERICAL RESULTS

We compare the performance of the proposed algorithm
with GP-UCB algorithm with Constraints (i.e. CKB-UCB
algorithm in [19]). We perform the comparison under both
abruptly-changing environments and the slowly-varying sce-
narios. We use the Phased Array System Toolbox in Matlab to
simulate the beamforming vector xt and channel Ht. As shown
in Figure 1 (a), we assume the transmitter has 4 antennas in the
uniform linear array. The channel consists of 10 NLOS path
and the carrier frequency is 60GHz. We evaluate 100 beam
candidates and use Squared Exponential kernel with scale
parameter l = 1 to capture the correlation between xt. The
received signal strength function f and interference constraint
function g are achieved through Monte Carlo simulation,
where path gains change due to moving of UEs.

The first experiment is conducted in the abruptly-changing
environments, where channel changes happen at time slot 100
and 300. As shown in Figure 1, GP-UCB has a significant
increase in the time-average regret because of changes in
channel gains. Our proposed R-GP-UCB overcomes it when-
ever the variation budget B∆ is known or not. The time-
average interference violations increases at time 100, which
means the constraint is violated. After some time slots, it
keeps decreasing, which indicates that the adaptively chosen
beamforming vector xt satisfies the constraint gt(xt) ≤ 0
on average. The second experiment corresponds to a slowly-
varying scenario, where all UEs keep moving at a random
direction at each time slot. The received signal ft and the
constraint gt are simulated per time slot and keep changing.

VII. PROOFS OF THEOREMS

Our main results are obtained via novel technical contribu-
tions. In particular, a direct combination of techniques from
constrained bandits [19] and non-stationary bandits [17] would
fail. This is because the standard ‘time-average’ trick [22] does
not hold when the unknown functions are time-varying. To
this end, we introduce a novel upper bound on the constraint
violation per time slot. This new per-time-slot bound can be
either positive or negative, while previous time-average bound
is always positive. This technique could also be of independent
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(a) Channel with 10 NLOS paths (b) Time-average Regret, Abruptly-change (c) Time-average Violation, Abruptly-change

Figure 1: Time-average Performance of two algorithms under abruptly change at time 100 and 300

(a) Time-average Regret, Slowly change (b) Time-average Violation, Slowly change

Figure 2: Time-average Performance of two algorithms under slowly change scenarios

interest for constrained reinforcement learning. Specifically,
we state a proof of Theorem 1 and Corollary 2 respectively.
The key idea is to construct a decomposition in Lemma 6
via dual variable update and concentration inequality. This
decomposition yields a bound on R(T ) by choosing ϕ = 0
and a bound on V (T ) by choosing ϕ = ρ. The novel upper
bound on the constraint violation per time slot is Lemma 9.

A. Proof of the Regret Bound R(T )

In this subsection, we focus on establishing the regret
bound. We first state the concentration inequality for non-
stationary UCB algorithms, which bounds the gap between
estimator µt−1(x) and true reward value ft(x). In comparison
to the stationary case, the non-stationary UCB algorithm
introduces an extra term ∆ft. A similar result holds for the
constraint function gt, where kernel k is replaced by kernel k̃.

Lemma 3. We have the following bound for any x:

|µt−1(x)− ft(x)| ≤ ∆ft + βtσt−1(x),

where ∆ft := 1/λ
√
2(1 + λ)WγW

t−1∑
s=t0

||fs − fs+1||Hk
.

Similarly, for gt we have |µ̃t−1(x)−gt(x)| ≤ ∆gt+β̃tσ̃t−1(x).
and ∆gt := 1/λ

√
2(1 + λ)Wγ̃W

∑t−1
s=t0

||gs − gs+1||Hk̃
.

Proof: This lemma is the same as Lemma 1 in [17].

Leverage the maximizing action at the acquisition function
ẑϕt(x), we have the following result.

Lemma 4. The estimator f̂t(xt) is bounded as

Eπ∗
t
ft(x)− f̂t(xt) ≤ −ϕtĝt(xt) + ϕt∆gt +∆ft.

Proof: As xt = argmaxx∈X ẑϕt
(x), from the definition of

ẑϕt(x), we have Eπ∗
t
f̂t(x)−ϕtEπ∗

t
ĝt(x) ≤ f̂t(xt)−ϕtĝt(xt).

From Lemma 3 and Eπ∗
t
gt(x) ≤ 0, we have

Eπ∗
t
ft(x) ≤ Eπ∗

t
f̂t(x) + ∆ft,

Eπ∗
t
ĝt(x) ≤ Eπ∗

t
gt(x) + ∆gt ≤ ∆gt.

Combining above three inequalities, we have

Eπ∗
t
ft(x) ≤ f̂t(xt)− ϕtĝt(xt) + ϕtEπ∗

t
ĝt(x) + ∆ft

≤ f̂t(xt)− ϕtĝt(xt) + ϕt∆gt +∆ft.

This concludes the above results.

We obtain the following lemma on the dual variable ϕt.

Lemma 5. The estimator ĝt(xt) is bounded as

(ϕ− ϕt)ĝt(xt) ≤ ηG2 +
1

2η
(ϕt − ϕ)2 − 1

2η
(ϕt+1 − ϕ)2.

Proof: From the dual update, we have

(ϕt+1 − ϕ)2 ≤ (ϕt + ηĝt(xt)− ϕ)2

≤ (ϕt − ϕ)2 + 2ηĝt(xt)(ϕt − ϕ) + η2ĝ2t (xt).

We prove above result as η > 0 and ĝt(xt) ≤ G.

In the following, we establish an important bound on
Eπ∗

t
ft(x)−ft(xt)+ϕgt(xt), which is the sum of instantaneous
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regret of ft and instantaneous violation of gt weighted by a
general dual parameter ϕ. Both the regret bound R(T ) and
constraint violation V (T ) are developed from this lemma.

Lemma 6. For any ϕ ∈ [0, ρ], we have

Eπ∗
t
ft(x)− ft(xt) + ϕgt(xt) ≤ δ(xt, ϕ),

where δ(xt, ϕ) = ρ∆gt + 2∆ft + 2βtσt−1(xt) + ϕ∆gt

+2ϕβ̃tσ̃t−1(xt) + ηG2 +
1

2η
(ϕt − ϕ)2 − 1

2η
(ϕt+1 − ϕ)2.

Proof: From Lemma 3, Lemma 4 and ϕt ≤ ρ, we have

Eπ∗
t
ft(x)− ft(xt) = Eπ∗

t
ft(x)− f̂t(xt) + f̂t(xt)− ft(xt)

≤ −ϕtĝt(xt) + ρ∆gt + 2∆ft + 2βtσt−1(xt).

As ϕgt(xt) = ϕ(gt(xt) − ĝt(xt)) + ϕtĝt(xt) + (ϕĝt(xt) −
ϕtĝt(xt)), use Lemma 3 for first bracket, and Lemma 5 for
last bracket, we have

ϕgt(xt) ≤ϕ∆gt + ϕ2β̃tσ̃t−1(xt) + ϕtĝt(xt)

+ ηG2 +
1

2η
(ϕt − ϕ)2 − 1

2η
(ϕt+1 − ϕ)2.

We conclude by combining above two inequalities.

Finally, by choosing ϕ = 0, we can separate the instanta-
neous regret of ft from the above decomposition. Then, by
summarizing the instantaneous regret of ft over time t, we
achieve the bound on R(T ). Two forms of bounds are proved
by setting restart period W when B∆ is known or not.

Lemma 7. The regret is bounded as

R(T ) = O(ρG
√
T + ργ̂

7
8

T B∆T
3
4 ).

Proof: Use the the definition on policy π̃t, Eπ̃t
ft(x) =

ft(xt) and Lemma 6 with ϕ = 0, we have the instantaneous
regret is bounded as

Eπ∗
t
ft(x)− Eπ̃tft(x)

≤ ρ∆gt + 2∆ft + 2βtσt−1(xt) + ηG2 +
1

2η
ϕ2
t −

1

2η
ϕ2
t+1.

As ϕ0 = 0, summarize the above inequalities over time t,

R(T ) =

T∑
t=1

Eπ∗
t
ft(x)− ft(xt)

≤
T∑

t=1

ρ∆gt +

T∑
t=1

2∆ft +

T∑
t=1

2βtσt−1(xt) + ηG2T.

Let γ̂T = max{γT , γ̃T }, B∆ = max{Bg, Bf}, β̂T =

max{βT , β̃T } = O(γ̂
1
2

T ), W = γ̂
1
4

T T
1
2 , η = ρ

G
√
T

, we have

R(T ) ≤ ηG2T + (ρ+ 4)γ̂
7
8

T B∆T
3
4

≤ O(ρG
√
T + ργ̂

7
8

T B∆T
3
4 ).

If W = γ̂
1
4

T T
1
2B

− 1
2

∆ , we have a tighter bound R(T ) ≤
O
(
ρG

√
T + ργ̂

7
8

T B
1
4

∆T
3
4

)
[17].

B. Proof of the Constraint Violation Bound V (T )

In this subsection, we focus on establishing the upper bound
of constraint violation V (T ). The first lemma is an extension
of Lemma 6 by choosing ϕ = ρ, where ρ ≥ 4B

τ is defined as
the upper bound in truncating ϕt.

Lemma 8. We construct a decomposition as

Eπ∗
t
ft(x)− Eπ̃tft(x) + ρEπ̃tgt(x) ≤ δ(xt, ρ),

where δ(xt, ρ) = ρ∆gt + 2∆ft + 2βtσt−1(xt) + ρ∆gt

+2ρβ̃tσ̃t−1(xt) + ηG2 +
1

2η
(ϕt − ρ)2 − 1

2η
(ϕt+1 − ρ)2.

Proof: Use the definition on policy π̃t, Eπ̃t
ft(x) = ft(xt)

and Eπ̃t
gt(x) = gt(xt) = −τ̃ , and Lemma 6 with ϕ = ρ.

The following Lemma generalizes Lemma 9 in [22] and
Theorem 42 in [23]. We build a new upper bound for gt(xt)
for all time t, rather than time averaged 1

T

∑
t gt(xt). We note

that δ(xt, ρ) may be negative, therefore we further generalize
the result from positive gt(xt) only to the case where gt(xt)
can be either positive or negative.

Lemma 9. If ρ ≥ 2ϕ∗
t , for gt(xt) ∈ [−G,G] we have

gt(xt) = Eπ̃tgt(x) ≤
2δ(xt, ρ)

ρ
.

Proof: Consider the optimization problem maxπt Eπtft(x)
s.t. Eπtgt(x) ≤ 0. Define the associated value function

v(τ) = max
πt∈∆

{Eπtft(x)|Eπtgt(x) ≤ −τ}.

By definition we have v(0) = Eπ∗
t
ft(x). We break down

the following analysis into four steps.
Step 1): As ϕ∗

t is the optimal solution to the dual problem,
following Theorem 3.59 in [24], we have −ϕ∗

t ∈ ∂v(0), which
means v(τ̃)− v(0) ≤ −ϕ∗

t τ̃ .
Step 2): We discuss the following two cases.
If −τ̃ > 0, we have the same result as Lemma 9 in [22],

Eπ̃tft(x) ≤ Eπ∗
t
ft(x) = v(0) ≤ v(τ̃).

If −τ̃ < 0, from the definition on policy π̃t, Eπ̃t
ft(x) =

ft(xt) and Eπ̃t
gt(x)= gt(xt)= −τ̃ , and the above definition

of v(τ), we have Eπ̃t
ft(x) ≤ v(τ̃).

Step 3); Combining above two steps, we have

Eπ∗
t
ft(x)− ϕ∗

t τ̃ = v(0)− ϕ∗
t τ̃ ≥ v(τ̃) ≥ Eπ̃tft(x).

Step 4): This yields

(ρ− ϕ∗
t )(−τ̃) = τ̃ϕ∗

t + ρ(−τ̃)

≤ Eπ∗
t
ft(x)− Eπ̃tft(x) + ρ(−τ̃) ≤ δ(xt, ρ).

where the last line uses the result in step 3) and Lemma 8.
As ρ ≥ 2ϕ∗

t and Eπ̃t
gt(x) = gt(xt) = −τ̃ , we have

Eπ̃t
gt(x) ≤

δ(xt, ρ)

ρ− ϕ∗
t

≤ 2δ(xt, ρ)

ρ
.
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As the optimal dual ϕ∗ is within range [0, 2B
τ ], the above

condition ρ ≥ 2ϕ∗
t is satisfied automatically when ρ ≥ 4B

τ .

Lemma 10. The constraint violation is bounded as

V (T ) ≤ O((1 +
1

ρ
)γ̂

7
8

T B∆T
3
4 +

G2T
1
2

ρ
+ ρT

1
2 ).

Proof: We consider the constraint violation

V (T ) ≤ 2

ρ

T∑
t=1

δ(xt, ρ)

≤
T∑

t=1

∆gt +

T∑
t=1

∆ft/ρ+

T∑
t=1

βtσt−1(xt)/ρ

+

T∑
t=1

β̃tσ̃t−1(xt) + ηG2T/ρ+
1

η
ρ.

where
∑T

t=1
1
2η [(ϕt−ρ)2− (ϕt+1−ρ)2] ≤ 1

2η (2ρϕT ) ≤ 1
ηρ

2.
Let γ̂T = max{γT , γ̃T }, B∆ = max{Bg, Bf}, β̂T =

max{βT , β̃T } = O(γ̂
1
2

T ), W = γ̂
1
4

T T
1
2 , η = ρ

G
√
T

, we have,

V (T ) ≤ O

((
1 +

1

ρ

)
γ̂

7
8

T B∆T
3
4 +G

√
T

)
.

If W = γ̂
1
4

T T
1
2B

− 1
2

∆ [17], we have a tighter bound V (T ) ≤
O
((

1 + 1
ρ

)
γ̂

7
8

T B
1
4

∆T
3
4 +G

√
T
)

.

VIII. CONCLUSION

In this paper, we formulate the mmWave beam alignment
problem in the time-varying multipath environment as a non-
stationary kernelized bandit learning problem with constraints.
The inherent correlation among the beams at successive time
steps is captured by a kernel. A primal-dual method is em-
ployed to tackle the constrained learning problem. Through
periodic restarts, the proposed algorithm can adaptively adjust
the beam to explore the environment and find the optimal beam
with a high probability. Theoretical analysis demonstrates
that both the received signal and the interference constraint
converge to the optimal solution in the limit, and thus, this
algorithm is asymptotically optimal. For future work, it would
be interesting to change the fixed restart period to an adaptive
period through change detection [25] – thereby extending the
algorithm in [26] to our soft-constrained setting.
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