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Abstract—In this paper, we study the problem of online
convex optimization with switching costs (SOCO) that appears in
diverse scenarios including power management, video streaming,
resource allocation, etc. SOCO refers to online decision problems
when the agent incurs both hitting cost and an additional switch-
ing cost of changing decisions. We adopt the universal dynamic
regret as the performance metric, and consider the case when
loss functions are unknown when making decisions. Previous
results rely on the assumptions on loss function, e.g., linearity
and smoothness, or prior knowledge of regularity measures, e.g.,
path length of the comparator sequence. In this paper, we propose
an algorithm IOMD-SOCO that applies to general convex loss
function, and show that the algorithm achieves an order-optimal
universal dynamic regret bound. We also propose its parameter-
free versions, i.e., without requiring the prior knowledge of path
length of the comparator sequence, and achieve the same-order
regret bound. We are the first to provide dynamic regret bounds
for SOCO with general convex loss functions via parameter-free
algorithm. Our numerical experiments show that IOMD-SOCO
indeed achieves a substantial performance improvement.

I. INTRODUCTION

Online Convex Optimization with switching costs (SOCO)
is a variant of the classic Online Convex Optimization (OCO)
[26], [29], where the agent (online learner) incurs a switching
cost for changing its decisions. Due to the model’s generality,
SOCO captures problems in many scenarios such as cloud
resource provisioning [10], online portfolio optimization with
transaction costs [21], electric vehicle charging [14], etc.

Specifically, SOCO could be viewed as a game between
an agent and an adaptive adversary or, the environment,
performed in a sequence of consecutive rounds. At round t,
after submitting a decision xt chosen from the decision set
χ, the agent receives a loss ft(xt) and incurs an additional
cost c(xt, xt−1) that penalizes the change of the consecutive
decisions. The objective of the agent is to minimize its total
cost over T rounds:

Cost(T ) =

T∑
t=1

ft(xt) + c(xt, xt−1).

Since we assume ft is revealed after making the decision
xt, the SOCO problem we considered belongs to the online
learning formulation, in which the literature usually adopts
regret as the performance metric. Thus in our paper, we use the
regret to evaluate the performance of agent, which is defined
as the difference between the total cost incurred by the agent
and that of a given comparator sequence u0, ..., uT ∈ χ:
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Regret(u1:T )

=

T∑
t=1

ft(xt) + c(xt, xt−1)−
T∑
t=1

(ft(ut) + c(ut, ut−1)).
(1)

Note that the regret form we consider is general, in which the
sequence of comparators {ut}Tt=1 can be arbitrarily given, i.e.,
the universal dynamic regret. This form of regret has attracted
an increasing attention in the recent literature of OCO [25],
[29] due to its generality. Regrets in previous studies for SOCO
are all special cases of (1). For example, most of the existing
studies which considered the polynomial l2 norm switching
costs (e.g., [8], [10], [11], [17]) used the restricted dynamic
regret. Meanwhile, some very recent work (e.g., [3]) considers
the universal static regret, which is also our special case.

An ideal online algorithm is to choose xt at each round
t to obtain a sublinear growth of regret with respect to the
time horizon T . And we explore the analytical performance in
terms of universal dynamic regret. Note that the performance
guarantee with respect to the dynamic regret of any online
algorithm is strongly correlated with the temporal variations
of the dynamic environment and comparator sequence. Intu-
itively, the regret bound of any online algorithm should depend
on how drastically the loss function ft and the comparator ut
vary across time. Below, we introduce two kinds of commonly-
adopted regularities on the temporal variations of dynamic
environment and comparator sequence from the literature of
OCO (e.g., [2], [25], [28], [29]).
• Path-length (e.g., [25], [28], [29]):

PT =

T∑
t=1

||ut − ut−1||p, p ≥ 1.

• Function-variation (e.g., [2], [25], [28]):

Vf =

T∑
t=1

max
x∈χ
|ft(x)− ft−1(x)|.

Here we let u0 = f0 = 0. These regularities are not
comparable in general and are favored in different scenarios
[26], [28]. It is known that in the worst case, it is impossible
to achieve a sublinear dynamic regret bound for any online
algorithm unless regularity measures are sublinear [26].

Previous work on SOCO mostly focuses on switching cost
of l1 norm [21] and l2 norm [6], [10], [24], as well as
squared l2 norm [11], [12], [17]. Recently the squared l2
norm switching cost has attracted a lot of attention due to
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its importance in many practical scenarios such as online
regression [11], economic dispatch in power systems [17],
trajectory tracking in LTV systems [17], and dynamic re-
source management in data centers [10]. Our present paper
considers switching costs of the squared lp (p ≥ 1) norm, i.e.,
c(xt, xt−1) = 1

2
||xt−xt−1||2p (without loss of generality, we let

the coefficient be 1
2 ). Note that the form of switching costs we

consider generalizes the squared l2 norm switching costs. The
squared norm switching cost has several applications to diverse
problems across learning and control, e.g., LQR control [12]
(p = 2), and smoothed online regression [12] in which the
regularization term is square l1 or l2 norm distance.

In this paper, we follow the line of research stemmed
from the advanced algorithm R-OBD [11] for SOCO with
predictable loss functions. We present its variant, named
IOMD-SOCO. By adopting the same spirit of IOMD in [5],
and designing appropriate time-varying. learning parameters to
address the SOCO problem with squared lp norm switching
costs. We also propose the parameter-free versions of IOMD-
SOCO, and investigate their performance in terms of universal
dynamic regret for general convex loss functions.

A. Contributions

We summarize our main results as follows:
• We propose the IOMD-SOCO algorithm and show that

it enjoys an upper bound of O(min{Vf ,
√
T + TPT }) on

the universal dynamic regret for generally convex loss
functions. We also provide lower bounds to show that
this dynamic regret bound is tight (order-optimal).

• When the path-length PT is unknown in advance, we
adopt and propose the online ensemble method to tune
the learning parameters in IOMD-SOCO and proposed a
parameter-free algorithm Hedge-IOMD-SOCO. Our the-
oretical result shows that it can achieve a regret bound
of O(min{

√
T + TPT ,max{Vf ,

√
T}}), which only incurs

a slightly worse performance degradation compared to
IOMD-SOCO.

• When the path length PT could be calculated on
the fly, we design another parameter-free version of
IOMD-SOCO, AdaIOMD-SOCO, and show that it
could preserve the regret bound of IOMD-SOCO (i.e.,
O(min{Vf ,

√
T + TPT })).

B. Related Work

In this subsection, we mainly review the literature of SOCO
with squared norm switching costs, which is mostly related
to ours. We categorize these work by whether the agent can
observe the loss functions before making decisions.

Known loss functions. There are several works on SOCO
with a single-step prediction of loss functions, that is, the loss
function ft is known to the agent before making the decision
at round t. [12] first studied OCO with squared l2 norm
switching cost given strongly-convex loss functions. They
proposed Online Balanced Descent (OBD) algorithm, which
achieves a constant competitive ratio. Later [11] proposed two
improved algorithms, G-OBD and R-OBD, and proved that

R-OBD can achieve sublinear dynamic regret. [30] showed
that by applying the standard Online Mirror Descent (OMD),
one can achieve a sublinear dynamic regret for smooth loss
functions when switching cost is l2 norm or squared l2 norm.

Moreover, recently, [17] studied the SOCO with squared
l2 norm switching costs under multi-step prediction setting,
that is, the agent can observe the next W loss functions
{ft, ..., ft+W−1} before making decision xt. They developed
online algorithms based on horizon gradient descent (HGD)
and established an O(Vθ) restricted dynamic regret bound,
where Vθ is the path-length of sequence {θt}Tt=1 and θt =
arg minx∈χ ft(x). However, their results rely on the strong
assumption that the loss functions are strongly-convex and
smooth. [22] also considered squared l2 norm switching costs
with multi-step predictions of loss functions. When the pre-
diction window is one, their setting could reduces to the same
setting in our paper. However, they studied the competitive
ratio for their algorithms’ performance, and didn’t provide
results on regret. Besides, prediction is usually considered
as imperfect in previous study (e.g., [7], [15]). When the
prediction window is limited to one and the prediction error is
zero, the setting of [15] reduces to the one considered in our
paper. In this case, their algorithms reduce to OGD algorithm
and achieve a restricted dynamic regret bound of

√
TVf .

Unknown loss functions. When the agent does not know ft
and any future loss functions at the time of making decision xt,
i.e., online learning setting. [30] studied SOCO with squared
l2 norm switching cost without prediction and developed an
algorithm based on the OMD method and confirm its sublinear
dynamic regret guarantee for smooth loss functions. This work
is mostly related to our work since we will also study the
SOCO with squared norm switching costs without prediction
and choose dynamic regret as the performance metric. Very
recently, [3] also study the SOCO problems with squared l2
norm switching costs without prediction, but they use the static
benchmark and assume the loss functions are linear.

We summarize our and previous relevant results in Table I.

C. Preliminaries

We denote DΦ : χ×χ→ R+ the Bregman Divergence w.r.t.
Φ, which is defined as DΦ(x, y) = Φ(x)−Φ(y)−〈∇Φ(y), x− y〉.
For convenience, we let || · || be the lp norm throughout the
rest of paper, and assume that Φ is strongly convex w.r.t
|| · || in χ. Without loss of generality, we could assume
the strong convexity constant of Φ to be 1

2 , then we have
DΦ(x, y) ≥ 1

2
||x − y||2. The symbol O(·) hides the constants

without affecting the final regret order.
We assume that the following assumption holds throughout

the paper, which is a common assumption in the literature of
OCO [25], [29].

Assumption 1: We make following assumptions w.r.t feasi-
ble set χ, loss functions f1, f2..., fT :
• The feasible set χ is closed, convex and compact. ∀x, y ∈
χ, it holds that

max{||x− y||,
√

2DΦ(x, y)} ≤ R.
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Table I. Results on regret with polynomial norm switching cost. In this table, L represents the path-length or budget of the path-length, and
the symbol O(·) hides the

√
T term since L ≥ O(1). Parameter-free means the parameter setting in the corresponding algorithm does not

require the prior knowledge of L and Vf . The metric refers to the regret form they adopt, and dynamic regrets in previous literature are
special cases of the universal dynamic regret. The Knowledge of ft reflects whether ft is known at the beginning of round t.

Knowledge Algorithm Assumption on ft Switching costs Metric Parameter-free Upper bounds
OBD [8] locally-polyhedral, convex ||xt − xt−1||2 # O(

√
TL)

OBD [12] strongly-convex, smooth ||xt − xt−1||22 # O(T )

R-OBD [11] strongly-convex ||xt − xt−1||2 # O(
√
TL)

ft is known OBD, RHC [10] convex ||xt − xt−1||2 dynamic # O(
√
TL)

1 ≤ σ ≤ 2
OMD [30] convex, smooth ||xt − xt−1||σ2 # O(

√
TL)

RHGD, RHAG [17] strong-convex, smooth ||xt − xt−1||22 # O(
√
TL)

RHIG [15] strong-convex, smooth ||xt − xt−1||2 # O(
√

TVf )

OGD [10], [24] convex ||xt − xt−1||2 dynamic # O(
√
TL)

1 ≤ σ ≤ 2
OMD [30] convex, smooth ||xt − xt−1||σ2 dynamic # O(

√
TL)

ft is unknown ||xt − xt−1||1+σ
2 O((log T )

1+min{1,σ}
2

[3] linear σ ≥ 0 (universal) static ! T
1−min{1,σ}

2 )

OGDM [21] convex ||xt − xt−1||1 static ! O(
√
T )

IOMD-SOCO convex ||xt − xt−1||2 # O(min{Vf ,
√
TL})

ft is unknown IOMD-SOCO convex ||xt − xt−1||2 ! O(min{PTVf ,
√
TPT })

(This paper) Hedge-IOMD-SOCO convex ||xt − xt−1||2 (universal) dynamic ! O(min{
√
TL,max{Vf ,

√
T}})

AdaIOMD-SOCO convex ||xt − xt−1||2 ! O(min{Vf ,
√
TL})

Algorithm 1 IOMD-SOCO
1: Initialize: x1, β, λ0 = 1.
2: for round t = 1...T do
3: λt = 1

β2

∑t−1
i=1 δi + 1 (or λt = λt−1 +

δt−1

β2 )
4: xt+1 = arg minx∈χ ft(x) + λtDΦ(x, xt)

5: δt = ft(xt)− ft(xt+1)− λtDΦ(xt+1, xt) + 1
2
||xt+1− xt||2

6: Choose action xt+1 and then observe ft+1

7: end for

• Loss functions f1...fT are convex, and there exists a
constant G > 0 such that

||∇ft(x)|| ≤ G,∀x ∈ χ, t.

Here it also implies that ft is Lipschitz continuous with
parameter G.

In this paper, all the proofs of listed lemmas and theorems are
given in our online report [1].

II. MAIN RESULTS

In this section, we propose our algorithm, IOMD-SOCO for
SOCO with squared lp norm switching costs (see Algorithm
1), and provide its regret guarantee in the following theorem.

Theorem 1: Under Assumption 1, let β2 = R2 +RPT , then
IOMD-SOCO ensures that

Regret(u1:T ) ≤ R2λT +R

T∑
t=2

λt||ut − ut−1||+
T∑
t=1

δt

≤ O(min{Vf ,
√
T + TPT }),

(2)

where δt = ft(xt)−ft(xt+1)−λtDΦ(xt+1, xt)+ 1
2
||xt+1−xt||2.

The regret bound in Theorem 1 outperforms any of prior
results (e.g., [11], [12], [30]) in terms of dynamic regret,
whether they assumed the loss functions are known in advance
or not (See table I). For a group of practical SOCO problems
such as economic dispatch in power systems [16], in which
the loss function remains relatively stable, i.e., Vf = O(1), our
algorithm IOMD-SOCO can get a constant regret. As far as we
know, there is no online algorithm in the literature that could
achieve a constant regret for any convex loss function sequence
when Vf = O(1), even if the loss functions could be observed
before making decisions. Besides, in many practical scenarios
wherein ft is linear and i.i.d across time (i.e., Vf = O(

√
T )),

our regret bound can also greatly outperform the existing
works. In general, our regret bound is superior when the
variation of consecutive loss functions is smooth across time.

Here we discuss how the adaption of different norms affects
the learning performance of IOMD-SOCO. Note that the path-
length PT we adopted is the lp norm and if we use the
standard l2 norm PT , the performance bound would incur a
multiplicative factor n

1
p
− 1

2 since || · ||p ≤ n
1
p
− 1

2 || · ||2, where n
is the dimension.

Remark 1: Note that the standard analysis from previous
work (e.g., OGD, OMD) cannot achieve our regret bound. For
example, although OGD (OMD) ends up moving about O( 1

t )
in the t-th iteration, it can only yield O(

√
TPT + T + log T )

regret bound. It is known that greedy strategy can yield O(Vf )
regret bound when PT is unknown [12]. Our algorithm can
achieve these regret bound simultaneously due to the implicit
update and novel learning parameters design.
Comparision with R-OBD and IOMD. Here we highlight
the differences between IOMD-SOCO and algorithms R-OBD
and IOMD, which sheds light on the design intuition of our
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algorithm. When ft could be observed before making decision
xt, R-OBD [11] chooses a point that minimizes the weighted
sum of the hitting, and switching cost, i.e.,

xt = arg min
x∈χ

ft(x) + αDΦ(x, xt−1). (3)

However, R-OBD cannot be applied to the case when ft is
unknown before making a decision xt (i.e., online learning
setting). IOMD-SOCO is designed to address such case. At
round t, IOMD-SOCO chooses xt that minimizes the sum of
the previous loss ft−1 and a regularizer whose coefficient is
time-varying, i.e.,

xt = arg min
x∈χ

ft−1(x) + λt−1DΦ(x, xt−1). (4)

The intuition behind it is that if the loss functions change
slowly (i,e., ft is close to ft−1), the chosen xt can be seen as
an approximation to the point chosen by R-OBD.

IOMD has been proposed in [5] to tackle classic OCO
problems and achieves an optimal static regret bound of
O(min{Vf ,

√
T}) given generally convex loss functions. It has

the same form as (4) except for the learning rates. We design
appropriate learning parameters {λt} in (4) to incorporate the
switching costs, i.e., IOMD-SOCO. We will see in the later
that this learning parameters setting indeed turns out to be the
central focus in technical analysis in our proposed algorithm,
and the tuning of the time-varying learning parameters in (4)
is also the key challenge in solving SOCO.

Novelty of our analysis. Note that IOMD-SOCO is an
extended version of IOMD by setting appropriate time-varying
learning parameter λt. This learning parameters design is non-
trivial and motivated by the upper bound of universal dynamic
regret incurred by IOMD for arbitrary parameter sequence
{λt}, as shown in the next lemma.

Lemma 1: Under Assumption 1, assume that λt is increasing
over time t, choose actions according to the update rule (4)
then we have

Regret(u1:T ) ≤ R2λT +R

T∑
t=2

λt||ut − ut−1||+
T∑
t=1

δt ≤ R2λT

+R
T∑
t=2

(λt − 1)||ut − ut−1||+
T∑
t=1

δt +R

T∑
t=2

||ut − ut−1||,

where δt = ft(xt)−ft(xt+1)−λtDΦ(xt+1, xt)+ 1
2
||xt+1−xt||2.

Lemma 1 serves as a building block for proving Theorem 1.
Ideally, to minimize the regret in Lemma 1, we would like to
have λT to be as close as possible to the sum of δt over time
while ensuring the gap between λt and 1 is small (e.g., O(1)).
To do this, we introduce a recurrence in the computation of λt,
i.e., we set λt − 1 ∝

∑t−1
i=1 δi. Based on the above analysis,

we set learning parameter λt = 1
β2

∑t−1
i=1 δi + 1 in (4), for

a parameter β to be defined later, and we obtain the IOMD-
SOCO. It turns out that IOMD-SOCO could achieve a best-of-
both-worlds regret bound of order O(min{Vf ,

√
T + TPT })

by choosing appropriate β2 = O(PT ).
The analysis of Lemma 1 is different from IOMD [5],

as we consider the universal dynamic regret and takes into
account the switching costs. For example, to fit into our
algorithm and incorporate with switching costs, we take a

novel decomposition of the universal dynamic regret and
handle it as

Regret(u1:T ) ≤
T∑
t=1

(ft(xt)− ft(xt+1)− (λt − 1)DΦ(xt+1, xt))

+

T∑
t=1

λt(DΦ(ut, xt)−DΦ(ut, xt+1))

+

T∑
t=1

(DΦ(xt+1, xt)−
1

2
||xt+1 − xt||2).

We also develop a new technique to bound the incurred
term

∑T
t=1 λt(DΦ(ut, xt)−DΦ(ut, xt+1)) as λ1DΦ(u1, x1) +

R
∑T
t=2 λt||ut − ut−1|| +

∑T
t=2 (λt − λt−1)DΦ(ut−1, xt). See

details in the Appendix A of our online report [1].

A. Lower Bound

In this subsection, we investigate the lower bound in terms
of universal dynamic regret for SOCO with squared lp norm
switching costs, given general convex loss functions. We will
prove that the regret bounds presented in Theorem 1 are
order-optimal, i.e., they match the lower bounds w.r.t the
regularities PT and Vf , which are indicated by the following
two theorems, respectively.

Theorem 2: Let χ be the decision set with diameter R,
for any online deterministic algorithm A on χ, there always
exists sequences of convex functions {ft}Tt=1 and comparators
{ut}Tt=1 such that

Regret(u1:T ) = Ω(Vf ). (5)

Theorem 3: Let χ be the decision set with diameter R,
for any online deterministic algorithm A on χ, there always
exists sequences of convex functions {ft}Tt=1 and comparators
{ut}Tt=1 such that

Regret(u1:T ) = Ω(
√
T + TPT ). (6)

Therefore, the regret bound in Theorem 1 cannot be improved
in general, which demonstrates the optimality of our algorithm
and the obtained dynamic regret bound.

Remark 2: When the switching cost is defined as
squared l2 norm, [30] proved an O(

√
T + TVx) lower

bound for restricted dynamic regret, where {x∗t }Tt=1 =

arg minx1,...,xT∈χ
∑T
t=1 (ft(xt) + c(xt, xt−1)) and Vx is the

path-length of sequence {x∗t }Tt=1. Their result is the special
case of Theorem 3. To prove Theorem 3, we divide T into
multiple phases and construct a special instance such that the
comparator points remain unchanged in each phase. Then we
relate the incurred dynamic regret with the minimax static
regret to obtain the final result. To the best of our knowledge,
the results in Theorems 2 and 3 are the first lower bounds for
SOCO in terms of universal dynamic regret.

III. EXTENSION: PARAMETER-FREE SETTING

In Section II, we explored the analytical performance of
IOMD-SOCO in terms of universal dynamic regret. We notice
that the optimal tuning of λt or β in IOMD-SOCO requires the
prior information of path-length PT . Although it is a common
assumption in previous work (e.g., [8], [10]–[12], [30]) to have
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Algorithm 2 Hedge-IOMD-SOCO
1: Initialize: step size α, set H.
2: Activate a set of experts i = 1, 2, ..., |H| by invoking

IOMD-SOCO for each parameter βi ∈ H.
3: for round t = 1...T do
4: Receive xit from each expert i
5: Choose the action xt =

∑
i w

i
tx
i
t

6: Observe ft, and send it to each expert i
7: Update the weight of each expert i ∈ {i = 1, 2, ..., |H|}:

8: wit+1 =
wite
−α(〈∇ft(xt),xit−xt〉+1

2
||xit−x

i
t−1||

2)

∑
j=1,...,|H| w

j
t e
−α(〈∇ft(xt),xjt−xt〉+1

2
||xjt−x

j
t−1
||2)

9: end for

prior knowledge of regularities (e.g., PT or Vf ), it is not true
in many practical applications of SOCO. For example, PT is
unavailable ahead of time when the comparator sequence is
the sequence of local minimizers of online loss functions (i.e.,
{{θt}Tt=1|θt = arg minx∈χ ft(x)}), since θt is unknown to
the agent before making decision xt. Hence, we analyze the
performance guarantee of IOMD-SOCO when PT is unknown
in advance, which is shown in the following theorem.

Theorem 4: Under Assumption 1, when PT is unknown in
advance, we let β2 = R2, then IOMD-SOCO ensures that

Regret(u1:T ) ≤ R2λT +R

T∑
t=2

λt||ut − ut−1||+
T∑
t=1

δt

≤ O(min{PTVf ,
√
TPT }).

(7)

However, Theorem 4 shows that IOMD-SOCO with
parameter-free learning rates has a great performance degra-
dation than IOMD-SOCO with optimal learning rates (β2 =

R2 +RRT ). Moreover, the regret bound in Theorem 4 may not
be sublinear even when the regularities measure are sublinear,
e.g., PT = O(

√
T ) or PT = Vf = O(

√
T ).

Thus, a natural problem is to design a parameter-free
algorithm for SOCO. To the best of our knowledge, no prior
algorithms achieve a parameter-free sublinear dynamic regret,
even when the loss functions are known in advance. In this
section, we will propose the parameter-free versions of IOMD-
SOCO which gives a regret that is almost the same as the
results in Theorem 1.

A. Tuning Parameters Using Ensemble Method

Inspired by the recent work [25], [27], we adopt the online
ensemble method to tune the learning parameters when the
regularities (e.g., PT ) are unknown. Next we give an explicit
description of our resemble method, Hedge-IOMD-SOCO.

Hedge-IOMD-SOCO is a two-layer hierarchical structure.
We run a set of experts at the lower level in parallel. At
the higher level, we employ a meta-algorithm like Hedge
[31] to track the best expert based on their performance,
and output the final decision. Concretely, we initiate multiple
expert-algorithms, each running IOMD-SOCO with a specific
parameter β. At each round, experts send their decisions to
the meta-algorithm, then experts receive a loss function from
the meta-algorithm, and produce the decisions of the next
round based on the incurred costs. The meta-algorithm first
aggregates predictions from all the experts to make the final

decision, i.e., the weighted average of received predictions
(See line 5 in Algorithm 2). After observing the loss function,
the meta-algorithm sends it to all experts and updates the
weights of each expert according to the exponential-weighting
scheme (See line 8 in Algorithm 2). To take into account the
switching costs, different from previous ensemble methods
[25], [27] for classic OCO, the loss of expert i we used in
the Hedge is

f it (x) = 〈∇ft(xt), x− xt〉+
1

2
||x− xit−1||2, i = 1, 2, ..., |H|.

As we can see, f it (x
i
t) incorporates the switching cost

1
2 ||x

i
t − xit−1||

2 of expert i to measure its performance. Next,
we describe the design of the parameters for all experts.

Note that Theorem 1 shows the optimal parameter β is
β∗ =

√
R2 +RPT . The key idea is to construct a parameter

pool H which contains β∗ and search over H to identify it.
Specifically, since R ≤ β∗ =

√
R2 +RPT ≤

√
R2 +R2T =

R
√
T + 1, we specify H as follows,

H = {βi = R2i−1|i ∈ [N ], N = d1
2

log(1 + T )e+ 1},

and each expert i initializes the parameter βi. The reason we
construct such a parameter pool is to ensure that there must
exist an expert i, whose parameter βi satisfies β∗

2 ≤ βi ≤ β
∗.

It turns out that in such case, our ensemble approach Hedge-
IOMD-SOCO achieves an O(min{Vf ,

√
T + TPT }) regret

bound. We formally give this result in the following theorem.
Theorem 5: Under Assumption 1, let α = 1√

T
, then Hedge-

IOMD-SOCO ensures that

Regret(u1:T ) ≤ O(min{
√
T + TPT ,max{Vf ,

√
T}}). (8)

Theorem 5 highlights that Hedge-IOMD-SOCO only incurs a
slightly worse performance degradation (an additive O(

√
T )

term) compared with IOMD-SOCO with optimal parameter
β2 = R2 + RRT (Theorem 1). Without requiring any prior
knowledge of PT , the Hedge-IOMD-SOCO algorithm applies
to broader scenarios than IOMD-SOCO. Moreover, it has a
potential to recover an O(min{Vf ,

√
T + TPT }) regret bound

(e.g., Vf ≥ O(
√
T )) although PT is unavailable ahead of time.

Indeed, the regret guarantee achieved by Hedge-IOMD-SOCO
is still less than O(

√
T + TPT ) and thus outperforms any of

prior results listed in Table 1 (e.g., [11], [12], [30]) in terms
of dynamic regret, whether they assumed the loss functions
are known or not. One may argue that Hedge-IOMD-SOCO
needs to initiate N = d 1

2
log(1 + T )e + 1e expert algorithms,

in which the computation complexity maybe large when T is
sufficiently large. In fact, the number of experts N we should
initiated is less than 10 when the total round T < 218, in which
the complexity is acceptable in most practical situations.

Proof sketch of Theorem 5. To prove Theorem 5, we
cannot directly follow from the previous analysis of online
resemble method [25], [27], [29]. As we mentioned before,
the loss of each expert we used in the meta-algorithm takes
into account the switching cost (Line 8 in Algorithm 2). This
leads to significant changes in the proof. In our analysis,
we first decompose the total regret as the regret of expert i
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Algorithm 3 AdaIOMD-SOCO
1: Initialize: i = 0, λ0

1 = 1, Q0 =
√

2R, C0 = 0.

2: for round t = 1...T do
3: Choose the action xt, and then observe ft
4: Ci = Ci + ||ut − ut−1||
5: if Ci > Qi then
6: i = i+ 1

7: Qi = R2i, λit+1 = 1, Ci = 0, β2
i = R2 +RQi

8: xt+1 = xt
9: else

10: xt+1 = arg minx∈χ ft(x) + λit−1DΦ(x, xt)

11: δt = ft(xt)− ft(xt+1)− (λt − 1)DΦ(xt+1, xt)

12: λit+1 = λit + 1
β2
i
δt

13: end if
14: end for

(expert-regret) plus the regret of Hedge with respect to expert
i (meta-regret), i.e.,

Regret(u1:T )

=

T∑
t=1

(ft(xt) +
1

2
||xt − xt−1||2)−

T∑
t=1

(ft(x
i
t) +

1

2
||xit − xit−1||2)︸ ︷︷ ︸

meta-regret

+

T∑
t=1

(ft(x
i
t) +

1

2
||xit − xit−1||2)−

T∑
t=1

(ft(ut) +
1

2
||ut − ut−1||2)︸ ︷︷ ︸ .

expert-regret

The expert-regret can be bounded using Theorem 1.
Note that our meta-regret involves the switching costs.
To bound the meta-regret, we characterize the switching
costs by term ||wt+1 − wt||1, which is the l1 distance
of consecutive expert weight vector, i.e., we handle the
meta-regret as: Meta-regret ≤

∑T
t=1 (

∑
j w

j
tf
j
t (xjt)− f it (xit)) +

1
2

∑T
t=1 (R2||wt −wt−1||21 + 2R2||wt −wt−1||1). Then we as-

sociate the update rule of wt with Follow-the-regularized-
leader (FTRL) method using entropic regularization. Since
FTRL with entropic regularization could be seen as a general
projection operation into a simplex, we use the fact that the
projection into a simplex is Lipschitz-continuous to bound
||wt+1 −wt||1. The proof details is deferred to the Appendix
F of our online report [1].

B. Tuning Parameters Using the “Doubling Trick”

In some special scenarios PT could be monitored and
calculated on the fly. For example, when ut = θt [30],
we can observe the path length until current time t, i.e.,
Pt =

∑t
τ=1 ||θτ − θτ−1||. Another example is when ut = u

[3], we directly have PT = O(1). In these special cases, we
could use the strategy of the similar spirit to doubling trick to
remove the dependence on PT . Next, we present how to tune
the learning parameter λt adaptively in IOMD-SOCO using
this strategy when the value of PT is unknown in advance.

Specifically, we run IOMD-SOCO in phases. At the begin-
ning of each phase i, we start monitoring the path length. We

denote Ci the accumulated path length at phase i. Once Ci
reaches a certain threshold, we restart the IOMD-SOCO and
double the threshold. In the algorithm design, the challenge is
how to determine the condition of doubling the threshold. We
introduce a quantity Qi for each phase i to characterize the
influence of accumulated implicit difference. When it is less
than the accumulated observable path-length in phase i, we
will restart the algorithm and double the threshold. To achieve
the same regret bound as IOMD-SOCO, we let the update rule
of learning parameter in phase i be λit+1 = λit+δt/(R

2 +RQi).
We illustrate this algorithmic approach in Algorithm 3, named
AdaIOMD-SOCO. However, AdaIOMD-SOCO can only be
used when PT could be calculated on the fly. Next, we give
the regret bound incurred by AdaIOMD-SOCO.

Theorem 6: Under Assumption 1, AdaIOMD-SOCO ensures
that

Regret(u1:T ) ≤ O(min{Vf ,
√
T + TPT }). (9)

The above theorem highlights that regret incurred by
AdaIOMD-SOCO satisfies the same upper bound given in
Theorem 1, and is better than the regret guarantee of on-
line ensemble method. Thus, for comparator sequence whose
path-length is unknown but could be calculated on the fly,
AdaIOMD-SOCO is a better choice.

Remark 3: We stress that the idea of AdaIOMD-SOCO to
remove the dependence on regularities is not the standard
doubling trick (only with the similar spirit). Specifically, in
order to have a fully adaptive learning rate, we tune it as
a function of two quantities varying over time: accumulated
path-length observed and accumulated δt incurred by the
algorithm. While both quantities are increasing over time, they
also appear both at the numerator and denominator of the
learning rate λt. However, this would result in a non-monotone
sequence of learning rates, thus contradicting the assumptions
in Lemma 1. Also, we would like to point out that to the best of
our knowledge there are no existing methods in the literature
which tune the learning rates with non-monotone sequences.

IV. APPLICATIONS

Here we show several real-world applications of SOCO
including economic dispatch in power systems, trajectory
tracking of moving bodies and cloud resource provisioning.
We emphasize that none of these applications would be well-
addressed without a parameter-free algorithm achieving sub-
linear regret, which is not attainable by previous approaches.

Economic Dispatch in Power Systems. Consider a power
network with N conventional generators and renewable energy
supply [16]. At each time t, the dispatcher needs to decide the
outputs of N generators, denoted as xt = [xt,1, ..., xt,N ] ∈ χ,
where χ is the set of feasible output vectors, and each
generator i would incur ci(xt,i) generation cost. We let rt
be the renewable supply and dt be the power demand at
time t. The purpose of the dispatcher is to reduce the total
generation cost while maintaining the power balance of supply
and consumption:

∑N
i=1 xt,i + rt = dt. To incorporate the

imbalance penalty into the objective, we define the following
cost function at each time t: ft(xt) =

∑N
i=1 ci(xt,i) +

εt(
∑N
i=1 xt,i − rt − dt)

2, where εt is a penalty coefficient.
Specifically, [20] modeled ci(xt,i) as a quadratic function w.r.t
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xt,i. Since the power demand dt is revealed after the output,
ft can only be determined at the end of time t. In addition to
the above costs, ramping process of conventional generators
also incurs other costs such as maintenance and depreciation
fee. These additional costs are called ramp costs and usually
modeled as a quadratic function of the amount of ramp
α
∑N
i=1 (xt,i − xt−1,i)2 ( [18], [23]), i.e., α||xt − xt−1||22.

The economic dispatcher aims to minimize the incurred total
costs over T rounds, i.e.,

min
{xt}Tt=1

T∑
t=1

(ft(xt) + α||xt − xt−1||22).

Low-latency Video Streaming. In the scenario of content
distribution networks (CDNs), edge servers are usually de-
signed to accelerate the access of popular content (e.g., video
streaming) by prefetching them in low-latency storage. This
scenario can be simplified as a caching system with a remote
server that contains a set of N unique files and a local cache
of finite capacity C (also see [4]). Time is slotted such that at
most k files are requested from users at a time. We denote
rt ∈ {0, 1}N as the file requests vector at time t, where
||rt||1 ≤ k and rt(i) = 1 if and only if the i-th file is requested
by users at time t. The cache can update the cached files at
the beginning of each time slot. We denote xt ∈ [0, 1]

N

as the cache configuration at time t, where ||x||1 ≤ C and
xt(i) represents the fraction of file i cached in time t. As an
example, in P2P data streaming and CDNs, large video files
are composed of independently stored chunks. Let wi be the
obtained utility if file i is requested and hit, e.g., benefits due
to the bandwidth saving from cache hits, or QoS improvement.
Thus, the cache configuration xt accrues in time t a utility as:∑N
i=1 wirt(i)xt(i). We also assume that changing the cache

configuration from xt−1 to xt incurs a switching cost as
it needs to fetch files from the remote server. Literature (e.g.,
[19]) usually models it as the form of α||xt−xt−1||21. Putting
everything together, the objective of cache is to maximize the
overall obtained utility over a time horizon T :

max
{xt}Tt=1

T∑
t=1

(

N∑
i=1

wirt(i)xt(i)− α||xt − xt−1||21).

Cloud Resource Allocation. Consider a could service
provider that predicts and provides network, computing, and
storage resources dynamically to meet the demands from
applications [10]. At time t, we denote dt as the demand
vector where each dimension represents a type of resource
requested, and xt the vector of resources provisioned by the
could service provider. The demand vector dt is revealed after
the decision xt. To provide resource xt, the provider incurs
operational costs and switching costs. The operational costs
typically include the monetary cost of retaining and using
virtual machines, amortized capital costs, energy consumption,
and delay cost when resources are under-provisioned. Previous
literature (e.g., [9], [10]) usually models the operational costs
in a general form of convex function f(xt; dt) of the demands
and the provisioned resources. Switching costs include the
wear, tear and delay during server startup and shutdown, as
well as the cost of virtual machine migration and data transfer.
Following previous literature [10], the switching cost can be
capture by the form of α||xt − xt−1||22, i.e., squared l2 norm
on provisioned resources change. Thus, the provider aims to
minimize the total costs over a time horizon T :

min
{xt}Tt=1

T∑
t=1

(f(xt : dt) + α||xt − xt−1||22).

Smoothed Online Regression. Consider the scenario of
online regression [12], in which the learner wishes to fit a
series of regularized regressors or classifiers to a time-varying
data-set, without changing the estimators too much between
rounds. Specifically, the learner aims to solve the following
online optimization problem:

min
{θt}Tt=1∈Rd×T

T∑
t=1

ft(θt) +
λ1

2
||θt||22 +

λ2

2
||θt − θt−1||22. (10)

Here θt is the regressor at time t, ft represents the re-
gression loss at time t, and λ1, λ2 are the parameters of
l2 and smoothing regularizations, respectively. Our scenario
includes many regression types such as Ridge Regression,
i.e., ft(θt) = ||Xtθt − yt||2, where Xt ∈ Rd×nt is a
data matrix, yt ∈ Rd is the response variable, and nt is the
number of samples at round t; and Logistic Regression, i.e.,
ft(θt) = − 1

nt

∑nt
i=1 log(1 + e−yi,tθ

T
t xi,t), where xi,t ∈ Rd

is a feature vector, yi,t ∈ {0, 1} is the corresponding binary
label, and nt is the number of samples in round t.

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to vali-
date the theoretical performance of our algorithms.

Experimental setting. We consider the smoothed online
logistic regression problem as the numerical example, which
is outlined in Section IV. Specifically, the objective is to solve
the online optimization problem (10), where ft is the logistic
regression loss at time t. At time t, we generate {xi,t}nti=1 as
i.i.d. Gaussian vectors with mean µtI and covariance σ2

t I , and
{yi,t}nti=1 i.i.d. from Bernoulli(pt). We let d = 3, χ = [−1, 1]

3,
nt = 20, and θ0 = [0, 0, 0]. We also set λ1 = λ2 = 1. As
there are only a few works on the setting of generally convex
loss functions without predictions, we choose OGD [10], [24]
and OMD [30] initializations as our baselines and use the
corresponding stepsizes in their results. We compare the time-
averaged regrets of our algorithms with these baselines both
on synthetic and real-world datasets.

Results for synthetic dataset. We simulate these methods
on the synthetic dataset in which Vf = o(

√
T ). To achieve

this, we let µt = µ, where µ is sampled uniformly on
[−1, 1], and pt = p, where p is sampled uniformly on
(0, 1). We also set σ2

t = t−1. We first choose the best
offline fixed regressor as the benchmark, i.e., ut = θ∗ =
arg minθ∈χ

∑T
t=1 ft(θ) + λ1

2 ||θ||
2
2,∀t. We can verify that in

this case, PT = O(1) and we present the simulation results of
IOMD-SOCO and baselines in Figure 1 (a). From this figure,
we can see that IOMD-SOCO indeed guarantees a much
small regret than O(

√
TPT ) when the accumulated variation

of consecutive loss functions is small, which validates our
theoretical result. The empirical performance of OGD and
OMD in our experiment also coincides with their theoretical
regret guarantee of the order O(

√
TPT ).

Then we choose the per-time optimal regressor sequence
as the benchmark, i.e., ut = arg minθ∈χ ft(θ) + λ1

2 ||θ||
2
2,∀t.

Note that in this case PT is unknown a priori and thus
only methods Hedge-IOMD-SOCO and AdaIOMD-SOCP are
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Fig. 1. (a) Results when Vf = o(
√
T ) and PT = O(1); (b) Results when Vf = o(

√
T ) and PT is unknown; (c) Results for real data-set

applicable. We show their empirical results in Figure 1 (b).
From this figure, we can see that Hedge-IOMD-SOCO and
AdaIOMD-SOCP indeed achieve a regret less than O(

√
T )

even the PT is unknown a prior, which matches their theoret-
ical results.

Results for real-world dataset. We also test these methods
on the real dataset: USENET1 [13]. The distribution of data
streams is time-varying for this dataset, which is the dynamic
environment we considered. We still choose the best offline
fixed regressor as the benchmark and compare the IOMD-
SOCO and baselines in Figure 1 (c). Figure 1 (c) shows
that IOMD-SOCO consistently produces the best performance
when compared to the baseline methods.
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