
Semantics-Aware Active Fault Detection in IoT
George J. Stamatakis⇤, Nikolaos Pappas†, Alexandros Fragkiadakis⇤, Apostolos Traganitis⇤

⇤ Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH)
† Department of Computer and Information Science, Linköping University, Linköping, Sweden

E-mails: {gstam, alfrag, tragani}@ics.forth.gr, nikolaos.pappas@liu.se

Abstract—In this work we address a problem of active fault
detection in an IoT scenario, whereby a monitor probes a remote
device in order to detect faults and acquire fresh information.
However, probing can have a significant impact on the IoT
network’s energy and communication resources. To address this
problem we utilize Age of Information as a measure of the
freshness of information at the monitor and adopt a semantics-
aware communication approach between the monitor and the
remote device. In semantics-aware communications, the processes
of generating and transmitting information are treated jointly
in order to consider the importance of information and the
purpose of communication. We formulate the problem as a
Partially Observable Markov Decision Process and propose a
computationally efficient stochastic approximation algorithm to
approximate the optimal policy. Finally, we present numerical
results that exhibit the advantage of our approach compared to
a conventional delay-based probing policy.

Index Terms—Semantics-aware communications, Internet of
Things, Fault Detection, Partial Observable Markov Decision
Process

I. INTRODUCTION

The emergence of massive IoT ecosystems poses new
challenges for their maintenance procedures. IoT networks
are characterized by software, hardware, and communication
protocols’ diversity. Furthermore, they are typically comprised
of a large number of devices that are often deployed in remote
and harsh environments. In this context, the development of
autonomous fault detection procedures is necessary to safely
and efficiently operate an IoT network. The majority of fault
detection algorithms that have been proposed in the past [1],
assume that the system is passively monitored and utilize
statistical or machine learning techniques to infer the actual
health status of its subsystems. However, a major drawback
with passive monitoring is that faults can pass undetected if the
faulty and the nominal operation overlap due to measurement
and process uncertainties or in cases where control actions
mask the influence of faults [2]. To address this problem we
make use of an active fault detection scheme that utilizes
probes to affect the system’s response and thus to increase
the probability of detecting certain faults.

With active fault detection special care must be taken so that
the extra network traffic due to probing is not detrimental to
the system’s performance. Blindly generating and transmitting
probes could increase network congestion and prohibit other
applications from satisfying their possibly strict real-time
constraints. To this end, we adopt a semantics-aware [3]–
[12] approach to active fault detection which has exhibited its

ability to eliminate the transmission of redundant and uninfor-
mative data and thus minimize the induced overhead. Within
the context of semantics-aware communications the generation
and transfer of information across a network are considered
jointly in order to take into account the goal or purpose of
the communication. What is more, the importance/significance

of a communication event, i.e., the event of generation and
transmission of information, constitutes the decisive criterion
of whether it should take place or not. The definition of the
importance of a communication event is application-specific,
thus, in the context of active fault detection, we define it to
be a function of the freshness of information that has been
received from the remote device and of the operational status
of the communication network and the remote device.

More specifically, in this work, we consider a basic active
fault detection scenario for a discrete-time dynamic system
that is comprised of a sensor and a monitor. At the beginning
of each time slot, the sensor probabilistically generates and
transmits status updates to the monitor over an unreliable link
while the monitor decides whether or not to probe the sensor
for a mandatory transmission of a fresh status update through
a separate unreliable link. By the end of each time slot, the
monitor may or may not receive a status update either because
none was generated at the sensor or due to intermittent faults
at the sensor and the wireless links. To detect intermittent
faults, the monitor maintains a belief vector, i.e., a probability
distribution, over the operational status (healthy or faulty) of
the system and a measure of its confidence in this belief vector
that is expressed by the entropy of the belief vector. Probing,
successfully or unsuccessfully, increases the confidence of the
monitor in its belief state, however, it also induces a cost
for the monitor that measures the negative impact of probing
on the system’s energy and communication resources. Our
objective is to find a policy that decides at each time slot
whether or not a probe should be sent to the sensor so that
it optimally balances the probing cost with the need for fresh
information at the monitor.

Our approach to solving this problem is to formulate it as
a Partially Observable Markov Decision Process (POMDP)
and derive the necessary conditions for probing to result in
a reduction of the belief state’s entropy. To the best of our
knowledge, this is the first work with this approach. Our
analysis indicates that there exist probing cost values such
that the optimal policy is of a threshold type. In addition,
we propose a stochastic approximation algorithm that can
compute such a policy and, subsequently, evaluate the derived

ISBN 978-3-903176-49-2 © 2022 IFIP 161



policy numerically.

A. Related work

Fault detection methods can be categorized as passive,
reactive, proactive, and active. Passive fault detection methods
collect information from the data packets that the wireless
sensors exchange as part of their normal operation whereas in
reactive and proactive fault detection methods the wireless sen-
sors collect information related to their operational status and
subsequently transmit it to the monitor. Finally, in active fault
detection methods the monitor probes the wireless sensors for
information specific to the fault detection process. In Wireless
Sensor Networks (WSNs) the fault detection algorithms being
cited in recent works [1], [13] fall in the passive, reactive, and
proactive categories, with the majority of them being passive
fault detection algorithms. In [14] and [15] the authors adopted
an active approach to fault detection in WSNs. However, both
of these tools were meant for pre-deployment testing of WSNs
software rather than a health status monitoring mechanism.

Unlike these works, we propose an active fault detection
method for continuously monitoring the health status of
sensors. We believe that autonomous active fault detection
methods can successfully complement the passive ones by
addressing their limitations. More specifically, passive fault
detection methods often fail to detect faults because the faulty
and the nominal operation overlap due to measurement and
process uncertainties. What is more, network control mecha-
nisms specifically designed to increase the robustness of IoT
networks, e.g., by delegating the job of a sensor to neighboring
or redundant nodes, often compensate for the performance
degradation due to intermittent faults and thus mask their influ-
ence rendering them undetectable [2]. Acknowledging the fact
that the network overhead due to active fault detection can be
prohibitive, we adopted the semantics-aware communication
paradigm [3], [4], [6]–[12], [16] which has exhibited its ability
to eliminate the transmission of redundant and uninformative
data and thus minimize the induced overhead. Active fault
detection methods have also been studied in the context of
wired networks [17]–[22]. However, the operational conditions
of wired networks differ considerably from these of WSNs in
terms of protocols, energy, bandwidth, and transmission errors
thus the proposed techniques for wired networks cannot be
applied in the context of IoT networks.

II. SYSTEM MODEL

We consider the system presented in Figure 1 that is com-
prised of a sensor that transmits status updates to a monitoring
device over the wireless link lSM and the monitoring device,
that is able to probe the sensor for a fresh status update over the
wireless link lMS . Transmissions over the lMS and lSM links
are subject to failure with failures being independent between
the two links. We assume that time is slotted and indexed by
t 2 Z+. The state of the sensor is modeled as an independent
two state time-homogeneous Markov process. Let FS

t
2 {0, 1}

be the state of the sensor’s Markov process at the beginning
of the t-th time slot. When F

S

t
has a value of 0/1, the i-th

Monitor

lMS

lSM Sensor

Fig. 1: Basic IoT setup.

sensor’s operational status is healthy/faulty. We assume that
the sensor will remain in the same state for the duration of a
time-slot and, afterwards, it will make a probabilistic transition
to another state as dictated by the state transition probability
matrix P

S . Furthermore, at the beginning of each time slot
the sensor will generate a status update with probability Pg ,
when in a healthy state, while it will not generate a status
update when in a faulty state. In this work we assume that
Pg < 1, otherwise the probing system is redundant. In the
case of a status update generation the sensor will transmit it
over the lSM link. At the end of the time slot the status update
is discarded independently of the outcome of the transmission.

Similarly, we model the health status of the wireless links
as two independent two-state time-homogeneous Markov pro-
cesses. Let F

MS

t
, F

SM

t
2 {0, 1} denote the state of the

independent Markov processes for the lMS and lSM links
respectively, at the beginning of the t-th time slot. When F

MS

t

and F
SM

t
take a value of 0/1 the operation of the respective

wireless link is healthy/faulty. We assume that the wireless
links will remain in the same state for the duration of a single
time-slot and, subsequently, they will make a transition to
another state as dictated by the transition probability matrices
P

MS and P
SM respectively. When in a healthy state, the

wireless link will forward successfully a status update to the
monitor with probability 1, whereas a faulty wireless link will
always fail to deliver the status update. Finally, following a
successful reception of a probe through the lMS link, the
sensor will generate a fresh status update at the next time
slot with probability 1, if it is in a healthy state; and with
probability 0 if it is in a faulty state.

In this work we consider the problem of a monitoring agent
that must optimally decide, at the beginning of each time
slot, whether or not to probe the sensor. As a result of its
decision and the dynamics of the system a transition cost is
induced on the agent by the end of each time slot. The agent’s
objective is to minimize the total cost accumulated over a
finite time horizon. The transition cost is a function of the
agent’s confidence in its belief about the joint health status
of the sensor and the lSM link, the staleness of the status
updates it has received up to that time slot and a cost value
c associated with the probing action. More specifically, since
the agent cannot observe the actual health status of the sensor
and of the lSM link, it maintains a belief vector for their joint
health status, i.e., a probability distribution over two possible
events. The first event occurs when both of them are healthy
and the second event occurs when at least one of them is faulty.

162



Furthermore, the agent’s confidence in the health status belief
vector is expressed by its entropy denoted with Ht. Details
regarding the definition of the health status belief vector and
its entropy Ht are presented in Section III.

Furthermore, to characterize the staleness of the status up-
dates received at the monitor we utilize the Age of Information
(AoI) metric that has received significant attention in the
research community [23]–[31]. AoI was defined in [32] as the
time that has elapsed since the generation of the last status
update that has been successfully decoded by the destination,
i.e., �(t) = t � U(t), where U(t) is the time-stamp of
the last packet received at the destination at time t. We use
�t, t = 0, 1, . . . , N , to denote the AoI of the sensor at
time t. However, as the time horizon of the optimal probing
problem increases �t could assume values that would be
disproportionately larger than Ht. To alleviate this problem we
will use a normalized value of the AoI which we define as,
�̄t =

�t
N
,where N is the length of the finite horizon measured

in time-slots.
Finally, we define the Value-of-Information (VoI), i.e, a

metric that quantifies the importance of receiving a fresh status
update at the monitor at time t, as,

Vt = �1Ht + �2�̄t, (1)

where �1 and �2 are weights that determine the relative value
of each component of the metric.

Finally, although it seems intuitive that probing will lead to
the reduction of both �̄t and entropy Ht, this is not always
the case especially for the latter one. While probing makes
the generation of a status update mandatory, i.e., it reduces
the uncertainty induced in the system due to the probabilistic
generation of status updates, one should also consider that
probing introduces a new type of uncertainty due to the
transmission failures occurring in the lMS link. As an example
consider the case where a probe was sent to the sensor yet no
status update arrives at the monitor. It is not certain whether
this happened because the probe didn’t actually reach the
sensor, due to a faulty lMS link, or because the sensor did
not generate a status update, due its faulty state, or because
the transmission of the status update failed, due to a faulty lSM

link. It is possible to express in a concise way the necessary
conditions for probing to always result in the reduction of
entropy [33] for in the system we consider. In this work we
assume that these necessary conditions are satisfied.

III. PROBLEM FORMULATION

In this section we formulate the decision problem presented
above as a Partially Observable Markov Decision Process
(POMDP) denoted with P . A POMDP model with a finite
horizon N is a 7-tuple (S,A, Z, P, r, g, gN ), where S is a
set of states, A is a set of actions, Z is a set of possible
observations, P is a probability matrix representing the condi-
tional transition probabilities between states, r represents the
observation probabilities, g is the transition reward function
and gN is the terminal cost incurred at the last decision
stage. In the remaining part of this section we present the

individual elements of P and formulate the corresponding
dynamic program based on a belief state formulation [34].

State Space (S): At the beginning of the t-th time-slot the
health state of the system is represented by the column vector,
st = [FMS

t
, F

S

t
, F

SM

t
]T where, F

MS

t
, F

S

t
and F

SM

t
were

defined in Section II.
Actions (A): The set of actions available to the agent is

denoted with A = {0, 1}, where 0 represents the no-probe
action and 1 indicates the probe action. The action taken by
the agent at the beginning of the t-th time slot is denoted with
at 2 A.

Random variables: The state of the system presented in
Fig. 1 will change stochastically at the beginning of each
time slot. The transition to the new state is governed by the
action taken by the monitor, the transition probability matrices
P

MS , PS and P
SM , and the following random variables. The

random variable W
g

t
2 {0, 1} that represents the random event

of a status update generation at the t-th time slot. If a status
update is generated by the sensor at t then W

g

t
takes the value

1 and if the sensor does not generate a status update at t

then W
g

t
takes the value 0. We have the following conditional

distribution for W g

t

P [W g = 0|FS
, a] =

8
>>><

>>>:

1� Pg, if a = 0 and F
S = 0,

1, if a = 0 and F
S = 1,

0, if a = 1 and F
S = 0,

1, if a = 1 and F
S = 1

and P [W g = 1|FS
, a] = 1 � P [W g = 0|FS

, a], where we
omitted the time index since the distribution is assumed to
remain constant over time.

The random variable W
MS

t
2 {0, 1} represents the random

event of a successful transmission over the MS link during
the t-th time slot. A value of 0 indicates an unsuccessful
transmission over the link and a value of 1 indicates a suc-
cessful transmission. The conditional probability distribution
for WMS

t
is given by,

P [WMS = 0|FMS
, a] =

8
><

>:

1, if a = 0,

0, if a = 1 and F
MS = 0,

1, if a = 1 and F
MS = 1

and P [WMS = 1|FMS
, a] = 1 � P [WMS = 0|FMS

, a],
where again we omitted the time index t. Finally, the random
variable W

SM

t
2 {0, 1}, represents the random event of a

successful transmission over the SM link during the t-th time
slot. A value of 0 indicates an unsuccessful transmission over
the link and a value of 1 indicates a successful transmission.
The conditional probability distribution for WSM is given by,

P [WSM = 0|W g
, F

SM ] =

8
><

>:

1, if W g = 0,

0, if W g = 1 and F
SM = 0,

1, if W g = 1 and F
SM = 1,

and P [WSM = 1|W g
, F

SM ] = 1�P [WSM = 0|W g
, F

SM ].
Transition probabilities (P ): Let m be an index over

the set of the three subsystems presented in Fig. 1, i.e.,

163



m 2 {MS,S, SM}, then the transition probability matrices
P

MS , P
S and P

SM can be defined as follows, P
m =

p
m

00 p
m

01

p
m

10 p
m

11

�
, where p

m

00 represents the probability to make

a transition from a healthy state (0) to a healthy state (0)
for subsystem m. Transition probabilities p

m

01, p
m

10, and p
m

11

are defined in a similar way. Furthermore, we introduce the
shorthand notation s = [s0, s1, s2] and s

0 = [s00, s
0
1, s

0
2] for

states st = [FMS

t
, F

S

t
, F

SM

t
]T and st+1 respectively so that

the conditional probability distribution of state s
0 given the

current state s can be expressed as, P [st+1 = s
0|st = s] =

p
MS

s0s
0
0
· pS

s1s
0
1
· pSM

s2s
0
2
.

Observations (Z): At the beginning of each time slot the
agent observes whether a status update arrived or not. Let zt 2
{0, 1} denote the observation made at the t-th time slot, with
0 representing the event that no status update was received
and 1 representing the event that a status update was received.
We define rs(a, z) as the probability to make observation z at
the t-th time slot, i.e., zt = z, given that the system is in state
s, i.e., st = s, and the preceding action was a, i.e., at�1 = a.
Thus we have, rs(a, z) = P [zt = z|st = s, at�1 = a]. By
utilizing the conditional probability distributions presented in
Section III we derived [33] the observation probabilities for
all possible combinations of states and controls and present
them in Table I.

TABLE I: Observation probabilities rs(a, z).

at�1 = 0 at�1 = 1
i FMS

t FS
t FSM

t zt = 0 zt = 1 zt = 0 zt = 1

0 0 0 0 1� Pg Pg 0 1
1 0 0 1 1 0 1 0
2 0 1 0 1 0 1 0
3 0 1 1 1 0 1 0
4 1 0 0 1� Pg Pg 1� Pg Pg

5 1 0 1 1 0 1 0
6 1 1 0 1 0 1 0
7 1 1 1 1 0 1 0

The evolution of the AoI value over time depends on the
observation made by the agent and,

�t =

(
1, if zt = 1

min{N,�t + 1}, if zt = 0
(2)

where N is the finite time horizon of the optimization problem.
Transition cost function: At the end of each time slot, the

agent is charged with a cost that depends on the VoI and the
action taken by the agent as follows, gt = c · 1{at=1} + Vt,
where, 1{at=1} is the indicator function which takes a value of
1 when the probe action was taken by the agent and a value of
zero otherwise, and Vt is computed using Equation (1). Param-
eter c is the cost value associated with probing and quantifies
the consumption of system resources for the generation and
transmission of a probe.

Belief State: At each time slot t the agent maintains a
belief state Pt, i.e., a probability distribution over all possible
system states, Pt = [p0

t
, . . . , p

7
t
]T . Starting from an arbitrarily

initialized belief state P0 the agent updates its belief about the

actual state of the system at the beginning of each time slot
as follows,

p
j

t+1 =

P7
i=0 p

i

t
· pij · rj(a, z)P7

s=0

P7
i=0 p

i
t
· pis · rs(a, z)

, (3)

where pij = P [st+1 = j|st = i]. In the literature pij is
usually a function of the action selected at time t, i.e., pij(at),
however, in our case the actions taken by the agent do not
affect the system’s state. In any case, the action taken by the
agent affects the observation zt+1 made by the agent and thus
directly affects the evolution of the belief state over time. As
mentioned in Section I, based on Pt the agent forms the health

status belief vector P
h

t
that represents our belief regarding the

health status of the sub-system comprised of the sensor and the
lSM link. We have, Ph

t
= [ph

t
, p

f

t
], where p

h

t
and p

f

t
represent,

respectively, the probabilities for the sub-system to be in a
healthy or faulty state. We define p

h

t
= p

0
t
+ p

4
t
, since states

with index 0 and 4 in Table I are the only states where both the
sensor and the lSM link are in a healthy state. Correspondingly,
we define p

f

t
=

P
i6=0,4 p

i

t
, i = 0, · · · , 7. It holds that Ph

t
is

a probability distribution since p
h

t
and p

f

t
are computed over

complementary subsets of the system’s state space and Pt is
a probability distribution. Finally, the health status entropy is
computed as Ht = �[ph

t
· log2(pht ) + p

f

t
· log2(pft )].

For the agent to have all the information necessary to
proceed with the decision process it must also keep the value
of the AoI as part of its state, thus we augment the belief state
with the value of AoI and define the following representation
of the current state, i.e., xt = [Pt, �̄t], and define X to be the
set of all states.

Dynamic program of P: By utilizing the belief state
formulation and for a finite horizon N the optimal policy
⇡
⇤ : X ! A can be obtained by solving the following

dynamic program,

Jt(xt) = min
at2{0,1}

⇥
gt +

X

z

X

s

X

i

p
i

t
pis rs(at, z) Jt+1(xt+1)

⇤

(4)

for all xt 2 X and t = 0, 1, · · ·N , where xt+1 =
[P a,z

t+1,�
z

t+1], z 2 {0, 1}, s, i 2 {0, 1, . . . , 7} and the ter-
minal cost is given by JN (xN ) = gN . It is known that
for (4) there do exist optimal stationary policies [34], i.e.,
⇡
⇤ = {⇡⇤

0 ,⇡
⇤
1 , ...,⇡

⇤
N�1}. However, since the state space X

is uncountable the recursion in (4) does not translate into a
practical algorithm. Nevertheless, based on (4) we proved that
the optimal policy is of a threshold type [33] and thus it can
be computed efficiently.

IV. ANALYSIS

In this section we present structural results for the optimal
policy of the POMDP P defined in the previous section. We
represent the belief state at the (t + 1)-th time slot as P

a,z

t+1

where a is the action that was taken at the previous time-slot
t, i.e., at, and z is the observation made at (t+ 1), i.e., zt+1.
Furthermore, in this work we assume that POMDP P satisfies
the following two assumptions:

164



Assumption 1. Let xt = [Pt, �̄t] and x
+
t

= [P+
t
, �̄t] be

states such that H(Ph,+
t

) � H(Ph

t
) then H(Ph,a,z,+

t+1 ) �
H(Ph,a,z

t+1 ), a, z 2 {0, 1}.

Assumption 1 states that, given the action at t and the
observation at t+ 1, if the system starts in a belief state with
higher health status entropy, i.e., H(Ph,+

t
) � H(Ph

t
), then

it will make a transition to a state with higher health status
entropy, i.e., H(Ph,a,z,+

t+1 ) � H(Ph,a,z

t+1 ).

Assumption 2. Let IS = {0, 1, . . . , 7} and i 2 IS be the index
of the system’s state st = [i0, i1, i2]T at time t = 0, 1, · · ·N ,
where i0 = F

MS , i1 = F
S , and i2 = F

SM (see Table I).
Furthermore, let pS

i10, pSM

i20 be the probabilities for the sensor
S and the link lSM to make a transition from health status i1

and i2, respectively, to a healthy status (indicated by 0) at t+1.
We assume that for the POMDP P the following inequality is
true,
X

i2IS

p
i

t

⇥
p
S

i10p
SM

i20 (2�Pg)� 1
⇤
 0, t = 0, 1, . . . , N. (5)

Assumption 2 expresses the necessary conditions and sys-
tem’s parametrization for the probing action to always result
in a lower health status entropy compared to the no probe
action. It may seem intuitive that probing reduces entropy,
since it makes the generation of a status update from the
sensor mandatory, i.e., it reduces the uncertainty induced
in the system due to the probabilistic generation of status
updates from the sensor, however, one should also consider
that probing introduces a new type of uncertainty in the system
due to the transmission failures occurring in the MS link. As
an example consider the case where a probe was sent to the
sensor yet no status update was received by the monitor. It
is not certain whether this happened because the probe didn’t
actually reach the sensor, due to a faulty MS link, or because
the sensor, or the SM link, or both were in a faulty state.
Assumption 2 expresses the effect of faults occurring at the
MS link along with that of parameters p

S

i10, pSM

i20 and Pg on
the resulting health status entropy [33] and it is utilized in
the proof of the following lemma in order to ensure that the
probe action will always result in the same or reduced health
status entropy compared to the no-probe action for a given
observation z at time t+ 1.

Lemma 1. Let P
0,z
t+1 and P

1,z
t+1 be the belief states of P at

the (t + 1)-th time slot when at = 0 and 1, respectively,
and let P

h,0,z
t+1 , P

h,1,z
t+1 be their corresponding health status

belief vectors, then, if Assumption 2 is satisfied, it holds that,
H(Ph,0,z

t+1 ) � H(Ph,1,z
t+1 ), z 2 {0, 1}.

The proof is given in [33]. Next, in Lemma 2, we show that
the expected cost-to-go from decision stage t up to N is an
increasing function of the health status entropy.

Lemma 2. Let x
+
t

= [P+
t
, �̄t] and x

�
t

= [P�
t
, �̄t] be

states such that H(Ph,+
t

) � H(Ph,�
t

) and Jt(·) be the
dynamic program of P then for t = 1, . . . , N , it holds that
Jt(P

+
t
, �̄t) � Jt(P

�
t
, �̄t).

The proof of Lemma 2 is given in [33]. In Lemma 3 we
state a similar property for the expected cost-to-go when the
value of AoI increases.

Lemma 3. Let �̄+
t

and �̄�
t

be normalized AoI values such
that �̄+

t
� �̄�

t
and Jt(·) be the cost-to-go function in the

dynamic program (4) then for t = 0, 1, . . . , N � 1, it holds
that Jt(Pt, �̄

+
t
) � Jt(Pt, �̄

�
t
).

Lemma 4 states properties of the cost-to-go function Jt(·)
that are necessary to establish the structural properties of the
optimal policy in Theorem 1 .

Lemma 4. Let Jt(xt) be the value of the dynamic program of
P at xt = [Pt, �̄t] then Jt(xt) is piece-wise linear, increasing,
and concave with respect to H(Ph

t
) and �̄ for t = 1, . . . , N .

The proof of Lemma 4 is given in [33]. Finally, in Theo-
rem 1 we show that there exist configurations of POMDP P
such that the optimal policy is of a threshold type.

Theorem 1. At each decision stage t = 0, 1, · · · , N �1 there
exists a positive probing cost c such that the probing action
is optimal for state x

T

t
= [Pt, �̄t] and for all states x

+
t

=
[P+

t
, �̄+

t
] with H(Ph,+

t
) � H(Ph

t
) and �̄+

t
� �̄t.

The proof of Theorem 1 is given in [33].

V. OPTIMAL POLICY APPROXIMATION

According to [33], given a proper probing cost c, the
optimal policy ⇡

⇤ for the finite horizon POMDP P is of a
threshold type. Actually ⇡

⇤ is comprised of different thresh-
old values at each decision stage t = 0, 1, . . . , N . More
specifically, let ✓

H,⇤
t

and ✓
�,⇤
t

be the optimal threshold val-
ues for the health status entropy and the normalized AoI
at stage t, then the optimal policy can be expressed as
⇡
⇤ = {[✓H,⇤

0 , ✓
�,⇤
0 ], [✓H,⇤

1 , ✓
�,⇤
1 ], . . . , [✓H,⇤

N�1, ✓
�,⇤
N�1]}. Comput-

ing ✓
⇤
k
= [✓H,⇤

k
, ✓

�,⇤
k

]T for t = 0, 1, . . . , N can be a computa-
tionally demanding task, especially if one considers large time
horizons. To address this problem we approximate the optimal
policy ⇡

⇤ with a single threshold and utilize a Policy Gradient
algorithm, namely, the Simultaneous Perturbation Stochastic
Approximation (SPSA) Algorithm [35] in order to find it.

The SPSA algorithm appears in Algorithm 1 and operates by
generating a sequence of threshold estimates, ✓k = [✓H

k
, ✓

�
k
]T ,

k = 1, 2, . . . ,K that converges to a local minimum, i.e., an
approximation of the best single threshold policy for POMDP
P . The SPSA algorithm picks a single random direction
!k along which the derivative is evaluated at each step k,
i.e., !H

k
and !

�̄
k

are independently generated according to a
Bernoulli distribution as presented in line 4 of Algorithm 1.
Subsequently, in line 5 the algorithm generates the threshold
vectors ✓

+
k

and ✓
�
k

, which are bounded element-wise in the
interval [0, 1], i.e., 0 and 1 in line 5 are column vectors
whose elements are all zeros and ones respectively. ✓�

k
is also

bounded in [0, 1] since we assumed a normalized value for the
AoI, and, this is also true for ✓

H

k
since the maximum health

status entropy occurs for P
h

t
= [0.5, 0.5] which evaluates to

1. In line 6 the estimates Ĵ(✓+) and Ĵ(✓�) are computed by

165



simulating Ms times the POMDP P under the corresponding
single threshold policy. Finally, the gradient is estimated in
line 7, where ↵ represents an element-by-element division, and
✓k is updated in line 8. Since the SPSA algorithm converges
to local optima it is necessary to try several initial conditions
✓0.

Algorithm 1 Policy gradient algorithm for probing control

1: Initialize threshold ✓0 = [✓H0 , ✓
�
0 ] and �, A, ⌘, �, ⇣

2: for k = 1 to K do
3: �k = �

(k+A)� and ⌘k = c

k⇣

4: Randomly set !
H

k
, !

�̄
k

to the equiprobable values
{�1, 1} and define !k = [!H

k
,!

�̄
k
]T

5: ✓
+
k

= min{1,max{0, ✓k�1 + ⌘k · !k}} and ✓
�
k

=
min{1,max{0, ✓k�1 � ⌘k · !k}}

6: y
+
k
= Ĵ(✓+

k
), y�

k
= Ĵ(✓�

k
)

7: êk = (y+
k
� y

�
k
)↵ (2 · ck · !k)

8: ✓k = ✓k�1 � �kê

9: end for

VI. NUMERICAL RESULTS

In this section, we evaluate numerically the cost efficiency
of the single threshold probing policy and provide comparative
results with a delay based probing policy that is often used
in practice. The delay based policy will probe the sensor
whenever the time that has elapsed since the last arrival of
a status update at the monitor exceeds a certain threshold. We
also note here that for the system we consider in this work,
the delay and AoI metrics coincide. This holds because the
sensor does not buffer status updates, and the status update
generation scheme is fixed. Thus, the results we present in
this section exhibit that AoI fails to capture the semantics of
information with the exception of timeliness.

For the first scenario we consider, the system was con-
figured as follows, c = 1, �1 = 1, �2 = 1, Pg =
0.1 and the transition probability kernels were set as,

P
MS =


0.9 0.1
0.9 0.1

�
, P

S =


0.9 0.1
0.9 0.1

�
, and P

SM =


0.9 0.2
1� p

11
SM

p
11
SM

�
, where p

11
SM

= 0.1, 0.2, . . . , 0.9. Further-

more, we set the parameters of the SPSA algorithm as follows,
⌘ = 1, � = 10�3, A = 1, � = 1, and ⇣ = 1. We derived the
threshold policy by executing K = 20 iterations of the SPSA
algorithm. At each iteration k = 1, 2, . . . ,K we calculated
each of y

+
k

and y
�
k

as the sample average of 100 Monte-
Carlo simulations. Each Monte-Carlo simulation had a time
horizon of N = 100 time slots and during that period the
system was controlled by the single threshold policy defined
by ✓

+
k

, in the case of y
+
k

, and ✓
�
k

, in the case of y
�
k

, as
presented in Algorithm 1. Subsequently, we used the threshold
✓K to evaluate the efficiency of the derived threshold policy.
More specifically, for all policies appearing in Figure 2, we
calculated the average cost Ĵ0 as the sample average over
M = 2000 Monte-Carlo simulations of the system while it
was being controlled by the corresponding policy over a period

0.2 0.3 0.4 0.5 0.6

⌧fSM

90

95

100

105

110

Ĵ
0

Thresh. Policy

D=1

D=10

D=30

D=50

D=70

D=90

Fig. 2: Ĵ0(·) vs ⌧
f

SM
for a horizon of 100 time slots.

of N time slots, i.e., Ĵ0 = 1
M

P
M

m=1

P
N

t=0 gt. Finally, for
each Monte-Carlo simulation we set randomly the initial health
status for the sensor and the lMS and lSM links.

In Figure 2 we present the evolution of Ĵ0 with respect to
the steady state probability of link lSM to be in a faulty state,
⌧
f

SM
= p

01
SM

1�p
11
SM+p

01
SM

. We utilize ⌧
f

SM
instead of p11

MS
because

it assumes a more intuitive interpretation, i.e., it expresses the
expected time that link lSM would spend in the faulty state
over a large time horizon. In Figure 2 we consider multiple
delay policies that will probe the sensor when a status update
arrival has been delayed for more than D time slots. The
results presented in Figure 2 indicate that the threshold based
policy achieved a lower cost Ĵ0 compared to the delay based
policies. In order to provide insights into this result we have
to point out the behavior of the two extreme delay policies,
i.e., those with D equal to 1 and 90. The first one probed the
sensor more often than the other policies since D assumed its
smallest value, while the delay policy with D = 90 practically
never probed the sensor since 90 is almost equal to the entire
time horizon of 100 time slots.

From Figure 2 we see that when ⌧
f

SM
was less than 0.20

the delay policy with D = 90 and the threshold policy had
similar cost efficiency. This means that probing was rarely
needed for that range of ⌧

f

SM
values. When ⌧

f

SM
lied in the

range between 0.20 and 0.30 the cost induced by the delay
policy with D = 90 increased with a higher rate compared to
all other policies. This indicates that probing became necessary
in order to reduce cost Ĵ0. This is evident also by the fact that
the delay based policy with D = 10 performed closer to the
threshold policy within this range of ⌧f

SM
values. When ⌧

f

SM

took values in the range between 0.30 and 0.5 all policies
saw an increment in Ĵ0. For this range of ⌧

f

SM
values, the

increased value of p
11
SM

, resulted in extended periods during
which the lSM link was in a faulty state. As a consequence, the
delay of status update arrivals increased and all delay based
policies engaged in persistently probing the sensor whenever

166



delay exceed their threshold D. The persistence in probing is
explained by the fact that the lSM link was in a faulty state
for long periods and the generated status updates could not

reach the monitor and decrease delay below D. The effect of
persistent probing is particularly evident in the abrupt increase
of Ĵ0 for the delay policies with the smaller values of D, i.e.,
D = 1 and 10. In contrast, the threshold based policy was
able to avoid unnecessary probing by utilizing the health status
entropy and thus defer probing while it was confident that lSM

link was in a faulty state. Finally, when ⌧
f

SM
is larger than 0.5

we observe a reduction in the induced cost Ĵ0 for all policies
except for the delay based policies with D = 1 and D = 10.
The observed reduction in Ĵ0 is mainly due to the uniform
reduction in the cost induced by the health status entropy.
More specifically, for large values ⌧

f

SM
, i.e., for large values

of p11
SM

and p
01
SM

, the monitor was confident that the lSM link
was in a faulty state, and this resulted in a reduced cost due
to health status entropy. However, despite the reduction of Ĵ0
values for all policies the effect of persistent probing is still
evident and especially so for the delay policies with D = 1
and 10.

In order to provide further insight on the effect of health
status entropy on Ĵ0 we modified the previous scenario by

setting, P
MS =


1 0
1 0

�
, P

S =


1 0
1 0

�
. By setting the

0.2 0.3 0.4 0.5 0.6

⌧ fSM

50

55

60

65

70

75

80

85

90

Ĵ
0

Threshold Policy

Delay Policy, D=1

Delay Policy, D=10

Delay Policy, D=30

Delay Policy, D=50

Delay Policy, D=70

Delay Policy, D=90

Fig. 3: J0(·) vs. ⌧f
SM

when only the lSM link is subject to
failures.

matrices P
MS and P

S to the values presented above both the
link lMS and the sensor S would never enter a faulty state
and, even if they were randomly initialized to a faulty state
they would return to the healthy state with probability 1 in
the next time slot. Thus, the system can now be in one of two
states, i.e., the states with index i = 0 and i = 1 respectively
in Table I. This comes in contrast to the eight possible states of
the previous scenario and results in a uniformly reduced value
for the health status entropy across all policies and the whole
range of ⌧f

SM
values. Now, in Figure 3 we do not observe the

significant reduction of Ĵ0 when ⌧
f

SM
assumes values greater

than 0.5 that we observed in Figure 2. This is because, the
health status entropy cost is uniformly lower and the increment
of ⌧f

SM
has a much less significant effect on its value compared

to the increment of normalized AoI and probing costs.
Finally, in Figure 4 we present the reduction of Ĵ0(·) for

all policies relative to the cost Ĵ90
0 of the delay policy with

D = 90 for an increasing time horizon N . We modified the

100 200 300 400 500

N (time-slots)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(Ĵ
9
0

0
�
Ĵ
0
)/
Ĵ
9
0

0

Thr. Policy

D=1

D=10

D=30

D=50

D=70

D=90

Fig. 4: Relative reduction in Ĵ0(·) vs. time horizon N .

basic system setup of Figure 2 by setting p
11
SM

= 0.9 and �2 =
N

100 so that the normalized AoI doesn’t become negligible as
the time horizon increases. By setting �2 = N

100 we had a
normalized AoI cost of �̄ = �

100 , which was analogous to
that of the basic scenario for all values of N . Figure 4 depicts
that the approximately optimal threshold policy achieves an
almost constant reduction rate of 16% across all experiments
indicating that an increasing horizon N is not detrimental to
its performance.

VII. CONCLUSIONS

In this work, we address the problem of deriving an efficient
policy for probing sensors in IoT networks We adopted a
semantics-aware communications paradigm, formulated the
problem as a POMDP and utilized a computationally efficient
algorithm to derive an approximately optimal policy. Finally,
we presented numerical results that exhibit significant cost
reductions compared to conventional delay based policies.

ACKNOWLEDGMENT

This research has been financed by the European Union
and Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the
call RESEARCH – CREATE – INNOVATE (project code:
T1EDK-00070). The work of N. Pappas has been supported
by the Center for Industrial Information Technology (CENIIT),
the Swedish Research Council (VR), and the Excellence Cen-
ter at Linköping-Lund in Information Technology (ELLIIT).

167



REFERENCES

[1] Z. Zhang, A. Mehmood, L. Shu, Z. Huo, Y. Zhang, and M. Mukherjee,
“A survey on fault diagnosis in wireless sensor networks,” IEEE Access,
2018.

[2] S. L. Campbell and R. Nikoukhah, Auxiliary signal design for failure

detection. Princeton University Press, 2015.
[3] M. Kountouris and N. Pappas, “Semantics-empowered communication

for networked intelligent systems,” IEEE Communications Magazine,
vol. 59, no. 6, pp. 96–102, 2021.

[4] P. Popovski, O. Simeone, F. Boccardi, D. Gündüz, and O. Sahin,
“Semantic-effectiveness filtering and control for post-5G wireless con-
nectivity,” Journal of the Indian Institute of Science, vol. 100, no. 2,
2020.

[5] B. Güler, A. Yener, and A. Swami, “The semantic communication
game,” IEEE Transactions on Cognitive Communications and Network-

ing, vol. 4, no. 4, pp. 787–802, 2018.
[6] E. Strinati and S. Barbarossa, “6G networks: Beyond Shannon towards

semantic and goal-oriented communications,” Computer Networks, p.
107930, 2021.

[7] N. Pappas and M. Kountouris, “Goal-oriented communication for real-
time tracking in autonomous systems,” in IEEE International Conference

on Autonomous Systems (ICAS), 2021.
[8] Q. Lan, D. Wen, Z. Zhang, Q. Zeng, X. Chen, P. Popovski, and

K. Huang, “What is semantic communication? a view on conveying
meaning in the era of machine intelligence,” Journal of Communications

and Information Networks, 2021.
[9] J. Dommel, D. Wieruch, Z. Utkovski, and S. Stańczak, “A semantics-

aware communication scheme to estimate the empirical measure of
a quantity of interest via multiple access fading channels,” in IEEE

Statistical Signal Processing Workshop 2021.
[10] X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications: Overview,

open issues, and future research directions,” IEEE Wireless Communi-

cations, pp. 1–10, 2022.
[11] M. Kalfa, M. Gok, A. Atalik, B. Tegin, T. M. Duman, and O. Arikan,

“Towards goal-oriented semantic signal processing: Applications and
future challenges,” Digit. Signal Process., vol. 119, 2021.

[12] E. Uysal, O. Kaya, A. Ephremides, J. Gross, M. Codreanu, P. Popovski,
M. Assaad, G. Liva, A. Munari, T. Soleymani, B. Soret, and K. H.
Johansson, “Semantic communications in networked systems: A data
significance perspective,” 2022.

[13] G. Stamatakis, N. Pappas, A. Fragkiadakis, and A. Traganitis, “Au-
tonomous maintenance in IoT networks via aoi-driven deep reinforce-
ment learning,” in IEEE INFOCOM Workshops, 2021.

[14] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and J. Han,
“Dustminer: troubleshooting interactive complexity bugs in sensor net-
works,” in Proceedings of the 6th ACM conference on Embedded

network sensor systems, 2008.
[15] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse, “Clairvoyant: a

comprehensive source-level debugger for wireless sensor networks,” in
Proceedings of the 5th international conference on Embedded networked

sensor systems, 2007.
[16] G. Stamatakis, N. Pappas, and A. Traganitis, “Control of status updates

for energy harvesting devices that monitor processes with alarms,” in
IEEE Globecom Workshops, 2019.

[17] D. Jeswani, M. Natu, and R. K. Ghosh, “Adaptive monitoring: applica-
tion of probing to adapt passive monitoring,” Journal of Network and

Systems Management, vol. 23, no. 4, 2015.
[18] A. Tayal, N. Hubballi, M. Natu, and V. Sadaphal, “Congestion-aware

probe selection for fault detection in networks,” in 10th International

Conference on Communication Systems & Networks (COMSNETS),
2018.

[19] A. Tayal, N. Sharma, N. Hubballi, and M. Natu, “Traffic dynamics-aware
probe selection for fault detection in networks,” Journal of Network and

Systems Management, vol. 28, no. 4, 2020.
[20] Z. Hu, L. Zhu, C. Ardi, E. Katz-Bassett, H. V. Madhyastha, J. Hei-

demann, and M. Yu, “The need for end-to-end evaluation of cloud
availability,” in International Conference on Passive and Active Network

Measurement. Springer, 2014.
[21] L. Quan, J. Heidemann, and Y. Pradkin, “Detecting internet outages with

precise active probing (extended),” USC/Information Sciences Institute,

Tech. Rep, 2012.

[22] D. Jeswani, M. Natu, and R. K. Ghosh, “Adaptive monitoring: A frame-
work to adapt passive monitoring using probing,” in 8th International

Conference on network and service management (CNSM) and Workshop

on systems virtualiztion management (SVM), 2012.
[23] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new

concept, metric, and tool,” Foundations and Trends in Networking,
vol. 12, no. 3, pp. 162–259, 2017.

[24] Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information: A new
metric for information freshness,” Synthesis Lectures on Communication

Networks, vol. 12, no. 2, pp. 1–224, 2019.
[25] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and

S. Ulukus, “Age of information: An introduction and survey,” IEEE

Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–
1210, 2021.

[26] M. Moltafet, M. Leinonen, M. Codreanu, and N. Pappas, “Power mini-
mization for age of information constrained dynamic control in wireless
sensor networks,” IEEE Transactions on Communications, vol. 70, no. 1,
pp. 419–432, 2022.

[27] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “The cost
of delay in status updates and their value: Non-linear ageing,” IEEE

Transactions on Communications, 2020.
[28] X. Wang, W. Lin, C. Xu, X. Sun, and X. Chen, “Age of changed

information: Content-aware status updating in the internet of things,”
IEEE Transactions on Communications, 2022.

[29] B. Zhou and W. Saad, “Joint status sampling and updating for minimiz-
ing age of information in the internet of things,” IEEE Transactions on

Communications, 2019.
[30] M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas, “A reinforcement

learning framework for optimizing age of information in rf-powered
communication systems,” IEEE Transactions on Communications, 2020.

[31] P. D. Mankar, Z. Chen, M. A. Abd-Elmagid, N. Pappas, and H. S.
Dhillon, “Throughput and age of information in a cellular-based iot
network,” IEEE Transactions on Wireless Communications, vol. 20,
no. 12, pp. 8248–8263, 2021.

[32] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in IEEE INFOCOM, March 2012.

[33] G. Stamatakis, N. Pappas, A. Fragkiadakis, and A. Traganitis,
“Semantics-aware active fault detection in status updating systems,”
arXiv preprint arXiv:2202.00923, 2022.

[34] V. Krishnamurthy, Partially observed Markov decision processes. Cam-
bridge University Press, 2016.

[35] J. C. Spall, Introduction to stochastic search and optimization: estima-

tion, simulation, and control. John Wiley & Sons, 2005, vol. 65.

168


