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Abstract—The growing importance of the data in today’s
applications, such as machine learning, makes merchandising
them more appealing, but it opens various challenges. Indeed,
we want data to be delivered in a fast, reliable, and secure
manner. This means we want guarantees about the payment and
the correct delivery of the data, while still offering the ease of
existing publish/subscribe protocols.

There exists no state-of-the-art protocol that answers to all
those challenges. Most of them lack the security properties needed
for merchandising data and the few secured propositions do not
scale well with the number of buyers, which prevents them from
global use.

In this paper, we present a data payment system based on
SUPRA, a publish/subscribe protocol having delivery guarantees.
With our solution, it is possible to securely sell data while sharing
them using the publish/subscribe model, which is known for its
scalability in one-to-many communications.

After presenting how our system works, we explain how
it answers the various challenges of merchandising data and
compare it to the other state-of-the-art solutions.

Index Terms—blockchain, publish/subscribe, data payment

I. INTRODUCTION

Having a large amount of high-quality data is crucial for
many applications, in particular for services that use artificial
intelligence. The main producers of data include connected
devices sensing their environment (referred to as the internet of
things) and online services themselves that log users’ events.
These data are then used to analyze, monitor, and predict
events or behaviors using tools such as machine learning. The
growing importance of the data has opened the possibility for it
to be merchandised. Selling data raises several challenges: the
price of individual data is negligible; data should be received
quickly after it is produced and easy to manage; data must be
encrypted and the communications auditable. In this paper, we
propose a solution to connect data producers to data consumers
offering strong guarantees about the delivery and the payment
of each data message.

The Internet of things enables real-time updates of an
environment. The owner of a set of sensors deployed in an
area gathers measurements from these sensors in a server,
called gateway. The quality and the quantity of the data depend
on the sensors and the settings. Some data consumers can be
interested in such data, for instance, to know the evolution
of a specific environment, but do not want to deploy sensors
themselves, either because they are interested only for a short
period, or because they do not have access to the environment.

They can be potential clients for the entity that produces the
data and are willing to sell these data.

Our proposed solution is based on a publish/subscribe
protocol so that managing data is as simple as with existing
IoT-oriented protocols such as MQTT [2]. Moreover, data
messages are transmitted directly between the data-producer
server and the data-consumer server. Also, we offer payment
guarantees for the vendor and delivery guarantees for the
buyer. For the vendor, we prove that it will receive the money
according to the amount of data sent to the buyer. For the
buyer, we prove that it will receive the data correctly and it
will be able to detect any missing messages.

Blockchain and cryptocurrencies can be used for creating
this kind of selling protocol. Indeed, crypto-currencies have a
smaller granularity than classic currencies. This means that it
is possible to buy something for less than 0.01$ (or £, C,
...) if we put aside the transaction fees. So, with the help
of the blockchain, we can put a price on each sensor data
individually. In contrast, with a classic currency, we have to
round the price if it is not a multiple of the currency’s smallest
denomination.

On top of this, blockchain can add the security properties
needed for this kind of protocol to be used safely by users,
because transactions are visible for all blockchain users, which
means that anyone can verify the data payments, or let an
automated application like a smart-contract do it.

There are several propositions for data payment protocol
with blockchain [4], [10], [11] but they do not take into
account malicious behaviors from the users. This means that
the buyer is not sure to get its data, and the vendor is not
sure to get its payment. This issue prevents the usage of these
protocols in real-life scenarios. Also, these propositions do not
take into consideration important properties of the blockchain
such as the high confirmation time of transactions and the
expensive fees per transaction. On the other hand, Lightning
Network [9] is a proposition taking into account all these
needs but is not adapted for publish/subscribe data-centric
communication, a model used to share IoT data.

Contributions: In this paper, we present an extension of
SUPRA [1], a publish/subscribe protocol, that allows brokers
to buy/sell data from other brokers. This extension offers pay-
ment and delivery guarantees and avoids as much as possible
the use of the blockchain, to reduce the transaction fees and
increase the data delivery rate. We prove the security of our
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protocol, in particular, the mechanisms preventing malicious
users to steal data without paying. Finally, we compare our
proposition to other state-of-the-art solutions and show under
which conditions which solution is more interesting.

II. RELATED WORK

A. Blockchain and crypto-currencies

Blockchain is a distributed ledger technology that was first
presented by Satoshi Nakamoto in 2008 [7]. The purpose of
this technology is to make a network of nodes maintaining
an immutable distributed ledger of transactions. These trans-
actions are grouped into blocks. Each block is linked to the
previous block using hash pointers and then added to the
ledger. It creates a chain of blocks, hence the name blockchain.

The author of a transaction is identified with a pair of
public/private cryptographic keys. Each transaction is signed
by its author using the private key and blockchain nodes verify
the signature using the author’s public key. The transaction
is sent to a node of the blockchain and then broadcast over
the network. Each node saves incoming transactions in a pool
used to build the next blocks. Once a new block is validated,
transactions integrated into this block are removed from the
pool. The way blocks are appended is a result of a consensus
algorithm that depends on the blockchain technology (e.g., in
Bitcoin a single node is elected to append the next block).

Once a block is added to the chain, the transactions in it
cannot be modified (or at least the probability that a modifica-
tion can be made decreases exponentially fast over time). That
is why data on the blockchain is considered immutable. This
property remains true as long as a certain amount of nodes
follow the protocol honestly. The minimum amount of honest
nodes depends on the consensus algorithm and the blockchain
implementation.

Crypto-currencies are the most known applications of
blockchain technologies. In this type of application, the trans-
actions in the ledger contain a transfer of tokens from one
user to another. The purpose is to create a payment system
that does not rely on a central authority to run, like banks
from classic currencies, but where every user can trust the
accounts’ balance with the help of the blockchain transparency.
The most famous crypto-currencies is Bitcoin, which is also
the first application using blockchain.

Aside from the decentralized property, crypto-currencies
have an interesting payment property. They allow a smaller
granularity in payment than classic currencies. For instance, in
Bitcoin, the main token is also named Bitcoin but it is not the
smallest transferable token. Indeed, the smallest denomination
of a Bitcoin is called a Satoshi which is 10−8 Bitcoin, and
based on exchange platforms, 1 Satoshi is less than 0.01 C.1

Which means that with Bitcoin, we can buy/sell individually
things that cost less than 0.01C. This property is also present
in other crypto-currency, for instance, in Ethereum [3] the
smallest denomination of an Ether is called the Wei, which
is 10−18 Ether, and also has a value smaller than 0.01C.

1As of July 2022, 1 Satoshi = 0.00021 C

This small denomination in crypto-currencies is an inter-
esting property for sensor data because each data individually
has a negligible monetary value, so it could be a problem with
classical currency if you have to sell data that is worth less
than 0.01C. Whereas with crypto-currencies, you can directly
sell each data individually, if we assume that the price for a
data is equal to, or higher, than the monetary value of the
smallest denomination of the token. Unfortunately, two issues
prevent users to sell sensor data with crypto-currencies: the
delay to add a transaction in the ledger, and the transaction
fees. Each transaction contains fees. Those fees are used to pay
the network for its work. If the fees are higher than the price
of a single data, it is uninteresting to use crypto-currencies,
because users will spend more on fees than on data. Also,
adding a transaction takes time, for instance in Bitcoin, once
a transaction is in a block, since the chain can fork, one usually
waits one hour before being sure that the transaction is in the
main branch of the chain and will stay in the ledger. This can
prevent the usage of crypto-currencies for real-time data, if the
vendor waits for the payment before sharing data, the buyer
will have to wait one hour for each data before receiving it.
The Lightning Network [9] resolves both issues, but we will
explain in the next section why it is not a good solution for
IoT oriented environment.

B. Data payment protocol

The goal of a data payment protocol is to ensure that
the buyer receives the data and that the vendor receives the
payment. To do so, the protocol have to execute an atomic
swap [5] between the data and the payment. An atomic swap
is an exchange between two or more users where, if all users
are honest, the exchange is made correctly, but if one user if
malicious and try to deviate from the protocol, then all honest
users cannot end-up in a situation worse than the one before
executing the swap.

To execute an atomic swap with a blockchain, we can use
the Lightning Network (LN) [9]. It is a decentralized payment
protocol that allows two users to create a lightning channel.
This channel allows users to exchange as many transactions
as they want instantly without paying fees. Let’s assume that
A and B want to frequently exchange tokens from A to B
or from B to A. To set up the lightning channel, A and
B lock some funds with a transaction signed by both users
called a commitment transaction. This transaction is added
to the ledger. Once it is done, A and B can exchange off-
chain an arbitrary number of transactions. Every time A and
B want to exchange tokens, they both create a revocable
commitment transaction with their current agreed balances.
If any of them wants to leave with the money, it will get
the last agreed balance. Each new revocable commitment
transaction revokes the previous one, hence, no one can use the
previous commitment transactions to leave the network with
the previously agreed balance (which is not valid anymore).
Indeed, if one user is malicious and tries to do so, the other
user can prove it and receive the funds locked by both user in
the commitment transaction as a reward.
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One could extend Lightning channels to allow a data trans-
fer, hence ensuring that a commitment transaction takes effect
only when data is correctly transferred. However, this would
add complexity to a protocol that already require complex
secret exchange between participants. Moreover, LN would
require each broker to keep all the revoked transactions. Our
solution achieve the same goal with a much simpler approach,
using the fact that data transfer is directed from the seller to
the buyer, which removes the necessity to store secret-based
revocable transactions.

In the literature, we find several data payment protocols.
For instance, in [11], the authors present a system of payment
for publish/subscribe protocol called PPSP. In this protocol,
the publisher delegates the payment handling functionality to
the broker. The publisher sends data and the data price to
the broker. Then the broker will charge the subscribers and
forward the crypto-currencies to the publisher’s wallet. The
issue of this proposition is that the payment verification adds
delay before delivering each data. Indeed, before forwarding
the data to the subscriber, the broker waits for the payment
confirmation in the ledger and, as said earlier, this operation
can takes several minutes or hours. This delay can prevent
the usage of this proposition for real time data, where it is
important for the subscriber to receive the data as fast as
possible.

Another proposition is Streaming Data Payment Protocol
(SDPP) [10]. This protocol uses a client/server model where
the client uses a four-way handshake to order data from the
seller. In this handshake, the client and the seller set which
type of data will be sold, the amount D of data, the price P ,
and the window size K.

After the handshake, data are sent in windows of size K. It
is only at the end of a window that the seller sends an invoice
to the buyer to pay for the data sent in that window. When
the buyer is paid, by sending the crypto-money to the seller’s
wallet, then the next window can start.

Sending data in window reduces delay introduces by the
payment verification process present in PPSP, but it creates a
new issue. Indeed, a malicious user can leave the system after
receiving the window and not pay the vendor. To reduce the
impact of such behaviors, the authors encourage the vendor to
choose a small value for window size K, but it will increase
the impact of the payment process.

D. Chen et al. [4] adapts the idea of SDPP in QoS man-
agement environments. In this version, the buyer pays before
receiving the service. This time, nothing prevents the vendor
to leave the system without sending data. Also, R. Nakada et
al. [6] proposed an implementation of SDPP on a Raspberry
Pi, but it keeps the payment issue of the protocol with the data
window.

To the best of our knowledge, there is no data payment
protocol for publish/subscribe environment that ensure the
vendor to get the payment and the buyer to receive data. Our
purpose is to propose one such protocol and to do so, we will
update SUPRA [1], a publish/subscribe protocol having data
delivery guarantees.

A B

Off-chain 
data channel

Ack

A B

Off-chain 
data channel

On-chain 
data channel Receives

EventsBlockchain

Fig. 1: The two sub-channels inside the SUPRA channel

C. SUPRA

SUPRA is a decentralized publish/subscribe protocol using
blockchain. The protocol allows publishers and subscribers
connected to different brokers to securely share data with
delivery guarantees.

In the publish/subscribe model, the publisher and the sub-
scriber have to trust the broker to which they are directly
connected, because all the messages that they will receive, or
send, will go trough this broker. If they are connected to the
same broker, there is no trust issue in the system, but if they
are connected to two different brokers and if the two brokers
does not trust each other, how can we create a secure and
reliable link between these two brokers ? Without additional
assumption, a broker cannot be sure that the other broker
receives the message and the broker who receives a message
cannot know if some messages are missing. This issue prevents
the usage of publish/subscribe with multiple brokers for use
cases where missing a message is not tolerated, for instance
when users share sensitive data.

The purpose of SUPRA is to secure the link between the
brokers and, to do so, the protocol establishes an hybrid chan-
nel between the two brokers, like in Figure 1. This channel is
split into an off-chain channel (i.e.a direct connection between
both entities over an unreliable link), and an on-chain channel
(i.e.messages are added in the ledger, then the destination gets
the message once it is in a block). For the rest of this section,
A denotes the broker that the publisher trusts and to which
it is connected, and B denotes the broker that the subscriber
trusts and to which it is connected.

To work, SUPRA assumes that the brokers are reliably
connected to the blockchain and can receive events from the
blockchain, which can be done by being a full node or by being
reliably connected to a trusted full node. This also means that
the brokers are not constrained devices.

To secure the link between the brokers, the first mission of
SUPRA is for A to obtain a proof that a message is delivered
before a delay Tacknowledged from the first sending. Since
adding information in the ledger cost money, the publisher’s
broker first tries to use the off-chain channel and wait for
the subscriber’s acknowledgment. The broker can retransmit
the message as much as it wants on the off-chain channel. If
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Fig. 2: Three messages chained together by signatures.

the publisher does not receive the acknowledgment in time, it
sends the message over the on-chain channel, to be sure that
the message is added in a block before Tacknowledged .

Just like in Herlihy et al. [5], which formalized the atomic
swap problem, SUPRA assumes that the time to add a
transaction in the ledger is bounded by a value ∆on−chain .
Which means that A has to send the messages on-chain after
a delay Toff −ack = Tacknowledged −∆on−chain from the first
transmission of the message to deliver the message in time
to B. No matter the subchannel used, the sender A has proof
that the message was delivered in time by B: either it has the
acknowledgment from B or the message is publicly available
in the ledger in a block created before Tacknowledged .

To make sure that only B (and other brokers subscribed
to the same topic) can read the message, the payload is
symmetrically encrypted. Indeed, in [1], the authors explain
how to share the symmetrical encryption key between all the
interested brokers, and how to update it when a broker stops
its channel with A.

On top of this delivery property for the sender, SUPRA also
offers delivery property for the receiver. First, the messages
are signed and timestamped by the sender, and each message
contains the signature of the previous message, chaining them
together just like the blocks of a blockchain with hash values.
This can be seen in Figure 2. In more details, each message
Mi has a field Prei that contains the signature Si−1 of
the previous message Mi−1. It allows the receiver to detect
missing messages. If B receives a message that does not
contain the signature of the previous message, it knows that at
least one message is missing. To retrieve missing messages, the
receiver just has to wait. Indeed, since the sender has to ensure
the message delivery before Tacknowledged , if the receiver waits
for Tacknowledged , it will retrieve the missing messages either
by receiving it directly (off-chain channel) or by receiving it
in the blockchain (on-chain channel).

If the missing message are not received by B in time, it can
use a smart contract, called the judge, to prove that A did not
follow the protocol correctly. B presents the messages used
to detect the issue and A will be unable to present a proof
of delivery for the missing message (the missing message is
not acknowledged nor is present in the blockchain). However,
A can defend itself against false accusations. If the message
is delivered correctly — it is either present in the ledger or
the publisher has an acknowledgment for this message — A

Vendor Buyer

SUBSCRIPTION REQUEST:
topic name

MENU: 
topic ID T, data price P, 
closing window W

ACK

Blockchain

Lock F tokens in the
smart-contract

Check if the subscriber has
locked tokens 

Fig. 3: The publisher and the subscriber open a channel

can submit the acknowledgment to the judge to prove that the
accusation is incorrect. Since acknowledgments are cumulative
(due to the signature chaining), an acknowledgment for a later
message is also accepted.

To set up this communication channel, B starts a three-way
handshake with A in which B indicates the topic T used for
the channel. If the subscribers connected to B are interested
in several topics from A, B has to open one channel for each
topic but if several subscribers connected to B are interested
in the same topic from A, B just have to open one channel
with A.

With SUPRA, an honest user can always prove that all the
messages were received in time, or not, by the correct user.
This delivery property represents half the property needed for a
data payment protocol, if we can add a secure payment system
to SUPRA, we can have a data payment protocol capable of
sharing data in a publish/subscribe manner. We will explain
in the next section how to add such system.

III. SECRET-LESS SECURED PAYMENT SYSTEM

In this section, we explain how to add a secret-less secured
payment system to SUPRA. We use the same notation and
assumptions as in SUPRA. Namely, A and B denote two
brokers that are connected by an unreliable link, but they are
both reliably connected to the same blockchain. At least one
publisher for the topic T is connected to A and at least one
subscriber for this topic is connected to B.

A. Setup the communication

To start the communication, we modify the handshake
between A and B used to open a SUPRA channel. The new
handshake is represented in Figure 3. Just like in SUPRA, we
assume that A and B both know which blockchain and which
smart contract is used during the communication.

To add a payment system, we add two new information in
A’s answer in the handshake : the data price P , and the closing
window W .
P can contain several prices based on the data’s timestamp.

For instance, if the publisher sells cars GPS locations, data
generated just before and after business hours can cost more
than data generated at night, because there are more cars on
the road. The price can be also a constant value and, for the
rest of the paper, we will assume that each data have a constant
price P .
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The closing window defines how many data can be in transit
simultaneously, i.e., can be sent without being acknowledged.
This is important because, if the buyer B wants to close
the subscription, some data could still be in transit and B is
required to pay for at most W messages after the subscription
is closed. With a large closing window W , A can send data at a
high rate because fewer acknowledgments are required (at least
one every W message). Having W data not acknowledged is
not a problem because the vendor is allowed to claim the
tokens to be paid for them. Of course, when W data are not
acknowledged, the vendor has to wait for an acknowledgment,
retransmit some data, or send them in the blockchain, follow-
ing the hybrid channel specification. The value W is also a
protection for the buyer because it knows that, if it fails, the
vendor can ask to be paid for at most W unacknowledged
messages, and not steal the whole money with dummy data.
This protection is explained in more detail in section IV

The value W depends on the application. For instance, if
data are shared in bursts, W can be equal to the maximum
size of a burst.

B can refuse or accept the values P and W proposed in the
handshake. If it accepts these values, as illustrated in Figure 3,
B has to lock some funds in the smart-contract. To do so, we
modify the SUPRA’s judge smart contract with a function to
store and manage funds in the contract. To call this function,
B sends F tokens to the contract and indicates the ID of A and
the topic ID T of the SUPRA channel. Locking funds with
this function can be done later as well, without limitation.
The details about how funds can be claimed from the smart
contract are explained later.

Once the tokens are stored in the contract, the buyer B
sends an acknowledgment to the vendor A. At the reception
of this message, A checks if tokens are locked in the contract
with the correct information. If these values are correct, and
there is enough locked token, A can start selling data to
B. Otherwise, it can immediately stop the subscription. For
instance, if the funds F are smaller than the price P times the
closing window W , B does not have enough tokens to pay
for the closing window, so A has no interest in sharing data
with it. At the ends of the handshake, A and B have opened
a SUPRA channel and have set up the payment system.

B. Data payment

Once the funds are locked in the contract and the handshake
is over, A can sell data to B. In SUPRA, the two brokers
share two channels to exchange messages: an unreliable off-
chain channel, and a reliable on-chain channel. Since using
the on-chain channel costs fees and adds delay, the first
channel used to share data is the off-chain. Then, the on-chain
channel is only used when the sender does not receive an
acknowledgment, to be sure that the message is delivered in
time. The vendor can be paid by the smart contract either
by showing an acknowledgment or by showing an on-chain
message.

1) Payment using data acknowledgments: SUPRA ac-
knowledgments contain the A’s ID, and also the topic ID.

Vendor Buyer

Data publication 1

Blockchain

ACK: C=P

Data publication 2

Data publication 2

ACK: C=NP

Data publication N

Data publication 3

ACK: C=3P

Fig. 4: Payment promises through acknowledgments

Vendor Blockchain
ACKi: Ci

Get 
min(Ci, F) tokens

ACKj: Cj

Get 
min(Cj-r1  F-r1) tokens

Fig. 5: The publisher claims two times tokens from the contract

For our payment system, we add a new field in the acknowl-
edgments: the current cost C of the subscription.

As presented in Figure 4, if P is the price for each data,
each acknowledgment B increases the cost C by P . If some
messages go through the blockchain, because they are not
acknowledged in time, the next acknowledgment includes the
price of these missing data. In section IV, we explain what
happens if users try to deviate from the protocol. For instance,
if B purposefully does not send acknowledgments or updates
the price incorrectly.

The acknowledgment has two purposes. First, like basic
acknowledgments, it proves that data was received correctly.
Second, since acknowledgments are signed in SUPRA, the
signer cannot deny the event acknowledged and the data inside
the acknowledgment. By adding the price in the acknowledg-
ments, it proves that B is willing to give C tokens to A for
the specific topic ID T . The acknowledgment contains all the
information needed by the smart contract to send tokens to the
vendor.

At any point in time, the vendor A can claim tokens in the
contract. To do so, it has to present an acknowledgment from
the user B to the smart contract, as illustrated in Figure 5.
For instance, it can claim its token after i1 messages, after
i2 messages, . . . , after ik messages, i1 < i2 < . . . < ik.
For all j, let ACKj be the acknowledgment for the message
Mj . Cj is the cost associated with ACKj i.e., Cj = P × j.
For the first claim, A presents ACKi1 to the smart contract
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and receives r1 = max(0,min(Ci1 , F )) tokens out of the F
tokens locked in the contract. A cannot claim more tokens
than the F locked in the contract and the claim must be
non-negative. The smart contract stores in a variable R all
the tokens that are already claimed by A, here R = r1 so
that, when the publisher later presents ACKi2 , the publisher
receives r2 = max(0,min(Ci2−R,F−R)) tokens. Again, the
smart-contact stores R = r1 + r2, in case of future demands
from the publisher. In general,

rk = max (0,min (Cik −R,F −R)) where R =

k−1∑
j=1

rj

Hence, the total amount of tokens redeemed by the publisher,
after ik messages, is min(Cik , F ), which is exactly the amount
of token earned by sending ik data (and no more than F tokens
can leave the contract in total).

Claiming tokens periodically can be interesting for the
vendor if it wants to get paid faster. For instance, A could
claim every day its earnings for all subscriptions, but, if it
wants to the minimize the transaction fees, it has to wait for
an acknowledgment with a value C as close as possible to F .

It’s important to notice that the public keys are registered
in the distributed ledger. This means that, when someone
presents an acknowledgment, the smart-contract can verify if
the acknowledgment is from the correct user, B in our case,
and if the entity claiming tokens is the one indicated when
the tokens were locked. Hence, even if a malicious entity can
get the acknowledgment, only A can claim the tokens for this
specific subscription.

2) Payment using on-chain messages: Like we said previ-
ously messages can be lost when users use the off-chain chan-
nel. Which means that the acknowledgments can also be lost.
In that case, we need to implement a method for the vendor
to reclaim tokens without presenting an acknowledgment.

To be paid for the messages up to message Mj , we allow the
vendor to present to the smart-contract a previous message Mi,
its acknowledgment ACKi, a message Mj present the ledger,
and the handshake use to set up the channel. If all the messages
Mx, where i < x ≤ j, are present in the ledger, then the smart-
contract uses the price indicated in the handshake and the cost
in ACKi to compute the earnings up to the message Mj .

Also the smart-contract can check the integrity of the
request. Indeed, during the handshake, the brokers agreed on
a value W as the closing window. Since the vendor presents
the handshake, the smart-contract can learn the value W and
check if the chain of messages in the ledger Mi+1, ...,Mj is
not larger than W .

Also, when the vendor uses this method, the tokens are
not transferred immediately to its wallet, because malicious
vendors could use this technique to claim more tokens once
the subscription is closed. In Section IV, we define this delay
and explain how the smart-contract can detect such behaviors.

C. Closure

There are two steps to stop the payment system: closing
the SUPRA channel and claiming the remaining tokens in the

Vendor BuyerBlockchain

ACKi : Ci

Tclosure
Get 
min(Ci, F) tokens

Get 
max(0, F-Ci) tokens

Claim tokens

Fig. 6: The subscriber reclaims its remaining tokens

contract. These steps can be done in any order. The smart
contract ensures that the publisher and the subscriber leave
with the right amount of tokens.

1) Closing the SUPRA channel: In SUPRA, A and B can
close the channel whenever they want. For instance, B can
stop the channel if its subscribers are not interested in the
topic anymore, or A can stop the channel because the topic
is no more shared by the publisher. To close the channel, the
initiator sends a message to notify the other broker and waits
for its acknowledgment. Since these messages go through the
off-chain channel, they can be lost. In this case, the initiator
sends the notification directly in the blockchain to ensure it
arrives before a delay Tacknowledged , like other data messages.

All messages are chained together by repeating the signature
of the previous message. If A stops the subscription, the
notification repeats the signature of the last published data,
but it is not the case if the closing originates from B, the
broker on which the subscriber is connected. As said earlier,
from the message chained in the stoppage notification, B will
pay, at most, W data. This is to pay the potential message on
the link sent by A but not yet acknowledged by B.

2) On-chain closing of the payment channel: The payment
channel must be closed on-chain in order to reset the variable
R and to avoid previous acknowledgments from being used
again (see the proof of Lemma 4) It is closed either by the
vendor or by the buyer.

The first method is to send the unsubscription message and
the acknowledgment to the smart-contract. If A, the vendor,
initiates the unsubscription, these two messages contain the
final value for C. The smart-contract can use this value to
send the final payment to A and transfer the remaining tokens
to B. If B initiates the unsubscription, we need to take into
consideration the window W . In this case, the smart-contract
waits for a delay Tclosure before doing the final payment, to let
A claim the tokens for W . To do so, Tclosure has to be superior
to ∆on−chain , the maximum delay to add a transaction in the
ledger. We will explain in Section IV, what happens if users
try to cheat with W .

The second technique to close the payment channel is for B
to claim the tokens in the contract, as illustrated in Figure 6.
This can be used in case A leave the system, so that B
can always recover its tokens. When it requests the tokens
in the contract, to prevent it from recovering tokens that
were intended to A, the tokens are on hold during a delay
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Tclosure. During this delay, A can claim the earned tokens in
the contract one last time.

After a delay Tclosure, B receives the remaining tokens in
the contract. Once the smart contract unlock these tokens, A
has no more guarantee of getting paid. If the SUPRA channel
is still open, A can still share data with B, but it will not get
tokens for those new messages.

If no-one closes the payment channel, then the vendor is at
risk if they open a new subscription. Indeed, if the value R
is not reset, then the amount of tokens the vendor can claim
will be wrong.

IV. SECURITY

In this section, we prove that our payment system provides
the properties of an atomic swap [5]. This means that, if some
users are malicious, correct users do not end up worse off.

In the remaining, we say that a user can prove some property
P if it can generate a signed message, so that the judge smart
contract can verify that P is true. This implies that the proof
cannot use external or private information.

Before presenting the possible malicious behaviors of seller
or the buyer, we will define our penalty system: if A, the
seller, can prove that B, the buyer, misbehaves, it can directly
claim the F tokens in the contract. Conversely, if B can prove
that A misbehaves, it can directly reclaim its F tokens. When
one user accuses another of misbehaving, the funds F in the
contract are locked for both users, until the resolution of the
conflict. Since our system uses SUPRA, the users have to
respect the properties of the SUPRA channel: published data
are delivered before Tacknowledged . We already explained in
section II-C what happens in case of conflicts on this property.
In this section, we focus on malicious behaviors in the data
payment system.

Lemma 1. Let Mi be the first message such that the value
Ci of the acknowledgment ACKi is not equal to i×P . Then
the seller A can prove that B made a mistake.

Proof. Let ACKj be the last acknowledgment received before
ACKi. If no data message where acknowledged before Mi,
ACKj = ACK0 the acknowledgment for the subscription
acceptation. There are two possible cases:
Case (a): j = i − 1. In this case, the tuple
(Mj , ACKj ,Mi, ACKi) is a proof that B made a mistake.
Indeed, the judge smart contract can verify that Mi follows
Mj (by checking that the previous signature of Mi is the
signature of Mj) and the cost Ci is not equal to Cj +P . Since,
Cj = j×P by assumption, we have a proof that Ci 6= i×P .
Case (b): j < i − 1. This means that each message Mk

with j < k < i is either on the blockchain or stored by
A (because unacknowledged). Let Store be the set of stored
messages by the seller A, and Txs be the set of transactions
in the blockchain where messages Mk, with j < k < i, are
published. Hence, the tuple

(Mj , ACKj , Store, Txs,ACKi)

is a proof that B made a mistake. Indeed, the judge smart
contract can see that the cost associated with Mj is j × P ,
by assumption, that there are i− j messages correctly chained
by signature by A (either in Store or in Txs), and that B
acknowledged the last one, which implicitly acknowledges all
the previous messages. So the buyer is aware that there are
i − j messages so the cost associated with ACKi should be
i × P . If it is not, the tuple is a proof that buyer made a
mistake.

We assumed that the data price has a constant value P ,
but this proof also works if the price evolves based on the
message’s timestamp since all the messages between Mi and
Mj , if there is any, are timestamped, and the price evolution
is indicated in the handshake.

Lemma 2. An honest vendor can always claim its earnings
for the sent messages.

Proof. If the vendor has an acknowledgment, it can present
the acknowledgment to receives the correct amount of tokens.
Otherwise, if the vendor does not have acknowledgments from
the buyer, we proved in the previous Lemma that from two
acknowledgments ACKi and ACKj , A can present a list of
on-chain message Mi+1,Mi+2, ...,Mj−1. This means that, if
an honest vendor does not receive acknowledgments, claiming
tokens with the method explained in Section III-B2, where a
list of consecutive messages in the ledger are presented to the
ledger, will work. Meaning that an honest vendor can always
claims its earnings, even without an acknowledgment.

Notice that we cannot make the difference between a
dropped message and a malicious buyer who purposefully does
not send acknowledgments. For this reason, if A claims tokens
without an acknowledgment, the buyer B is not penalized.
Still, B gains nothing by not sending acknowledgments be-
cause it will still pay for the messages sent on-chain.

Lemma 3. If a malicious vendor tries to claim more tokens
than it should, the buyer can have a proof that the vendor is
malicious.

Proof. A malicious vendor can try to claim tokens for on-chain
messages sent after the end of the channel, but this behavior
can be detected and penalized. To do so, when the vendor uses
this method, the token transfer only takes place after a delay,
to let the subscriber the time to prove the malicious behavior.
This delay can be equal to Tclosure.

To prove the malicious behavior, B can present several
messages. If the SUPRA channel was stopped by A, B can
present the unsubscription notification Mstop from A used to
close the subscription. The difference between the timestamp
inside Mstop and the timestamp inside the messages on the
ledger will be enough to prove that the vendor is malicious.

If the SUPRA channel was stopped by B we have to take
into consideration the window W . If Mstop was sent after
the reception of M0, B has to send acknowledgments for the
messages Mi, where 1 ≤ i ≤ W . If the vendor tries to claim
tokens for a message where i > W , B can present the message
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number of on-chain messages maximum number of unpaid data maximum number of data paid in excess
SDPP [10] 1 every K data K − 1 0

Our solution 1 if no problem occurs
less than any desired value M ≥W otherwise 0 W

TABLE I: Comparison between our solution and SDPP [10] in terms of on-chain messages and payment guarantees

Mstop, the list M0, ...,MW , and the handshake to the smart-
contract. With the handshake, the smart contract can learn the
value of W , and with Mstop it can check whether the list is
correct. If the list is correct, it knows that A tried to claim
tokens for an invalid message.

It is important to notice that this malicious behavior is
impossible if the buyer closes on-chain the payment channel
because, if the channel is closed on-chain and no new tokens
where locked by the buyer since then, the smart-contract can
immediately deduce that the request from the vendor is for
incorrect messages.

Lemma 4. Let Mi be a message from a previous subscription
to a topic T and ACKi be its acknowledgment. The vendor
cannot use ACKi to claim tokens in a new subscription for
the same topic T with the same buyer.

Proof. All the exchanged messages are signed and times-
tamped by the sender. If the vendor reuses an old acknowl-
edgment, the timestamp will be smaller than the timestamp
of the previous on-chain closing payment channel. The smart
contract can compare the timestamp and prevent the vendor
from irregularly claiming tokens.

Using the blockchain to resolve conflicts also creates by
design a review system on users’ behaviors. In [8], authors
present a smart contract to review communications and add
trust in users. In our proposition, the ledger contains the history
of all conflicts. Before starting a communication with a new
user, a cautious user can check all the user’s conflicts and
accept or refuse the communication based on the conflict
history.

V. COMPARISON WITH OTHER SOLUTIONS

In this section we compare our solution with SDPP [10],
which the closest solution offering similar guarantees. Table I
present the most important differences in terms of blockchain
usage and payment guarantees. In SDPP, payment is done with
an on-chain message once every K data, so the there are at
most K − 1 unpaid data. With our solution, blockchain is not
used if no problems occur. Payment also uses the blockchain
but can be performed at any time, so one message is enough
to be paid for an entire subscription period. In the worst case,
the vendor can be forced to send W messages on-chain (or
more if it is willing to). Value W is decided by the vendor and
can be any value greater than 0. No data can remained unpaid
and at most W data is paid by the buyer after the subscription
is closed.

VI. CONCLUSION

Compared to classical currencies, the small payment gran-
ularity of crypto-currencies allows users to sell IoT data
individually without rounding the price, but, to do so, need
a data payment protocol.

To the best of our knowledge, our solution is the first
to have all of the following properties: message delivery is
guaranteed; data payment is guaranteed for each data; data are
shared in a publish/subscribe manner; blockchain (and the cost
associated with it) is only used if there is a problem (abnormal
delay or malicious participants); malicious behaviors can be
detected and punished by a distributed smart-contract using
only publicly available information.
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