
The Impact of Network State AoI on
Throughput in a Wireless SDN

Clement Kam∗, Sastry Kompella∗, and Anthony Ephremides†

Email: clement.kam@nrl.navy.mil, sastry.kompella@nrl.navy.mil, etony@ece.umd.edu
∗Information Technology Division, Naval Research Laboratory, Washington, DC

†Electrical and Computer Engineering Department, University of Maryland, College Park, MD

Abstract—This work studies the role of Age of Information
(AoI) in the network state updating process for wireless software
defined networks (SDN). The SDN routers must routinely update
their knowledge of the network state, which is used as a
basis for making routing and scheduling decisions. However,
the network updates require communication resources, so there
is a tradeoff between the frequency of updates and maximum
network throughput. We assume the network state is Markovian
and no new observations are received in between updates, so the
AoI of the network state information impacts the ability of the
network to optimize its performance. We formulate the problem
as a finite-horizon Partially Observable Markov Decision Process
(POMDP) for each period. For a symmetric fading model of
the network, we derive the limiting performance and an upper
bound. To generate policies for a range of fixed time horizons,
we use Monte Carlo planning-based POMDP solvers. Simulation
of these policies show that there is a finite optimal update period
that maximizes network throughput. In addition, we study non-
uniform update intervals, which can yield even higher throughput
if the interval is chosen based on the state observed. We conclude
that AoI itself is not sufficient to characterize performance, but
what matters is the AoI for the specific network state information.

I. INTRODUCTION

Age of Information (AoI) [1] has garnered intense interest
in the network and information theory research communities
over the past decade. As a metric for the freshness of in-
formation updates, AoI enables a more purposeful approach
to the networking and communication problem than being
agnostic to the ultimate purpose of the communication (e.g.,
focusing on capacity or delay). While many works aim to
minimize the AoI, doing so may not necessarily best serve
the ultimate objective, especially when resources for updating
AoI are shared with other data flows. In this work, we look
at the relationship between AoI and the higher objective it is
serving. Specifically, we focus on a wireless software-defined
network (SDN), in which the SDN routers routinely participate
in an updating process to acquire the state of the network.
Since the updating process occurs over a bandwidth-limited
wireless channel, the updates are delayed, and the network
state information ages in between updates.

Software-defined networking (SDN) [2] is a paradigm
that decouples the control and data plane, simplifying net-
work management and promoting centralized control. While
more prevalent in wired networks, recent studies have shown
promise in applying the SDN paradigm to wireless ad hoc

networks, yielding improved throughput and network lifetime
compared to distributed routing protocols [3]. There have
been some works related to the network update problem. The
problem of where to place the SDN controller(s) to minimize
delay or other cost has been studied in both wired [4] and
wireless [5] settings. The network updating problem itself has
mostly been studied in wired networks to reduce delay caused
by forwarding loops, black holes, and other problems [6].
In [7], a linear programming framework was proposed for
solving network updating problems with custom requirements
like update speed or congestion control. Batch updates have
been proposed to reduce resource consumption in the Internet
of Things [8]. None of these works present a model of the
impact of the frequency of network updates on the network
performance.

There have been some works that study Age of Informa-
tion in relation to other network objectives. These include
age penalty functions [9], which characterizes the level of
dissatisfaction with aged information, and other AoI-related
metrics, such as effective AoI [10], or Age of Incorrect
Information (AoII) [11], [12]. Some works consider competing
objectives [13], [14] or mixtures of objectives [15], while
others look at the impact of age on caching performance [16]
or the performance of supervised learning tasks [17].

We recently studied a related problem in the context of
cognitive radio networks [18], [19], in which the primary
user’s transmit dynamics are Markovian, so the age of the
information sensed by the secondary impacts its probability
of successful transmission. By formulating the throughput and
collision probabilities in terms of the distribution of AoI and
each type of information (primary being idle or transmitting),
we were able to formulate a linear program that maximizes
the throughput subject to a collision constraint. The problem
here is related, but has much more complex dynamics and a
larger state and action space. However, we similarly conclude
that AoI must be associated with the information it is tracking
to optimize for the ultimate objective.

In this work, we study the problem of total throughput
maximization in a wireless SDN modeled as a Markov De-
cision Process. This includes determining the best timing of
network updates, which relate to the AoI of the network state
information available to the SDN controller. Our contributions
are as follows:

ISBN 978-3-903176-49-2 © 2022 IFIP 49

Fig. 1. Two user multilink model. Each link can be ON or OFF, which
depends on the previous state and the transmission state of all the users.

• We formulate the finite horizon partially observable
Markov decision process (POMDP) to generate policies
for each interval between network updates, which is
done by applying Monte Carlo-planning solutions for
POMDPs.

• We analyze the throughput performance as the transmis-
sion interval approaches infinity, and we also solve the
performance of the full observability case to serve as an
upper bound.

• We propose a number of heuristic policies, some based
on inspection of the POMDP-generated policies.

• To further understand the role of AoI, we study non-
uniform updating policies, including a mixed period
policy based on greedily choosing the period for each
observed state that improves the throughput.

Simulations of the various policies demonstrate that the
POMDP-based policies perform much better than the heuris-
tics. In addition, the mixed period policy is shown to out-
perform the periodic policies, and its throughput vs. AoI
performance is shown to be superior, illustrating the additional
gains possible by pairing AoI with its associated information.

II. SYSTEM MODEL

Although our approach can be generalized to larger, multi-
hop networks, we focus on a two-user single hop setting in
this work shown in Fig. 1. We consider a slotted two-user
system, in which each user has multiple links with different
link capacity. This single hop model can approximate a longer
multi-hop route and the impact of the other user transmitting
at the same time, but the following approach can also be
generalized to a network with more users, destinations, paths,
and states. In this work, the link availability is either ON or
OFF, where a user can only transmit over it if it is ON, and
no data can be transmitted when it is OFF. We consider 2
links per user, and the maximum quantity of data that can
be transmitted in a slot for user u over link l is denoted as
ru,l. The evolution of the state of all links in the network can
depend on the current state as well as the transmission links
utilized by all of the users, and thus we model the network
dynamics and throughput as a Markov Decision Process.

The true network state (status of all links) is unobservable
during transmissions, and the SDN controller makes transmis-
sion decisions based on information received during routine
network state updates. We assume these updates provide the
SDN controller with complete knowledge, but the information

immediately starts to age when the network begins making
transmissions. We define the AoI of the network state as the the
number of slots that have passed since the last network update
(during which the network has been transmitting). Based on
the network state AoI and the Markov model, the network
state probability function can be calculated in each slot. We
also assume that an update uses up a single slot, but this
can be generalized for arbitrary update time durations. Under
this model, there is a tradeoff between having fresh network
state information (low AoI) and leaving enough resources
(transmission slots) for data flows, which is controlled by the
timing and frequency of network updates.

We divide the timeline into the intervals occurring between
consecutive network state updates, such that we have perfect
knowledge of the network state in the slot just before the
start of the interval and no observations for the remainder of
the interval. For each time interval of length T − 1 between
network state updates, we model the problem of throughput
maximization for the network in Fig. 1 as a finite-horizon
Partially Observable Markov Decision Process (POMDP) as
follows:
• The state space S is the space of all possible combina-

tions of link states, which are given as s = (s11, s
2
1, s

1
1, s

2
2),

where slu ∈ {0, 1}, 0 denotes the link is OFF and 1
denotes the link is ON.

• The action space A is given by the space of all pos-
sible decisions made by the users a = (a1, a2), where
au ∈ {0, 1, 2}, 0 denotes no transmission, 1 and 2 denotes
which link the user transmits over. In every T th slot, there
is no transmission.

• The state transition probability is given by P (s′|s, a).
• The reward is the total data successfully transmitted

by both users, r(s, a) =
∑2
u=1

∑2
l=1 su,l1(au =

l)pr(u, l|a)ru,l, where 0 ≤ pr(u, l|a) ≤ 1 is the percent
reduction in rate for user u over link l given the action
a.

• During the interval after the network update, there are no
observations. To model the problem for a software-based
solver, we can model the observations as random and
independent of the actual state (we choose a uniformly
randomly chosen state).

The time horizon for these potential transmissions in the
interval is T − 1 slots, and the AoI of the network state
is simply the time index t. The average throughput after N
intervals is given by

R =
1

TN

TN∑
t=1

r(t)

where TN is the last slot of the nth interval, and r(t) is the
reward at time t, where r(t) = 0 when a network update
is taking place before the interval (assuming the first update
occurs at t = 0, this happens N−1 times). We first consider a
periodic updating pattern, such that the all the Tn are equal to
T (R = 1

NT

∑NT−1
t=1 r(t)). Because observations are lacking

in this problem, we can track the probability of being in a

50

particular state, called the belief state, to derive the optimal
policy for a given POMDP. The belief state is expressed as
Λ(n) = [λ1,1(n), λ1,2(n), λ2,1(n), λ2,2(n)], where λs(n) is
the probability of being in state s at time n.

To solve the finite-horizon POMDP exactly, we would
formulate the problem as a Markov Decision Process (MDP)
on the belief states, in which a belief update is performed at
each stage of the POMDP. Instead of the states in the original
problem, the states of this so-called belief MDP are the belief
states, which are fully observable. The only difference is
now the state space is continuous, since the belief state is
a distribution over the original states. It has been shown that
for finite-horizon POMDPs, the value function is piecewise-
linear and convex, and can be represented as a finite set
of vectors. So while it is possible to apply value iteration,
the complexity can be exponential in the number of actions
and observations. As an alternative, we apply Monte Carlo
planning-based methods [20], which use simulation to learn
the best actions and also enable us to find solutions for large
state spaces, as is the case for larger networks.

III. NETWORK STATE TRANSITION MODEL

While the POMDP approach can be applied to more general
network state transition models, we focus on a model that
we describe as a slow/fast fading interference network. We
consider the ON-OFF state of each link to be Markovian and
independent of the other link states, but the rate at which
the state changes depends on the other user’s interference.
Specifically, the rate of switching between OFF and ON is
higher when the other user is transmitting: the probability of
user u’s link l switching from ON to OFF or OFF to ON
is plo;u,l when the other user is not transmitting, and phi;u,l
when the other user is transmitting, where plo;u,l ≤ phi;u,l.
Also, the rate of switching is higher if the transmission
rate is higher: if ru,l1 ≥ ru,l2 then, plo;u,l1 ≥ plo;u,l2 and
phi;u,l1 ≥ phi;u,l2 . The transition probabilities are given by
the following expression:

P ((s′1,1, s
′
1,2, s

′
2,1, s

′
2,2)|(s1,1, s1,2, s2,1, s2,2), (a1, a2))

=

2∏
u=1

2∏
l=1

[
1(s′u,l = su,l)(1(au = 0)plo;u,l

+1(au 6= 0)phi;u,l) + 1(s′u,l 6= su,l)(1(au = 0)plo;u,l

+1(au 6= 0)phi;u,l)
]

where plo;u,l , 1 − plo;u,l and phi;u,l , 1 − phi;u,l. To
overcome the curse of dimensionality, we apply a Monte
Carlo-planning based POMDP solver to generate the policy for
each time horizon T−1 and each observed state. For each T−1
and initial state s0, we save the sequence of simulated actions
and use it as the policy when the observation is s0. We simulate
two approaches provided by the pomdp-py software, POUCT
and POMCP. POUCT conducts a Monte Carlo tree search
using an Upper Confidence Bound approach to determine
the action at each step that on average yields the highest
reward over the horizon, while POMCP modifies the POUCT

TABLE I
NETWORK MODEL PARAMETERS

(u, l) (1,1) (1,2) (2,1) (2,2)
Model 1 plo;u,l 0.05 0.05 0.05 0.05

(No Interference) phi;u,l 0.1 0.1 0.1 0.1
pr(u, l|a = 0) 0.95 0.95 0.95 0.95
pr(u, l|a 6= 0) 0.95 0.95 0.95 0.95

ru,l 0.95 0.95 0.95 0.95
Model 2 plo;u,l 0.05 0.05 0.05 0.05

(Collision) phi;u,l 0.1 0.1 0.1 0.1
pr(u, l|a = 0) 0.95 0.95 0.95 0.95
pr(u, l|a 6= 0) 0 0 0 0

ru,l 0.95 0.95 0.95 0.95
Model 3 plo;u,l 0.025 0.05 0.05 0.075

(User 1 has better phi;u,l 0.05 0.1 0.1 0.15
links) pr(u, l|a = 0) 0.91 0.95 0.95 0.99

pr(u, l|a 6= 0) 0.41 0.45 0.45 0.49
ru,l 0.91 0.95 0.95 0.99

Model 4 plo;u,l 0.01 0.01 0.01 0.01
(User 1 is indep. phi;u,l 0.01 0.01 0.01 0.01

of User 2; no pr(u, l|a = 0) 0.95 0.95 0 0
benefit from pr(u, l|a 6= 0) 0 0 0 0
User 2 Tx) ru,l 0.95 0.95 0 0

approach by applying a particle filter to perform the belief
state updates, making it more suitable for larger state spaces
where an exact belief state update becomes infeasible. As an
example, we simulate the policies for Model 1 in Table I1,
and the results are shown in Fig. 2. We observe that POUCT
does slightly better than POMCP since it computes the belief
state exactly instead of estimating it using a particle filter.
We also consider a policy which only uses the policy for the
longest time horizon T (for T = 20 called “POUCT20” and
“POMCP20”) and applies it to the lower periods T . Compared
to the original POUCT/POMCP, we see that the performance
suffers, which suggests that the strategy at each time step is
dependent on the final time horizon. Since the transmission
causes interference that affects the transition probabilities,
the idle/transmit strategy changes depending on how long
of a time horizon is available. It is possible that there are
multiple policies that perform equally well for T = 20,
and some of those would also perform well for smaller T ,
but the simulation-based solver is unlikely to choose those
consistently. An example of the policy for different time
horizons is shown in Fig. 3.

In addition to the periodic policy, we also consider a mixed
period policy based on the average reward for the period T for
each state. This is formulated as choosing the set of periods
T ∗(s) that maximizes the total expected reward (denoted
rT∗(s)) divided by the expected period. We use a greedy-like
heuristic for choosing this set of periods that works as follows:
“Mixed Period” Policy Generation:

1) Start with T ∗(s) = 2 for each s. The average reward
is given by r(T ∗) =

∑
sE[rT∗(s)]/

∑
s T
∗(s), where

rT (s) is the total reward over the time horizon T − 1
after observing s.

2) Choose the minimum T (s) that is greater than T ∗(s)
that increases the average reward.

1The models in Table I will be used in later simulations.

51

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Period T

0.6

0.7

0.8

0.9

1.0
Th

ro
ug

hp
ut

POUCT
POUCT20
POMCP
POMCP20

Fig. 2. POUCT vs. POMCP: “POUCT/POMCP” is derived for all T ,
“POUCT20/POMCP20” applies the policy derived for T = 20 to all periods.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0

1

2
T=10

A1
A2

2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0

1

2
T=20

A1
A2

Fig. 3. Policies for T = 8, 20; State=(0, 0, 0, 0); Model 2.

3) Repeat 2) until it is no longer possible to increase the
average reward.

The average reward model assumes the probability of observ-
ing each state during an update is equal, but this is not the
case, and incorporating the true probabilities would improve
the performance. More importantly, the main insight we get
from our results is that the performance of a fixed period
(horizon) can be improved upon by dynamically choosing a
different horizon length depending on which network state
is observed. This leads us to conclude that AoI alone is not
enough, but the AoI has a different impact depending on the
corresponding information (i.e., the network state), and that
should be accounted for.

A. No Observations Case (State-Independent, T →∞)

To obtain insight into the expected performance as T →∞,
we study the case where the network never makes any observa-
tions and the network state is unknown. Under this condition,
we propose a state-independent, stationary randomized trans-
mission policy, which is denoted as π(a1, a2). For this policy,
we would like to find the expected throughput, given by the

following:

Eπ[r(s, a)] =
∑
s∈S

∑
a∈A

r(s, a)µπ(s; a)

where µπ(s; a) is the occupation measure, or the long-run
average amount of time spent on the state-action pair (s, a),
under the policy π(a1, a2). Substituting for r(s, a) as defined
in Sec. II, we obtain the following:

Eπ[r(s, a)] =
∑
s∈S

∑
a∈A

(2∑
u=1

2∑
l=1

1(su,l = 1)1(au = l)

× pr(u, l|a)ru,l

)
µπ(s; a)

=
∑
a∈A

π(a)
∑
s∈S

(2∑
u=1

2∑
l=1

1(su,l = 1)1(au = l)

× pr(u, l|a)ru,l

)
µπ(s) (1)

=
∑
a∈A

π(a)
(2∑
u=1

2∑
l=1

1(au = l)pr(u, l|a)ru,l

)
×

∑
s∈S,su,l=1

µπ(s). (2)

where µπ(s) is the long-run average amount of time spent in
state s, and (1) is due to the independence of states and actions.
For the term in (2), we have aggregated the states for which
su,l is 1. The probability of su.l transitioning from 0 to 1 is the
same as the probability of it transitioning from 1 to 0 under this
model. Therefore,

∑
s∈S,su,l=1 µ

π(s) =
∑
s∈S,su,l=0 µ

π(s) =

1/2. Finally, we have

Eπ[r(s, a)] =
1

2

∑
a∈A

π(a)
(2∑
u=1

2∑
l=1

1(au = l)pr(u, l|a)ru,l

)
which is linear in the policy π(a). The only other constraint
we have is

∑
a π(a) = 1, so the optimal policy is to choose the

single action a that yields the maximum
∑2
u=1

∑2
l=1 1(a′u =

l)pr(u, l|a′)ru,l. Equivalently, we compute pr(u, l|a′)ru,l for
each (u, l), choose the link l that maximizes that quantity for
each user u, and take the sum of the quantities for both users.

B. Full Observability Case (Throughput Upper Bound)
To obtain an upper bound for the throughput, we consider

the case of a fully observable Markov Decision Process, in
which the network state is known in each slot. We solve
the average-cost infinite horizon problem by applying relative
value iteration (RVI) [21], [22]. We denote the mapping
Th(s) = maxa∈A

[
r(s, a) +

∑
s′∈S P (s′|s, a)h(s′)

]
, s ∈ S .

This is the dynamic programming mapping that will be applied
in our RVI algorithm. Using state 0 as the arbitrary reference
state, the kth iteration of the RVI for maximizing throughput
is given by the following:

Thk(0) = max
a∈A

[
r(0, a) +

∑
s′∈S

P (s′|0, a)hk(s′)

]

hk+1(s) = max
a∈A

[
r(s, a) +

∑
s′∈S

P (s′|s, a)hk(s′)

]
− Thk(0)

52

5 10 15
0

1

2
State=(1, 0, 1, 0), T=6

A1
A2

5 10 15
0

1

2
State=(0, 0, 0, 0), T=9

A1
A2

5 10 15
0

1

2
State=(0, 1, 0, 1), T=16

A1
A2

5 10 15
0

1

2
State=(1, 0, 0, 1), T=18

A1
A2

Fig. 4. Selected POUCT-Derived Policies, Model 2.

If the algorithm converges, the optimal cost is given by
Thk(0). In some cases where the algorithm does not converge,
a modified RVI [23] can be used.

C. Heuristics

For comparison, we propose a number of heuristics that can
be more efficiently generated than the Monte Carlo-derived
policies. We first propose a “Greedy” heuristic, in which the
network state is observed, and each user transmits for the rest
of the period over the ON link would yield the greatest reward,
and is idle if neither link is ON.

To develop other heuristics, we visualize some selected
strategies that came out of the POMDP solver (specifically,
POUCT) in Fig. 4 for Model 2 in Table I. Although there is
no obvious intuitive pattern to the policies, there are portions
that have an alternating characteristic, in which the users
take turns transmitting and being idle. We thus propose a
“Greedy Alternating” heuristic, in which the two users take
turns transmitting on the active link that yields the greatest
reward. We also propose another simple heuristic that we call
“Tx Alt,” in which both users always transmit, but each user
alternates transmitting over its two links starting with the link
that yields the greatest reward. We will see that this results in
no throughput when the channel success is based on a collision
model.

IV. SIMULATIONS

A. Generating Policies

To generate policies for this problem, we use the pomdp-
py [24] Python framework for modeling and solving POMDPs,
which includes the Monte-Carlo planning approaches POUCT
and POMCP [20]. Since the POUCT method was coded to
handle infinite horizon problems, we modified it to handle
finite horizon problems, which fits our system model with
the timeline divided up into intervals. Then we derive a
transmission policy for a given time horizon T −1 by running
the solver for each observed network state s for T − 1 time
steps. The sequence of actions taken is stored for later use as
the strategy when observing that particular network state s.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Period T

0.00

0.25

0.50

0.75

1.00

1.25

Th
ro

ug
hp

ut State Indep.

Full Obs.

POUCT
POMCP
Tx Alt
Greedy
Greedy Alt

Fig. 5. Throughput vs. Period, Model 1 (no interference).

B. Periodic Network Updates

We first focus on the case where network updates occur
periodically, and we simulate for different period lengths T .
The policies simulated are the POUCT- and POMCP-derived
policies, as well as the heuristics from Sec. III-C. We run
the simulation for 1000 time slots and average results of 100
runs. The network model parameters we simulate are given in
Table I.

The first set of simulations is for Model 1, which is a
case of symmetric users, symmetric links, and no interference.
The simulation results are plotted in Fig. 5. We also plot the
theoretical performance for the full observability case (labeled
“Full Obs.”), derived using RVI. To compare to a network
update period of T , we weighed the optimal throughput from
RVI by (T − 1)/T to account for the update slots where
there would be no transmission. We observe that the full
observability performance upper bounds the performance of
all policies.

POUCT, POMCP, and “Greedy” all do quite well, while the
alternating (“Alt”) policies are not as good. There is clearly a
finite optimal period T ∗, and it turns out that the throughput
is maximized at T ∗ = 6 for POUCT, which corresponds to
an average AoI of 2.5. This confirms our intuition that for
wireless SDNs, the update period should be carefully chosen
to be neither too small nor too large to optimize performance.
For up to about T = 15, those policies perform better than the
state-independent policy of Sec. III-A (dashed line). To see
if the performance approaches the state-independent policy,
we generated and simulated the T = 40 policy, using the
same policy for smaller periods, and the results are shown
in Fig. 6. We know from Fig. 2 that applying the policy for
the larger period to smaller periods experiences performance
degradation, but since it was derived for T = 40, it performs
the same as the POUCT for that data point. We see that at
T = 40, the performance is approaching the state-independent
performance, as speculated.

Next we simulated for Model 2, which is a case of symmet-
ric users, symmetric links, and a collision model. The results
are plotted in Fig. 7. We observe that “Tx Alt” does not
result in any throughput due to the collision model. Again,
the POUCT and POMCP approaches perform well, and the
throughput is maximized at T ∗ = 7. The pure greedy policy
does not do well, but the “Greedy Alt.” performs satisfactorily

53

10 20 30 40
Period T

0.00

0.25

0.50

0.75

1.00

1.25
Th

ro
ug

hp
ut State Indep.

Full Obs.

POUCT40
POMCP40
Tx Alt
Greedy
Greedy Alt

Fig. 6. Throughput vs. Period, Model 1 (no interference), using T = 40
policy.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Period T

0.00

0.25

0.50

0.75

1.00

1.25

Th
ro

ug
hp

ut

State Indep.

Full Obs.

POUCT
POMCP
Tx Alt
Greedy
Greedy Alt

Fig. 7. Throughput vs. Period, Model 2 (collision).

since the users are taking turns.
Model 3 is a more general case, for which the users and

links are asymmetric, and the results are plotted in Fig. 8.
The transition probabilities, interference-free rate reduction,
and reward are chosen to have an average that is equal to
that of Models 1 and 2. The performance of POUCT and
POMCP compares very well with that of Model 2 even with
significantly less reduction in rate when there is interference.

As a sanity check, we simulate Model 4, in which case the
states do not change often, there is a collision model, User
1’s state transition is not affected by User 2’s transmission,
and User 2 gets no reward and thus has no reason to transmit.
Because of these characteristics of the model, there is also
limited benefit from being able to observe the state at all
times. The results are plotted in Fig. 9, and indeed, we notice
that POUCT and POMCP perform very similar to the upper
bound, “Full Obs.” The heuristics do not perform well because
they typically involve User 2 transmitting, which reduces the
throughput due to the collisions.

In all models, the POMCP compares well with POUCT,
which provides support for its use in both small networks, like
the one studied here, and networks with larger state spaces,
where it is more needed.

C. Non-Uniform Updates

To further understand the role of AoI when the main ob-
jective is throughput maximization, we consider non-uniform
updating policies, namely the observation-dependent “Mixed
Period” approach of Sec. III, and a random updating case,

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Period T

0.00

0.25

0.50

0.75

1.00

1.25

Th
ro

ug
hp

ut

State Indep.

Full Obs.

POUCT
POMCP
Tx Alt
Greedy
Greedy Alt

Fig. 8. Throughput vs. Period, Model 3 (asymmetric).

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Period T

0.00

0.25

0.50

0.75

1.00

1.25

Th
ro

ug
hp

ut

State Indep.

Full Obs.

POUCT
POMCP
Tx Alt
Greedy
Greedy Alt

Fig. 9. Throughput vs. Period, Model 4 (no User 2).

in which the probability of updating in a slot is 1/T . To get
E[rT∗(s)] in the greedy-like “Mixed Period” policy gener-
ation, we take the average reward for each time horizon T
and state s for the POUCT-derived policy, using the results
from simulations in Sec. IV-B. Once we generate the “Mixed
Period” policy, we simulate it and the other policies for Models
1–4 and plot the results in Figs. 10–13. We observe that for
Models 2 through 4 the “Mixed Period” policy achieves a
throughput that is on average higher than under any other
periodic policy, since it optimizes the period length depending
on the network state that is observed. Thus, if we were focused
on AoI to optimize throughput, the necessary insight is that
AoI is dependent on the information content itself. For the
“Mixed Period” policy, the average AoI, though not a sufficient
statistic, turns out to be 3.14, 3.91, 3.62, and 7.32 for Models
1, 2, 3, and 4, respectively. Note also that for Model 4, the
“Mixed Period” performs similar to the full observation when
T = 20, which makes sense because we know User 2 should
not transmit and the state changes very infrequently.

For these simulations, we also plot the throughput perfor-
mance as a function of AoI in Figs. 14–17. We first notice the
throughput is low for AoI = 1. This is because the “Mixed
Period” policy sets the period to 2 when the state is (0, 0, 0, 0),
so when AoI = 1, the links are typically OFF. We observe that
for other T for Models 1 and 4, the “Mixed Period” approach
has noticeably better throughput for AoI performance than the
other policies since in Model 1 both can transmit interference-
free, and in Model 2 user 1 can transmit all the time since
there is no reward for user 2 transmitting. The throughput
is only slightly better for Models 2 and 3 since they must

54

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Period T

0.2

0.4

0.6

0.8

1.0
Th

ro
ug

hp
ut

State Indep.

POUCT
POMCP
Mixed Period
Random Updates

Fig. 10. Throughput vs. Period, Model 1, periodic (POUCT/POMCP) vs
non-periodic.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Period T

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

State Indep.

POUCT
POMCP
Mixed Period
Random Updates

Fig. 11. Throughput vs. Period, Model 2, periodic (POUCT/POMCP) vs
non-periodic.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Period T

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

State Indep.

POUCT
POMCP
Mixed Period
Random Updates

Fig. 12. Throughput vs. Period, Model 3, periodic (POUCT/POMCP) vs
non-periodic.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Period T

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

State Indep.

POUCT
POMCP
Mixed Period
Random Updates

Fig. 13. Throughput vs. Period, Model 4, periodic (POUCT/POMCP) vs
non-periodic.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
AoI

0.25

0.50

0.75

1.00

1.25

1.50

Th
ro

ug
hp

ut

POUCT
POMCP
Mixed Period
Random Updates

Fig. 14. Throughput vs. AoI, Model 1.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
AoI

0.25

0.50

0.75

1.00

1.25

1.50

Th
ro

ug
hp

ut

POUCT
POMCP
Mixed Period
Random Updates

Fig. 15. Throughput vs. AoI, Model 2.

alternate transmit and idle to limit interference. In all four
models, the maximum AoI for “Mixed Period” does not go up
to 20 because it takes advantage of the shorter periods where
the information has not aged as much.2 Of course, there is a
tradeoff in that reducing AoI uses up resources (time slots), so
updating cannot be done too frequently. The “Random Update”
throughput for AoI closely follows the curve for the “POUCT”
approach since it does not favor any period over any another
for a given state. Again, the takeaway is that to take full
advantage of the AoI of the network state, the AoI must be
associated with the information (network state).

V. CONCLUSION

In this work, we studied the impact of the AoI of net-
work state updates in a wireless SDN on the total network
throughput. For each time interval after getting a network
update, we formulated the throughput maximization problem
as a POMDP where there are no observations for the time
horizon before another network update occurs. To solve this
problem, we use Monte Carlo planning-based approaches to
generate policies for a given time horizon, which can even
handle larger state spaces. For the purpose of this work, we
focus on a special case of a two-user multi-link network
model with a slow/fast fading interference model, and we
derive the state-independent performance when there are no
observations made, which characterizes the performance as
T →∞. We also solve the full observability case (MDP) by

2The maximum AoI almost goes up to 20 for Model 4, because the state
changes with low probability, so there is less of a penalty for having larger
AoI and using a longer T is advantageous.

55

2.5 5.0 7.5 10.0 12.5 15.0 17.5
AoI

0.25

0.50

0.75

1.00

1.25

1.50

Th
ro

ug
hp

ut
POUCT
POMCP
Mixed Period
Random Updates

Fig. 16. Throughput vs. AoI, Model 3.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
AoI

0.25

0.50

0.75

1.00

1.25

1.50

Th
ro

ug
hp

ut

POUCT
POMCP
Mixed Period
Random Updates

Fig. 17. Throughput vs. AoI, Model 4.

applying relative value iteration, which give us a throughput
upper bound. Simulations of policies with periodic updating
demonstrate that there is a finite optimal update period that
maximizes the total network throughput. We also study non-
uniform update intervals, including a policy that chooses the
period depending on the network state observation, which
is shown to outperform the periodic updating policies. The
plots of throughput vs. AoI demonstrate the importance of
associating AoI with the information, to more fully realize
the gains when controlling the AoI. Future work includes
optimizing the time horizons to account for the likely next
observation, studying more general models of the network,
and applying learning approaches when the network model
parameters are unknown.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE INFOCOM, Orlando, FL, Mar. 2012, pp.
2731–2735.

[2] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[3] J. Wang, Y. Miao, P. Zhou, M. S. Hossain, and S. M. M. Rahman, “A
software defined network routing in wireless multihop network,” Journal
of Network and Computer Applications, vol. 85, pp. 76–83, 2017,
intelligent Systems for Heterogeneous Networks. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804516303058

[4] G. Wang, Y. Zhao, J. Huang, and W. Wang, “The controller placement
problem in software defined networking: A survey,” IEEE Network,
vol. 31, no. 5, pp. 21–27, 2017.

[5] Q. Qin, K. Poularakis, G. Iosifidis, S. Kompella, and L. Tassiulas, “Sdn
controller placement with delay-overhead balancing in wireless edge
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1446–1459, 2018.

[6] D. Li, S. Wang, K. Zhu, and S. Xia, “A survey of network update in
sdn,” Frontiers of Computer Science, vol. 11, no. 1, pp. 4–12, 2017.
[Online]. Available: https://doi.org/10.1007/s11704-016-6125-y

[7] S. Luo, H. Yu, L. Luo, and L. Li, “Customizable network
update planning in sdn,” Journal of Network and Computer
Applications, vol. 141, pp. 104–115, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804519301675

[8] W. Ren, Y. Sun, H. Luo, and M. Guizani, “Bllc: A batch-level update
mechanism with low cost for sdn-iot networks,” IEEE Internet of Things
Journal, vol. 6, no. 1, pp. 1210–1222, 2019.

[9] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, Nov 2017.

[10] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Towards an effective age of information: Remote
estimation of a Markov source,” to appear in 2018 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Apr.
2018.

[11] C. Kam, S. Kompella, and A. Ephremides, “Age of incorrect information
for remote estimation of a binary markov source,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2020, pp. 1–6.

[12] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of
incorrect information: A new performance metric for status updates,”
IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2215–2228,
2020.

[13] S. Gopal and S. K. Kaul, “A game theoretic approach to dsrc and wifi
coexistence,” in IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2018, pp. 565–570.

[14] S. Gopal, S. K. Kaul, and R. Chaturvedi, “Coexistence of age and
throughput optimizing networks: A game theoretic approach,” in 2019
IEEE 30th Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), 2019, pp. 1–6.

[15] N. Rajaraman, R. Vaze, and G. Reddy, “Not just age but age and quality
of information,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 5, pp. 1325–1338, 2021.

[16] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Information freshness and popularity in mobile
caching,” in 2017 IEEE International Symposium on Information Theory
(ISIT), 2017, pp. 136–140.

[17] M. K. C. Shisher, H. Qin, L. Yang, F. Yan, and Y. Sun, “The age of
correlated features in supervised learning based forecasting,” 2021.

[18] C. Kam, S. Kompella, and A. Ephremides, “Age of sensed information
in a cognitive radio network,” in 2021 19th International Symposium on
Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks
(WiOpt), 2021, pp. 1–8.

[19] ——, “The role of aoi in a cognitive radio network: Lyapunov op-
timization and tradeoffs,” in MILCOM 2021 - 2021 IEEE Military
Communications Conference (MILCOM), 2021, pp. 303–308.

[20] D. Silver and J. Veness, “Monte-carlo planning in large
pomdps,” in Advances in Neural Information Processing
Systems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, Eds., vol. 23. Curran Associates, Inc.,
2010. [Online]. Available: https://proceedings.neurips.cc/paper/2010/
file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf

[21] D. J. White, “Dynamic programming, markov chains, and the method
of successive approximations,” Journal of Mathematical Analysis and
Applications, vol. 6, no. 3, pp. 373–376, 1963.

[22] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas,
Dynamic programming and optimal control. Athena scientific Belmont,
MA, 1995, vol. 2, no. 2.

[23] P. J. Schweitzer, “Iterative solution of the functional equations of
undiscounted markov renewal programming,” Journal of Mathematical
Analysis and Applications, vol. 34, no. 3, pp. 495–501, 1971.

[24] K. Zheng and S. Tellex, “pomdp py: A framework to build and
solve pomdp problems,” in ICAPS 2020 Workshop on Planning and
Robotics (PlanRob), 2020, arxiv link: ”https://arxiv.org/pdf/2004.10099.
pdf”. [Online]. Available: https://icaps20subpages.icaps-conference.org/
wp-content/uploads/2020/10/14-PlanRob 2020 paper 3.pdf

56

