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Abstract—As the sociological theory of homophily suggests,
people tend to interact with those of similar preferences. This
motivates product sellers to learn buyers’ product preferences
from the buyers’ friends’ purchase records. Although such
learning allows sellers to enable personalized pricing to improve
profits, buyers are also increasingly aware of such practices
and may alter their behaviors accordingly. This paper presents
the first study regarding how buyers may strategically manipu-
late their social interaction signals considering their preference
correlations, and how an informed seller can take buyers’
strategic social behaviors into consideration when designing the
pricing schemes. Our analytical results show that only high-
preference buyers tend to manipulate their social interactions to
hurdle the seller’s personalized pricing. Surprisingly, these high-
preference buyers’ payoff may become worse after their strategic
manipulation. Furthermore, we show that the seller can greatly
benefit from the learning practice, no matter whether the buyers
are aware of such learning or not. In fact, buyers’ learning-aware
strategic manipulation only slightly reduces the seller’s revenue.
Considering the increasingly stricter policies on data access by
authorities, it is thus advisable for sellers to make buyers aware
of their access and learning based on social interaction data.
This justifies well with current regulatory policies and industry
practices regarding informed consent for data sharing.

Index Terms—online social networks, buyers’ preference cor-
relation, personalized pricing, dynamic Bayesian game

I. INTRODUCTION

With the ever-increasing penetration of online social media
(e.g., Facebook and Twitter), people today can freely interact
with one another online, exchanging product views or sharing
purchase information [1]. For example, there were surpris-
ingly 1.2 billion engagements on Facebook during the four-
day Electronic Entertainment Experience 2021, where people
shared comments or posts towards the newly released gaming
products [2]. Such social data from people’s online interactions
reveal valuable information about their preferences and even
the correlation behind the preferences.

“Birds of a feather flock together,” i.e., people tend to
socially interact with those who have similar preferences [3].
This sociological theory of homophily allows product sellers
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to well relate buyers’ mutual interactions in online social
networks to their preference correlation. Researchers have
been exploring methodologies to infer customers’ similarities
or differences from their interaction data to inform sellers’
decision-making [4]. For example, Amazon has exploited
the preferences of buyers’ friends whom the buyers interact
with on Facebook to provide purchase recommendations with
higher accuracy [5]. Then Amazon can learn one buyer’s
private preference from correlated purchase records of his
friends in the past. This paves the way for sellers’ personalized
pricing, enabling them to tailor the price to the target buyer’s
product preference in future sales. Apparently, such correlation
information extracted from buyers’ social interaction data can
help the sellers improve their revenue.

However, sellers’ increasing exploitation of social interac-
tion data has raised buyers’ severe concerns about publicizing
their social data without their agreement or even awareness.
For example, Amazon and Netflix were reported to have
undisclosed data-sharing deals with Facebook, which permits
the former parties privileged access to users’ social interaction
information [6]. Given such concerns, regulators have recently
required social media platforms to inform people of their data-
sharing with potential product sellers (e.g., [7], [8]). Following
this, Amazon now needs to warn buyers of its access to their
social interaction data when buyers log in and connect to their
Facebook accounts [9].

Once aware of the seller’s social data access and the
possibility of being charged personalized prices, buyers may
have the incentive to strategically manipulate their product-
related social activities to thwart or mislead the product seller’s
follow-up learning and pricing practices. Indeed, people are
known to provide untruthful data or misrepresent themselves
on today’s social media platforms (e.g., Facebook and Twitter)
to hide their actual information [10]. For instance, buyers with
high preferences for a new product may purposely stop their
social discussions about it or the related products before the
selling season, aiming to confuse the seller on their preference
correlation. We are thus well motivated to ask the following
key questions:

• Key Question 1: Foreseeing the seller’s learning, how
should buyers manipulate their social interaction data?

• Key Question 2: How should the seller strategically
learn from buyers’ manipulated social data to redesign
the optimal pricing scheme?

• Key Question 3: Are buyers better off through their so-
cial manipulations? Does such manipulation significantly
reduce the seller’s revenue?
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Note that if such manipulation greatly reduces the revenue,
the seller may take a chance not to follow current regulators’
requirements to keep buyers aware of the social data access.
Previous works have studied how the seller should infer a
single buyer’s preference information from his own data (e.g.,
purchase records [11] and information from data broker [12]).
As such, these works ignored the correlation among buyers’
private information in today’s fast-growing social networks. In
contrast, we explore the opportunity that the seller learns the
correlation among buyers’ preferences from their social data.

Buyers use their social interactions as a means of jointly
signaling their preference correlation with each other to the
seller. In signaling parlance, buyers are signal senders, and
the seller is the receiver. Our key difference from the tra-
ditional signaling paradigm [13] is that what senders signal
is the correlation between their private information instead
of an individual’s private information alone (e.g., [11], [14]).
Another difference lies in the coupling between the senders in
the inter-dependent social networks, where one buyer’s attempt
to manipulate his social data and confuse the seller also affects
his interacting friends’ social decisions.

We formulate these coupled interactions among the seller
and buyers under information asymmetry as a dynamic
Bayesian game. In addition, we introduce two benchmarks:
no-learning benchmark where the seller cannot access buyers’
social data, and undisclosed-learning benchmark where the
seller can access such data without buyers’ awareness. By
comparison, we examine the effect of the seller’s learning
practice and buyers’ manipulation to provide useful insights.

We summarize the main contributions of this work below.
• Novel personalized pricing via strategic learning from

social data: To the best of our knowledge, this is the first
analytical study to tell how buyers proactively manipulate
their social interaction signals and how an informed seller
takes buyers’ strategic social behaviors into consideration
when designing the pricing schemes. Our work provides
important insights into the ever-increasing practice of user
profiling with social network data and the regulatory pol-
icy of informed consent for sharing buyers’ data online.

• Non-standard perfect Bayesian equilibrium (PBE) anal-
ysis: It is difficult to analyze our dynamic Bayesian
game, because we need to ensure sequential information
consistency from coupled buyers to the seller. To resolve
such challenge, we propose to first screen down the
equilibrium space to facilitate the forward analysis. Then,
we alternate it with backward induction to characterize
the structure of buyers’ social manipulations and analyze
the seller’s personalized pricing via strategic learning.
Interestingly, we show that only high-preference buyers
tend to manipulate their social interactions to hurdle the
seller’s personalized pricing.

• Impacts of buyers’ manipulations: Interestingly, the seller
does not always trust the buyers’ manipulated social
data to enable pure personalized pricing. Instead, the
seller may randomize personalized pricing with uniform
pricing, which in turn mitigates buyers’ incentives to

manipulate. Surprisingly, we show that buyers could be
even worse off by strategically manipulating their social
interactions, compared to the benchmark case when they
are unaware of the seller’s learning practice.

• Guidance on learning/pricing practices for the seller: We
show that the seller can greatly benefit from the learning
practice, no matter whether the buyers are aware of such
learning or not. In fact, buyers’ learning-aware strategic
manipulation only slightly reduces the seller’s revenue.
Considering the increasingly stricter privacy policies, it
is thus advisable for sellers to make buyers aware of
their access and learning over social interaction data. This
justifies well with current regulatory policies and industry
practices regarding informed consent for data sharing.

The rest of the paper is organized as follows. Section II
reviews the related work. We present our system model in
Section III and introduce two benchmarks in Section IV. In
Section V, we first analyze the seller’s strategic learning and
then complete the PBE analysis in Section VI. Section VII ex-
amines the impact of buyers’ manipulations. Section VIII con-
cludes this paper. Due to the page limit, we provide lengthy
proofs of the key results in the online appendix [15].

II. RELATED WORK

A. Information Sharing in Social Networks

Recent theoretic studies have shed light on information
sharing in social networks (e.g., [16]–[18]). For instance, Ding
et al. in [16] analyzed the multi-party privacy conflict (MPC)
in online social networks, where the private information of one
user is disclosed by others who co-own the data. Gradwohl
in [18] considered network effects in social interactions as
opposed to informational interdependence. These prior works
mainly focused on the social interactions among users without
considering any seller’s engagement. Our work explicitly con-
siders the seller’s learning from users’ social interaction data to
infer private information and determine personalized pricing,
which in turn affects the users’ incentives and decision-making
in social networks. On the users’ side, the prior works have
primarily focused on information leakage that one user incurs
from the others’ social activities due to information correlation
or co-ownership. In contrast, we further consider the practice
that users strategically compromise their social interactions to
mislead the seller on their correlation of private information.

B. Price Discrimination with Buyer Recognition

On the seller’s side, there is a growing literature on person-
alized pricing with buyer recognition, where the seller learns
buyers’ preferences from their purchase behaviors (e.g., [11],
[12], [19], [20]). For example, Acquisti et al. in [20] and
Conitzer et al. in [11] investigated the scenario where the
seller conditions pricing on a single buyer’s purchase records
in repeated purchases. Particularly, authors in [11] allowed a
single buyer to hide his own past purchase records to hinder
the personalized pricing. Bellflamme in [19] further allowed
a buyer to use technology to hide his valuation with a cost,
when the seller attempts to track his private information with
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the profiling technology. However, the above works did not
consider the social connection among buyers nor their product
preferences. By contrast, we study the seller’s personalized
pricing by learning from social data and purchase records of
a buyer’s friends rather than his own.

III. SYSTEM MODEL

We begin with the stylized yet fundamental model between
a new product seller and any two socially connected buy-
ers. Such a model captures buyers’ pairwise relationship for
learning their preference correlation. We extend to more than
two buyers’ mutual relationships in the online appendix [15]
with a similar but more involved analysis. Here, the seller
(e.g., Amazon) has access to the product-related discussions
of two buyers, i and j, in an online social network (e.g.,
Facebook), aiming to learn their preference correlation and
enable personalized pricing for these buyers in the coming
selling season.

Buyers 𝒊 and 𝒋
Decide Social Interactions 

𝑥!" 	and	𝑥"!

Seller
Learns Buyers’

Social Interaction Data

Period 1:
First-Arriving Buyer

Makes Purchase Decision 	𝑎#

Period 2:
Latter-Arriving Buyer

Makes Purchase Decision 	𝑎$

Period 1:
First Buyer Arrives

Seller Offers First-Period Price 	𝑝#

Period 2:
Second Buyer Arrives

Seller Offers Second-Period Price 	𝑝$

Stage I 
Buyers’ Social Interactions 

Stage II
Seller’s Personalized Pricing 

Time

Fig. 1. Timeline of the dynamic Bayesian game

As shown in Fig. 1, we consider two stages: Stage I (Buyers’
Social Interactions) is where the two buyers interact with
each other in the online social network, and Stage II (Seller’s
Personalized Pricing) has two purchase periods where the
interaction between the buyers and the seller in the product
market happens. Next, we model these two stages in Section
III-A and Section III-B, respectively. Finally, in Section III-C,
we formally formulate our dynamic Bayesian game.

A. Model of Buyers’ Social Interactions in Stage I

In Stage I, the two buyers socially interact to discuss a new
product or related products on social media. As illustrated in
Fig. 1, each buyer decides his social interaction frequency to
the other buyer, jointly considering his social interaction utility
in Stage I and his purchase surplus in Stage II later. Buyers’
social decision-making relates to their purchase preferences,
as elaborated in the following.

1) Buyer Preference: A buyer i (j, respectively) has a
purchase preference vi (vj , respectively) for the new product,
either high vH or low vL. This indicates his maximum willing-
ness to pay for the product, with vL < vH . Without accessing
the two buyers’ social data, the seller believes that each buyer’s
preference is independently and identically distributed, being
high (vH) or low (vL) with an equal prior probability 1/2.
Here, we focus on this binary preference model for ease of
exposition, and we extend it similarly to a more general case of
continuous preference distributions in the online appendix [15]
to demonstrate the robustness of our key insights.

2) Social Interaction Frequency: The two buyers i and
j simultaneously decide their social interaction frequency
xij ∈ {0, 1} and xji ∈ {0, 1} with each other. Here, xij indi-
cates how often buyer i interacts with buyer j (e.g., through
messages, comments, and sharing). Specifically, xij = 1
implies buyer i interacts with buyer j frequently to discuss
the new product on social media, whereas xij = 0 means
buyer i seldom reaches out to buyer j.

3) Social Interaction Utility: As the sociological theory
of homophily suggests, people tend to interact with those of
similar preferences [3]. Thus, we model the social interaction
utility ui(xij , xji) in Table I to tell how much each buyer
i gains (or suffers) when interacting with the other. Table I
includes two sub-tables Tables I(a) and Table I(b), depending
on whether their preferences of the new product are the same
or different. Within each of the pairs in the same round bracket,
the first number represents the buyer i’s social interaction
utility and the second represents the buyer j’s, depending on
their decisions (xij and xji) in social interaction frequency.

TABLE I
SOCIAL INTERACTION UTILITY OF BUYERS i AND j

(a) Same Preference vi = vj

xji = 1 xji = 0

xij = 1 (1, 1) (1 − l, l)
xij = 0 (l, 1 − l) (0, 0)

(b) Different Preferences vi ̸= vj

xji = 1 xji = 0

xij = 1 (−c,−c) (−c + r,−r)
xij = 0 (−r,−c + r) (0, 0)

Table I(a) tells that two buyers have the same preference
vi = vj . First we consider the combination case of xij = 1
and xji = 1, leading to the social interaction utilities (1, 1)
for both buyers. Note that we normalize such social interaction
happiness as a unit 1. In this case, when frequently interacting
with the other buyer j of the same preference, a buyer i
experiences social happiness through gaining empathy and
reinforcing connections [21]. Then we move on to the case of
xij = 1 and xji = 0, where the social interaction utilities are
(1− l, l). Here, we let l ∈ (0, 1) denote the loss incurred from
the normalized social happiness by the other buyer’s low social
response under the same preference. In this case, if buyer
j seldom talks back to buyer i’s frequent social interaction
xij = 1, buyer i would feel a lack of responses and gain less
happiness 1 − l [22]. Alternatively, the other buyer j, when
facing buyer i’s frequent social response xij = 1, also gains
less happiness l as he remains silent with xji = 0. Finally for
the case of xij = 0 and xji = 0, the social interaction utilities
are (0, 0). Here, we normalize each buyer’s social interaction
utility from rare interactions as zero, no matter whether they
share the same preference in Table I(a) or not in Table I(b).

Table I(b) tells that two buyers have different preferences
vi ̸= vj . First we consider the case of xij = 1 and xji = 1,
the social interaction utilities are (−c,−c). When attempting
to interact with the other buyer j who differs in preference,
a buyer i experiences embarrassment with even a disutility
c to maintain such interaction [3]. Then we move on to the
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case of xij = 1 and xji = 0, where the social interaction
utilities are (−c+ r,−r). In this case, the other buyer j’s low
social responses instead relax buyer i’s awkwardness c given
different preferences to a certain extent r ∈ (0, c). Yet in turn,
when receiving frequent messages with different opinions from
buyer i, buyer j gets upset with a disutility r.

B. Model of Personalized Pricing in Stage II

At the beginning of Stage II, the seller can observe the com-
mon interaction frequency between buyer i and j, denoted as,

x̂ ≜ min{xij , xji}, (1)

which is also binary in set {0, 1}. Here, the minimum operation
captures the mutual essence of social interactions. This can be
a reasonable approximation of the reality, as when processing
interaction data in a large social network, the seller needs to
locate the two buyers to identify the related data and would
lose certain data if any buyer chooses not to interact with the
other buyer. Consider an example involving Alice i and Bob
j. Alice posts a co-owned photo with Bob (xij = 1), and the
seller can identify their correlation after Bob comments on the
post (xji = 1). Some privacy protection mechanism even asks
Bob to grant or deny such a post [23]. That is, Bob’s choice
of denial xji = 0 disables the availability of the co-owned
photo from Alice, i.e., min{xij , xji} = 0. Overall, the seller
needs to learn from such observable mutual data x̂ in (1) to
infer the preference correlation between the two buyers.

Next, the seller announces prices p1 and p2 sequentially,
for the two sequentially arriving buyers for the new product,
respectively (with one buyer in each period of Stage II, see
Fig. 1). Notice that the arrival sequence is random (i.e., buyer
i may arrive after or before buyer j) due to information
diffusion in marketing or randomness in individual behaviors.
This sequential purchase pattern is commonly observed in
practice and widely adopted in the literature on dynamic
pricing (e.g., [11], [20]). We denote the first-arriving buyer’s
binary purchase decision as a1: a1 = 1 if he decides to
purchase (i.e., buyer’s preference is no less than the offered
price v1 ≥ p1), and a1 = 0 otherwise. Similarly, we define a2
for the latter-arriving buyer’s purchase decision.

Given incomplete information of buyers’ preferences, the
seller prices in the consecutive selling periods in Stage II
to maximize the expected sale revenue Π̃, by taking the
expectation over all possible arriving buyers in the market, i.e.,

Π̃(p1, p2) ≜ Ev1,v2{p1a1 + p2a2}. (2)

On the other hand, the final payoff of each buyer consists
of the purchase surplus in Stage II and the social interaction
utility in Stage I (see Table I). To illustrate, if buyer i arrives in
the selling period t ∈ {1, 2} of Stage II (hence with vt = vi),
then the final payoff πi of buyer i is:

πi(xij , xji; vt = vi) ≜ max{vt − pt, 0}+ ui(xij , xji). (3)

Yet when deciding the social interaction frequency in Stage
I, buyer i is not sure whether he arrives earlier than buyer j
or not in the following Stage II. Thus, anticipating the seller’s

pricing in Stage II, buyer i makes the social decision xij to
maximize his expected total payoff π̃i over all possible arrival
sequences, i.e.,

π̃i(xij , xji) ≜ Et∈{1,2} [πi(xij , xji; vt = vi)] . (4)

Here, buyer i may deviate from the interaction frequency
determined purely according to Table I. We broadly define
such deviation as buyer i’s manipulation of his social interac-
tion with buyer j, which is expected to disguise their (true)
homophily information.

C. Dynamic Bayesian Game Formulation

We formally model the interactions among the seller and
the buyers as a dynamic Bayesian game as follows, with
the decision-making timing illustrated in Fig. 1. The solution
concept we adopt is the perfect Bayesian equilibrium (PBE).
To differentiate from the two benchmark models to be in-
troduced later, we will terminate the current one strategic-
learning model.

• Stage I: Two buyers i and j simultaneously decide their
social interaction frequencies xij and xji, with the goals
of maximizing their individual expected total payoffs π̃i

or π̃j in (4), respectively.
• Stage II: After accessing buyers’ social interaction data,

the seller decides and announces prices p1 and p2 sequen-
tially for the arriving buyers to maximize her expected
sale revenue in (2) with strategic learning. Note that here
buyers in any selling period t decide to purchase or not:

a∗t (vt, pt) = 1(vt ≥ pt), ∀t ∈ {1, 2}, (5)

where 1(·) is an indicator function.
Next, we explain the information structure of this game. At

the beginning of the game, both buyers’ product preferences
are private and only known to themselves;1 the seller only
knows the prior distribution. After learning from buyers’
mutual interactions in the social network in Stage I, the seller
infers the correlation between buyers’ preferences at the begin-
ning of Stage II. Yet, she still does not know each individual’s
private preference. Only after offering the first-period price
p1 in Stage II, the seller may use the price to sample the
first-arriving buyer’s preference from his purchase decision.
Together with the correlation learned from Stage I, the seller
can infer the latter-arriving buyer’s preference. Overall, the
seller’s incomplete information about each buyer’s preference
gradually decreases along the timeline in Fig.1.

Notice that the seller cannot charge a personalized price to
the first-arriving buyer. This is because the seller only knows
the correlation of both buyers’ preferences instead of this
buyer’s individual preference. But for the latter-arriving buyer,
the seller can combine the purchase record in the prior selling
period to tell this buyer’s preference. In this sense, only the
second-period price p2 can be personalized.

1Before deciding the social interaction frequencies on social media, the
two buyers have already had acquaintance with each other from historical or
physical interactions. Thus, they know each other’s product preferences.
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IV. TWO BENCHMARKS

Before we analyze the PBE of the strategic-learning model
defined in Section III-C, we first introduce two benchmarks
for later comparisons. Due to the page limit, we focus on
discussing key insights here and leave the equilibrium details
in the online appendix [15].

1) No-learning Benchmark: First, we consider the case
where the seller is not allowed to access buyers’ social in-
teraction data. Here, no buyer has the incentive to manipulate,
and the seller sets uniform prices in both selling periods.

2) Undisclosed-learning Benchmark: Next, we introduce
the second benchmark case, where the seller can ideally access
buyers’ social interaction data in Stage I in an undisclosed
way. In other words, buyers are not aware of such exploitation
from the seller. Therefore, buyers’ social behaviors (x∗

ij , x
∗
ji)

in Stage I will be the same as that under the no-learning
benchmark. However, the seller’s pricing decisions in Stage
II can be personalized then.

As buyers do not manipulate their social data in Stage I, the
seller learns the product preferences of the two buyers are pos-
itively correlated when observing x̂∗ ≜ min{x∗

ij , x
∗
ji} = 1.

Further, if the first-arriving buyer purchases the product at
p∗1 = vH , the seller knows that his preference is v1 = vH
to afford a high price. Thus, the seller would also charge
p∗2 = vH to the latter-arriving buyer, who shall have the same
high preference v2 = vH . Yet if the first-arriving buyer does
not purchase, the seller learns that his preference is v1 = vL
and the latter-arriving buyer should be with the same low
preference v2 = vL. Hence, the seller charges p∗2 = vL.
Similar arguments work when the seller observes x̂∗ = 0.
Here, the seller achieves an expected revenue no smaller than
that under the no-learning benchmark.

V. FORWARD ANALYSIS FOR SELLER’S LEARNING

We now move on to our focused strategic-learning model
defined in Section III-C, where the seller tries to learn buyers’
purchase preferences from their social interaction data, and
the buyers are aware of such learning. In this section, we
start with an equilibrium analysis of the seller’s strategic
learning from Stage I (Section V-A) and the rational pricing
in Stage II (Section V-B), which allows us to screen down the
original equilibrium space (i.e., reducing the searching space
of all possible strategy combinations). By doing so, we can
formulate a belief of buyers’ manipulation structure in Stage
I with forward analysis, based on which we carry on tractable
analysis of PBE using backward induction in the next section.

Given joint information asymmetry in individual preference
and preference correlation, there are a number of possibilities
of buyers’ private information behind the seller’s observable
social data x̂ in (1). This motivates us to first reduce the search-
ing space of all possible strategy combinations to facilitate our
forward analysis in this section for the seller’s learning.

A. Learning from Buyers’ Social Interaction Data in Stage I

We first guide the seller’s strategic learning from buyers’
social data in Stage I with the following Lemma 1.

Lemma 1. At the PBE of the strategic-learning model, buyers
i and j with the same low preference choose the maximum
social interaction frequency in Stage I:

x∗
ij(vi = vj = vL) = x∗

ji(vj = vi = vL) = 1. (6)

Given different preferences, both buyers choose the minimum
social interaction frequency in Stage I:

x∗
ij(vj ̸= vi) = x∗

ji(vi ̸= vj) = 0. (7)

Intuitively, a low-preference buyer just affords a person-
alized price p2 = vL in Stage II. Likewise, when facing
higher prices, he also receives a zero purchase surplus by
deciding not to purchase the product. When meeting another
low-preference buyer, manipulation of social data from high
to low interaction frequency does not improve this low-
preference buyer’s purchase surplus, but reduces his social
interaction utility 1 in Table I(a). However, when meeting
a high-preference buyer j, a low-preference buyer i loses
from frequent interaction given different preferences as in
Table I(b). In this case, this low-preference buyer i honestly
chooses x∗

ij = 0, as any manipulation to x∗
ij = 1 does not

help improve his purchase surplus in Stage II. As a result,
the common interaction frequency signal in (1) to the seller is
always x̂ = 0. The high-preference buyer j cannot manipulate
their correlation unilaterally, and thus also chooses x∗

ji = 0
honestly given their different preferences.

The remaining case to consider is when vi = vj = vH . In
this case, we generally allow these buyers to choose a mixed
strategy, i.e., choosing the low interaction frequency 0 with a
manipulation probability and choosing the high frequency 1
with the complementary probability. Formally, we define such
manipulation probability for high-preference buyers below.
Note that as both high-preference buyers are symmetric, they
would choose the same manipulation probability.

Definition 1. When interacting with the other high-preference
buyer, we define any high-preference buyer’s manipulation
probability for the event that he chooses low social interaction
frequency 0 as ρ. i.e.,

ρ ≜ Pr (xij(vi = vj = vH) = 0)

≡ Pr (xji(vj = vi = vH) = 0) . (8)

To enable the seller’s personalized pricing in Stage II, we
now analyze the seller’s posterior belief of buyers’ product
preferences by learning from their common interaction fre-
quency x̂. According to Bayes’ theorem, we have for the seller:

Pr(vi = vj = vH |x̂ = 1) =
Pr(x̂ = 1|vi = vj = vH)

Pr(x̂ = 1|vi = vj = vH) + 1
, (9)

and

Pr(vi = vj = vH |x̂ = 0) =
1− Pr(x̂ = 1|vi = vj = vH)

3− Pr(x̂ = 1|vi = vj = vH)
, (10)

which cannot be directly determined using backward induction
from Stage II. Indeed, to ensure belief consistency over time,
we need to examine the consistency between buyers’ social
decisions and the beliefs above (see Section VI).

93



B. Learning from First-arriving Buyer’s Purchase in Stage II

Next, we present another lemma that helps us screen down
the seller’s pricing-decision space in Stage II.

Lemma 2. In Stage II of the strategic-learning model, the
seller’s equilibrium price p∗t in any selling period t ∈ {1, 2}
is either vH or vL.

Lemma 2 helps the seller restrict to the binary pricing
choices in each selling period of Stage II. Strategically, the
seller may consider learning the first-arriving buyer’s pref-
erence from his purchase decision by offering a high price
p1 = vH . In this way, the seller can facilitate personalized
pricing to the latter-arriving buyer with the preference corre-
lation learned from Stage I. On the other hand, when offering
a low price p1 = vL, the seller cannot infer the first-arriving
buyer’s preference, though the seller can guarantee a revenue
of vL from each arriving buyer. In this sense, the seller faces
the tradeoff of whether to enable personalized pricing in Stage
II. In addition, the seller’s pricing also needs to account for
buyers’ manipulations in Stage I.

VI. ANALYSIS OF PBE FOR DYNAMIC BAYESIAN GAME

After screening down the buyers’ social behaviors using
Lemma 1 in Stage I and the seller’s strategic pricing using
Lemma 2 in Stage II, we now further analyze the PBE of
the strategic-learning model in this section. The analysis is
involved as we need to ensure the belief consistency from
the coupled buyers to the seller over stages. For this goal,
we alternate forward analysis (see Section V) with backward
induction, while ensuring consistency over stages as follows.

• Step 1: We first use backward induction to analyze the
seller’s pricing decisions in Stage II, given the posterior
belief on buyers’ social decisions in (9) and (10).

• Step 2: Based on the seller’s optimal pricing derived
in Step 1, we next analyze the buyers’ coupled social
behaviors in Stage I, which should be consistent with the
seller’s belief to ensure belief consistency across stages.

We fully characterize all PBE in closed-form and classify
the structural results with four preference regions in Fig.2.

OA: vL = vH OCD: vL = 2vH/3 BC: vH − vL = 2(1 − l)
CP: (vH − vL)vL = 8(1 − l)2 BP: (vH − vL)(vH − 2vL) = 4(1 − l)2

Fig. 2. PBE in four regions to tell whether high-preference buyers manipulate
their interaction with the other high-preference one, and how the seller prices.

Proposition 1. In the strategic-learning model, if low and high
preferences are close in Region I of Fig.2, there exists a unique

PBE as follows. In Stage I, buyers i and j with the same high
preference choose the maximum social interaction frequency:

x∗
ij(vi = vj = vH) = x∗

ji(vj = vi = vH) = 1. (11)

In Stage II, the seller chooses low prices p∗1 = p∗2 = vL in
both selling periods.

Note that (11) for vi = vj = vH together with Lemma 1
(for the other preference distributions) completes all the PBE
result in Stage I. Proposition 1 shows that when low product
preference vL is close to high preference vH , it is optimal
for the seller not to practice the learning-enabled personalized
pricing. Instead, the seller charges the low prices vL in both
selling periods without losing any buyers’ demands. As the
seller will not personalize the prices, buyers in Stage I behave
honestly without any manipulation of their social data.

Proposition 2. In the strategic-learning model, if low and high
preferences are different with a small difference in Region II
of Fig.2, there exists a unique mixed PBE as follows.

In Stage I, buyers i and j with the same high preference
choose the maximum social interaction frequency in (11).
In Stage II, the seller charges a high price p∗1 = vH in
the first selling period. The second-period price personal-
izes, depending on the observed buyers’ common interaction
frequency x̂∗ ≜ min{x∗

ij , x
∗
ji} in Stage I and the purchase

record a∗1 = {0, 1} of the first period in Stage II:

p∗2 =

{
vH1(a∗1 = 1) + vL1(a

∗
1 = 0), if x̂∗ = 1. (12a)

vL1(a
∗
1 = 1) + vH1(a∗1 = 0), if x̂∗ = 0. (12b)

As the low preference vL is no longer close to vH , the seller
has the motivation to enable personalized pricing in Stage II. In
this case, she charges a high price p∗1 = vH in the first selling
period to learn the buyer’s preference, and further tailors the
second-period price p2 accordingly. Although facing a possible
personalized price in Stage II, Proposition 2 shows that the two
high-preference buyers still do not manipulate in Stage I. This
is because buyers’ social loss from manipulation outweighs the
potential purchase gain from pretending as a low-preference
type (i.e., vH − vL < 2(1− l) in Region II of Fig.2).

Proposition 3. In the strategic-learning model, if low and high
preferences are different with a medium difference in Region III
of Fig.2, there exists a unique mixed PBE as follows.

In Stage I, buyers i and j with the same high preference do
not always choose the high social interaction frequency. In-
stead, they randomize low/high frequencies with manipulation
probability ρ∗ = 1−2(1− l)/(vH−vL). In Stage II, the seller
charges a high price p∗1 = vH in the first selling period. The
second-period price is the same as (12a) and (12b).

With a larger potential purchase gain when viewed as a
low-preference type (i.e., vH − vL > 2(1 − l) in Region III
of Fig.2), high-preference buyers are motivated to manipulate
with a positive probability of ρ∗ > 0. They aim to avoid being
charged high personalized prices but receive lower prices vL
instead. As vH increases or vL decreases, the purchase gain
vH −vL from manipulation becomes more significant. Hence,
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the high-preference buyers would raise the manipulation prob-
ability ρ∗ to achieve a greater purchase surplus.

Although the seller may fail to identify high-preference
buyers given such manipulations, Proposition 2 suggests that
the seller still takes the same personalized pricing in (12a)
and (12b) as in Region II of Fig. 2. This is because the
probability of these buyers’ manipulations is still minor given
the moderate potential purchase gain, and the seller can
still capture buyers’ surplus in most cases by enabling the
personalized pricing.

Proposition 4. In the strategic-learning model, if low and high
preferences are different with a large difference in Region IV
of Fig.2, there exists a unique mixed PBE as follows.

In Stage I, buyers i and j with the same high preference do
not always choose the high social interaction frequency. In-
stead, they randomize low/high frequencies with the following
manipulation probability:

ρ∗ =

{
1−

√
vL/2(vH − vL), if vL > 2

5vH ,
1−

√
(vH − 2vL)/(vH − vL), otherwise.

(13)
In Stage II, the seller does not always charge a high price

p∗1 = vH in the first selling period and enable second-period
personalized pricing in (12a) and (12b). More specifically, we
have the following two cases.

• Case 1 with vL > 2vH/5: When observing buyers’
high common interaction frequency x̂∗ = 1, the seller
randomizes with offering low prices p∗1 = p∗2 = vL in
both selling periods. i.e.,{

p∗1 = p∗2 = vL, w.p. vH−vL−2
√
2(1−l)

2(vH−vL) ,

p∗1 = vH , (12a), otherwise.
(14)

Whereas observing x̂∗ = 0, the seller purely charges
a high price p∗1 = vH in the first period and enables
personalized pricing in (12b) in the second period.

• Case 2 with vL < 2vH/5: When observing buyers’
low common interaction frequency x̂∗ = 0, the seller
randomizes with offering high prices p∗1 = p∗2 = vH in
both selling periods. i.e.,{

p∗1 = p∗2 = vH , w.p. 1− 2(1−l)√
(vH−vL)(vH−2vL)

,

p∗1 = vH , (12b), otherwise.
(15)

Whereas observing x̂∗ = 1, the seller purely charges
a high price p∗1 = vH in the first period and enables
personalized pricing in (12a) in the second period.

With a sufficiently large potential purchase gain vH −vL in
Region IV of Fig.2, high-preference buyers are now more
willing to manipulate their social interactions. These high-
preference buyers would raise the manipulation probability
ρ∗ as vH increases or vL decreases in Case 1, because the
purchase gain vH − vL becomes more significant under these
changes. On the other hand, the seller expects such social
manipulation, and introduces a mixture (mixed strategy) of
uniform pricing vL with personalized pricing in (14) when

observing the high common interaction frequency x̂∗ = 1.
Given a higher vL in Case 1, such a mixture helps the
seller gain more from those low-preference buyers who never
manipulate and frequently interact with each other. As a result,
the seller mitigates the potential revenue loss from those
manipulating high-preference buyers.

In contrast, when vL becomes lower, as in Case 2, the seller
tends to mix personalized pricing with another pricing scheme
in (15), offering a uniform price vH when observing the low
common interaction frequency x̂∗ = 0. Specifically, the seller
strategically infers those manipulating high-preference buyers
upon x̂∗ = 0. With small vL, the seller worries little about the
demand loss from low-preference buyers, who never manip-
ulate and seldom interact with high-preference buyers. As a
result, the seller mitigates the loss by extracting revenue from
those manipulating high-preference buyers. Meanwhile, such
a mixture of uniform pricing p∗1 = p∗2 = vH upon x̂∗ = 0 also
reduces high-preference buyers’ incentives to manipulate. That
is, when choosing the low interaction frequency of x̂∗ = 0,
the high-preference buyers are less likely to avoid personalized
pricing but still face social loss. Therefore, even though the
potential purchase gain vH − vL enlarges as vH increases or
vL decreases, high-preference buyers’ manipulation level ρ∗

decreases in Case 2.

VII. IMPACTS OF BUYERS’ MANIPULATIONS

After analyzing the PBE in Propositions 1-4, we are ready
to understand how buyers’ social data manipulations affect the
payoffs of both the seller and buyers.

A. Impact on Buyers’ Payoffs

First, we are interested in whether buyers receive higher
payoffs from manipulating their social data to hurdle the
seller’s personalized pricing. Proposition 5 answers it by com-
paring to the undisclosed-learning benchmark, where buyers
are unaware of the seller’s learning and thus never manipulate.

Formally, we examine the average buyer payoff π̃ given by

π̃ ≜ Evi,vj{π̃i(xij , xji)}, (16)

which takes expectation over various buyer preference dis-
tributions while accounting for the preference correlation
between buyers. Indeed, the awareness of the seller’s learning
would not affect low-preference buyers’ payoffs, as they
never manipulate and always gain zero purchase surplus (see
Lemmas 1 and 2). Hence, the investigation on (16) to compare
with the undisclosed-learning benchmark actually sheds light
on the high-preference buyers, as discussed in the following.

Proposition 5. Compared with the undisclosed-learning
benchmark, the average buyer payoff could be lower when
buyers are aware of the seller’s learning in the strategic-
learning model.

Proposition 5 reveals that high-preference buyers strategi-
cally manipulate their social interactions but may end up with
lower payoffs (than no manipulation). This is because each
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buyer is able to confuse the seller through unilateral manip-
ulation, as the seller only accesses the common mutual in-
teractions x̂ ≜ min{xij , xji}. However, both high-preference
buyers i and j may tend to manipulate unilaterally by them-
selves. Thus, both suffer the social loss due to the other’s
manipulation, imposing a negative externality on each other.

Due to the page limit, we present more analytical details in
the online appendix [15] regarding how awareness affects the
average buyer payoff across four different regions of Fig. 2.

B. Guidance on Seller’s Learning from Online Social Data
Next, we discuss if it is beneficial for the seller to learn from

buyers’ social interaction data, and if she shall actively inform
buyers of her data access. For example, Amazon today seeks
explicit consent from buyers regarding Amazon’s access to her
buyers’ Facebook data [9]. However, some other companies
are found not to inform buyers regarding their data access [24].
We investigate this issue by comparing the seller’s expected
sale revenue obtained under the strategic-learning model with
the no-learning and undisclosed-learning benchmarks.

Proposition 6. Compared with the no-learning benchmark,
the seller achieves a non-negative expected revenue gain in
the strategic-learning model. The gain is positive as long as
0 < vL < 2vH/3 and the maximum gain can reach 25%.

With a big revenue gain up to 25% beyond the no-learning
benchmark, the seller should always learn and exercise per-
sonalized price as long as buyers’ preferences for the new
product are diverse (0 < vL < 2vH/3). Notably, this makes
sense no matter whether buyers are aware (or not) of such
learning and the follow-up personalized pricing. Despite buy-
ers’ manipulation in social interactions to hurdle the seller’s
personalized pricing, the seller can strategically learn and
introduce a mixture with uniform pricing (see Proposition 4)
to mitigate the manipulation effect and avoid revenue loss.

Proposition 7. Compared with the undisclosed-learning
benchmark, the seller suffers a non-negative expected revenue
loss in the strategic-learning model, with only 8.3% at most.

Although buyers’ awareness would reduce the seller’s gain
from learning, such revenue loss is insignificant, with only
8.3% in the worst case. Given the increasing trend of better
personal data protection, it is advisable for the seller to
inform buyers of her access to their social data. Indeed,
this matches well with Amazon’s current practice regarding
informed consent for data sharing [9]. From the regulators’
perspective, it is enough to impose a fine on the sellers that is
equal to or larger than the potential gain of not informing the
buyers (8.3% in our model) to incentivize proper behaviors.

VIII. CONCLUSION

This paper studies how buyers may strategically manipulate
their social interaction signals considering their preference
correlations, and how an informed seller can take buyers’
strategic social behaviors into consideration when designing
the pricing schemes. We find that only high-preference buyers
tend to manipulate their social interactions to hurdle the

seller’s personalized pricing. Yet, their payoff may become
worse after such manipulation. We also show that the seller
benefits from learning the buyers’ social data independent of
buyers’ awareness. We thus advise sellers to make buyers
aware of their social data access and follow-up learning.
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