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Abstract—In this paper, we study the problem of global
reward maximization with only partial distributed feedback.
This problem is motivated by several real-world applications
(e.g., cellular network configuration, dynamic pricing, and policy
selection) where an action taken by a central entity influences a
large population that contributes to the global reward. However,
collecting such reward feedback from the entire population not
only incurs a prohibitively high cost, but often leads to privacy
concerns. To tackle this problem, we consider differentially
private distributed linear bandits, where only a subset of users
from the population are selected (called clients) to participate
in the learning process and the central server learns the global
model from such partial feedback by iteratively aggregating these
clients’ local feedback in a differentially private fashion. We then
propose a unified algorithmic learning framework, called differ-
entially private distributed phased elimination (DP-DPE), which
can be naturally integrated with popular differential privacy
(DP) models (including central DP, local DP, and shuffle DP).
Furthermore, we prove that DP-DPE achieves both sublinear
regret and sublinear communication cost. Interestingly, DP-DPE
also achieves privacy protection “for free” in the sense that
the additional cost due to privacy guarantees is a lower-order
additive term. Finally, we conduct simulations to corroborate our
theoretical results and demonstrate the effectiveness of DP-DPE.

I. INTRODUCTION

The bandit learning models have been widely adopted for

many sequential decision-making problems, such as clinical

trials, recommender systems, and configuration selection. Each

action (called arm), if selected in a round, generates a (noisy)

reward. By observing such reward feedback, the learning agent

gradually learns the unknown parameters of the model (e.g.,

mean rewards) and decides the action in the next round. The

objective here is to maximize the cumulative reward over a

finite time horizon, balancing the tradeoff between exploitation
and exploration. While the stochastic multi-armed bandits

(MAB) model is useful for these applications [1], one key

limitation is that actions are assumed to be independent, which,

however, is usually not the case in practice. Therefore, the

linear bandit model that captures the correlation among actions

has been extensively studied [2]–[4].

In this paper, we introduce a new linear bandit setting where

the reward of an action could be from a large population.

Take the cellular network configuration as an example (see

Fig. 1). The configuration (antenna tilt, maximum output
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Fig. 1. Cellular network configuration: a motivating application of global
reward maximization with partial feedback in a linear bandit setting.

power, inactivity timer, etc.) of a base station (BS), denoted

by x ∈ R
d, influences all the users under the coverage of

this BS [5]. After a configuration is applied, the BS receives

a reward in terms of the network-level performance, which

accounts for the performance of all users within the coverage

(e.g., average user-perceived Quality of Experience (QoE)).

Specifically, let the mean global reward of configuration x
be f(x) = 〈θ∗, x〉, where θ∗ ∈ R

d represents the unknown

global parameter. While some configuration may work best

for a specific user, only one configuration can be applied at

the BS at a time, which, however, simultaneously influences

all the users within the coverage. Therefore, the goal here is to

find the best configuration that maximizes the global reward

(i.e., the network-level performance).

At first glance, it seems that one can address the above

problem by applying existing linear bandit algorithms (e.g.,

LinUCB [4]) to learn the global parameter θ∗. However, this

would require collecting reward feedback from the entire

population, which could incur a prohibitively high cost or

could even be impossible to implement in practice when the

population is large. To learn the global parameter, one natural

way is to sample a subset of users from the population and

aggregate this distributed partial feedback. This leads to a new

problem we consider in this paper: global reward maximization
with partial feedback in a distributed linear bandit setting.
As in many distributed supervised learning problems [7]–[9],

privacy protection is also of significant importance in our

setting as clients’ local feedback may contain their sensitive

information. In summary, we are interested in the following

fundamental question: How to privately achieve global reward
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TABLE I
SUMMARY OF MAIN RESULTS

Algorithm1 Regret2 Communication cost3 Privacy

DPE O
(
T 1−α/2

√
log(kT )

)
O(dTα) None

CDP-DPE O
(
T 1−α/2

√
log(kT ) + d3/2T 1−α

√
ln(1/δ) log(kT )/ε

)
O(dTα) (ε, δ)-DP

LDP-DPE O
(
T 1−α/2

√
log(kT ) + d3/2T 1−α/2

√
ln(1/δ) log(kT )/ε

)
O(dTα) (ε, δ)-LDP

SDP-DPE O
(
T 1−α/2

√
log(kT ) + d3/2T 1−α ln(d/δ)

√
log(kT )/ε

)
O(dT 3α/2) (bits) (ε, δ)-SDP

1DPE is the non-private DP-DPE algorithm; CDP-DPE, LDP-DPE, and SDP-DPE represent the DP-DPE algorithm in the central, local, and
shuffle models, respectively, which guarantee (ε, δ)-DP, (ε, δ)-LDP, and (ε, δ)-SDP, respectively.
2In the regret upper bounds, T is the time horizon, k is the number of actions, d is the dimension of the action space, and α is a design parameter
that can be used to tune the tradeoff between the regret and the communication cost. We ignore lower-order terms for simplicity.
3While the communication cost of CDP-DPE and LDP-DPE is measured in the number of real numbers transmitted between the clients and
the server, SDP-DPE directly uses bits for reporting feedback. A detailed discussion is provided in our online technical report [6].

maximization with only partial distributed feedback?
To that end, we introduce a new model called differentially

private distributed linear bandit (DP-DLB). In DP-DLB, there

is a global linear bandit model f(x) = 〈θ∗, x〉 with an

unknown parameter θ∗ ∈ R
d at the central server (e.g., the

BS); each user u of a large population has a local linear

bandit model fu(x) = 〈θu, x〉, which represents the mean

local reward for user u. Here, we assume that each user u
has a local parameter θu ∈ R

d, motivated by the fact that the

mean local reward (e.g., the expected QoE of a user under

a certain network configuration) varies across the users. In

addition, each local parameter θu is unknown and is assumed

to be a realization of a random vector with the mean being

the global model parameter θ∗. The server makes decisions

based on the estimated global model, which can be learned

through sampling a subset of users (referred to as clients)

and iteratively aggregating these distributed partial feedback.

While sampling more clients could improve the learning

accuracy and thus lead to a better performance, it also incurs

a higher communication cost. Therefore, it is important to

address this tradeoff in the design of communication protocols.

Furthermore, to protect users’ privacy, we resort to differential
privacy (DP) to guarantee that clients’ sensitive information

will not be inferred by an adversary. Therefore, the goal is

to maximize the cumulative global reward (or equivalently

minimize the regret due to not choosing the optimal action in

hindsight) in a communication-efficient manner while provid-

ing privacy guarantees for the participating clients. Our main

contributions are summarized as follows.

• We present the first work that considers global reward

maximization with partial feedback in the distributed linear

bandit setting. In addition to the traditional tradeoff between

exploitation and exploration, learning with distributed feed-

back introduces two practical challenges: communication

efficiency and privacy concerns. This adds an extra layer of

difficulty in the design of learning algorithms.

• To address these challenges, we introduce a DP-DLB

model and develop a carefully-crafted algorithmic learning

framework, called differentially private distributed phased

elimination (DP-DPE), which allows the server and the

clients to work in concert and can be naturally integrated

with several state-of-the-art DP trust models (including

central model, local model, and shuffle model). This unified

framework enables us to systemically study the key regret-

communication-privacy tradeoff.

• We then establish the regret-communication-privacy trade-

off of DP-DPE in various settings including the non-private

case as well as the central, local, and shuffle DP models. Our

main results are summarized in Table I. These results reveal

that DP-DPE achieves privacy “for-free” in the central and

shuffle models, in the sense that the additional regret due to

privacy protection is only a lower-order additive term. More-

over, this is the first work that considers the shuffle model

in distributed linear bandits to attain a better regret-privacy

tradeoff, i.e., guaranteeing a similar privacy protection as the

strong local model while achieving the same regret as the

central model. We further perform simulations on synthetic

data to corroborate our theoretical results.

Due to space limitations, we provide all the detailed proofs

of our results in our online technical report [6].

II. RELATED WORK

We discuss the most relevant work here and provide a more

detailed discussion in our technical report [6].

Distributed bandits. Our model is related to multi-agent col-

laborative learning in the distributed bandits setting [10]–[15].

The most relevant work to ours is the distributed linear bandit

problem studied in [15]. Similarly, they design a distributed

phased elimination algorithm where a central server aggregates

data provided by the local clients and iteratively eliminates

suboptimal actions. However, there are two key differences: (i)

they consider the standard group regret minimization problem

with homogeneous clients that have the same unknown pa-

rameter; (ii) the clients send the rewards to the central server

without any privacy protection.

Federated bandits. Another line of related work is bandits

in the federated setting [16]–[20], among which [19] and [20]

are most relevant. In addition to different model and problem

formulation we consider, we also highlight our main technical

contributions compared to these works. While a phased elim-

ination algorithm is also employed in [19], there are two key

differences: (i) They do not consider the correlation among
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the actions. Specifically, they consider a linear reward for

contextual bandits while still studying MAB with independent

actions, each of which is associated with a distinct parameter

vector. Differently, the linear bandits formulation in our work

is used to capture the correlation among the actions; (ii) When

aggregating users’ feedback for learning the global parameter,

we protect users’ data privacy through rigorous differential

privacy guarantees, which is not considered in their design.

While DP is also employed to protect users’ data privacy in

[20], they require that both the Gram matrix of actions (of

size O(d2)) and reward vectors (of size O(d)) be periodically

communicated. Differently, our algorithm only requires that

private average local reward for the chosen actions (of size

O(d log log d)) be communicated in each phase. Moreover,

while they only consider the central DP model, we provide a

unified algorithmic learning framework that can be integrated

with different DP models. In particular, our proposed DP-DPE

algorithm integrated with the shuffle DP model can achieve a

better regret-communication-privacy tradeoff (see Table I).
Differentially private bandits. Since proposed in [21], DP has

become the de facto privacy-preserving model in many appli-

cations, including online learning [22] and bandit problems

[23]. Specifically, in [24]–[26], MAB has been studied in the

central, local, and shuffle DP models, respectively. In [27], the

authors explore DP in contextual linear bandits and introduce

a joint DP model. As a stronger privacy notion, local DP is

also studied for contextual linear bandits [28] and Bayesian

optimization [29]. However, none of them considers shuffle DP

in the linear bandits setting. Moreover, our DP-DPE algorithm

can be naturally integrated with several different DP models.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We begin with some notations: [N ] � {1, . . . , N} for any

positive integer N ; |S| denotes the cardinality of set S; ‖x‖2
denotes the �2-norm of vector x; the inner product is denoted

by 〈·, ·〉. For a positive definite matrix A ∈ R
d×d, the weighted

�2-norm of vector x ∈ R
d is defined as ‖x‖A �

√
x�Ax.

A. Global Reward Maximization with Partial Feedback
We consider the global reward maximization problem over

a large population, which is a sequential decision making

problem. In each round t, the learning agent (e.g., the BS or

the policy maker) selects an action xt from a finite decision

set D ⊆ {x ∈ R
d : ‖x‖22 ≤ 1} with |D| = k. This action

leads to a global reward with mean 〈θ∗, xt〉, where θ∗ ∈ R
d

with ‖θ∗‖2 ≤ 1 is unknown to the agent. This global reward

captures the overall effectiveness of action xt over a large

population U . The local reward of action xt at user u has a

mean 〈θu, xt〉, where θu ∈ R
d is the local parameter, which

is assumed to be a realization of a random vector with mean

θ∗ and is also unknown. Let x∗ � argmaxx∈D〈θ∗, x〉 be the

unique global optimal action. Then, the objective of the agent

is to maximize the cumulative global reward, or equivalently,

to minimize the regret defined as follows:

R(T ) � T 〈θ∗, x∗〉 −
T∑

t=1

〈θ∗, xt〉. (1)

At first glance, standard linear bandit algorithms (e.g., Lin-

UCB in [4]) can be applied to addressing the above problem.

However, the exact reward here is a global quantity, which

is the average over the entire population. The learning agent

may not be able to observe this exact reward, since collecting

such global information from the entire population incurs a

prohibitively high cost, is often impossible to implement in

practice, and could lead to privacy concerns.

B. Differentially Private Distributed Linear Bandits

To address the above problem, we consider a differentially
private distributed linear bandit (DP-DLB) formulation, where

there are two important entities: a central server (which wants

to learn the global model) and participating clients (i.e., a

subset of users from the population who are willing to share

their feedback). In the following, we discuss important aspects

of the DP-DLB formulation.

Server. The server aims to learn the global linear bandit model,

i.e., unknown parameter θ∗. In each round t, it selects an action

xt with the objective of maximizing the cumulative global

reward
∑T

t=1〈θ∗, xt〉. Without observing the exact reward of

action xt, the server collects only partial feedback from a

subset of users sampled from the population, called clients,

and then aggregates this partial feedback to update the estimate

of the global parameter θ∗. Based on the updated model, the

server chooses an action in the next round.

Clients. We assume that each participating client is randomly

sampled from the population and is independent from each

other and also from other randomness. Specifically, we assume

that local parameter θu at client u satisfies θu = θ∗+ξu, where

ξu ∈ R
d is a zero-mean σ-sub-Gaussian random vector4 and

is independently and identically distributed (i.i.d.) across all

clients. Let Ut be the set of clients in round t. After action xt is

chosen by the server in round t, each client u ∈ Ut observes

a noisy local reward: yu,t = 〈θu, xt〉 + ηu,t, where ηu,t is

a conditionally 1-sub-Gaussian5 noise and i.i.d. across the

clients and over time. We also assume that the local rewards

are bounded, i.e., ‖yu,t‖2 ≤ B, for all u ∈ U and t ∈ [T ].
Communication. The communication happens when the

clients report their feedback to the server. At the beginning

of each communication step, each participating client reports

feedback to the server based on the local reward observations

during a certain number of rounds. In particular, the time

duration between reporting feedback is called a phase. By

aggregating such feedback from the clients, the server esti-

mates the global parameter θ∗ and adjusts its decisions in the

following rounds accordingly. We assume that the clients do

not quit before a phase ends. By slightly abusing the notation,

we use Ul to denote the set of clients in the l-th phase.

The communication cost is a critical factor in DP-DLB. As

in [15], we define the communication cost as the total number

4A random vector ξ ∈ R
d is said to be σ-sub-Gaussian if E[ξ] = 0 and

v�ξ is σ-sub-Gaussian for any unit vector v ∈ R
d and ‖v‖2 = 1 [30].

5Consider noise sequence {ηt}∞t=1. As in the general linear bandit
model [2], ηt is assumed to be conditionally 1-sub-Gaussian, meaning
E[eληt |x1:t, η1:t] ≤ exp(λ2/2) for all λ ∈ R, where ai:j denotes the
subsequence ai, . . . , aj .
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of real numbers (or bits, depending on the adopted DP model)

communicated between the server and the clients. Let L be the

number of phases in T rounds, and let Nl be the number of

real numbers (or bits) communicated in the l-th phase. Then,

the total communication cost, denoted by C(T ), is

C(T ) �
L∑

l=1

|Ul|Nl. (2)

Data privacy. In practice, even if users are willing to share

their feedback, they typically require privacy protection as

a premise. To that end, we resort to differential privacy
(DP) [21] to formally address the privacy concerns in the

learning process. More importantly, instead of only consid-

ering the standard central model where the central server is

responsible for protecting the privacy, we will also incorporate

other popular DP models, including the stronger local model

(where each client directly protects her data) [31] and the

recently proposed shuffle model (where a trusted shuffler

between clients and server is adopted to amplify privacy) [32],

in a unified algorithmic learning framework.

IV. ALGORITHM DESIGN

In this section, we first present the key challenges associated

with the introduced DP-DLB model and then explain how

the developed DP-DPE framework addresses these challenges,

followed by a brief description of DP-DPE instantiations with

three different DP models (central, local, and shuffle).

A. Key Challenges

To solve the problem of global reward maximization with

partial distributed feedback using the DP-DLB formulation,

we face four key challenges, discussed in detail below.

As in the standard stochastic bandits problem, there is an

uncertainty due to noisy rewards of each chosen action, which

is called the action-related uncertainty. In addition to this, we

face another type of uncertainty related to the sampled clients

in DP-DLB, called the client-related uncertainty. The client-

related uncertainty lies in estimating the global model at the

server based on randomly sampled clients with biased local

models. Note that the global model may not be accurately

estimated even if exact rewards of the sampled clients are

known when the number of clients is insufficient. Therefore,

the first challenge lies in simultaneously addressing both types
of uncertainty in a sample-efficient way (Challenge a©).

To handle the newly introduced client-related uncertainty,

we must sample a sufficiently large number of clients so that

the global parameter can be accurately estimated using the

partial distributed feedback. However, too many clients result

in a large communication cost (see Eq. (2)). Therefore, the

second challenge is to decide the number of sampled clients
to balance the regret (due to the client-related uncertainty)
and the communication cost (Challenge b©).

Finally, to ensure privacy guarantees for the clients, one

needs to add additional perturbations (or noises) to the local

feedback. Such randomness introduces another type of uncer-
tainty to the learning process (Challenge c©), and it is unclear

how to integrate different trust DP models into a unified
algorithmic learning framework (Challenge d©). These add an

extra layer of difficulty to the design of learning algorithms.

Main ideas. In the following, we present our main ideas

for addressing the above challenges. We propose a phased

elimination algorithm that gradually eliminates suboptimal

actions by periodically aggregating the local feedback from

the sampled clients in a privacy-preserving manner. To address

the multiple types of uncertainty when estimating the global

reward ( a© and c©), we carefully construct a confidence width

to incorporate all three types of uncertainty. To achieve a

sublinear regret while saving communication cost ( b©), we

increase both the phase length and the number of clients

exponentially. To ensure privacy guarantees ( d©), we introduce

a PRIVATIZER that can be easily tailored under different DP

models. The PRIVATIZER is a process consisting of tasks

to be collaboratively completed by the clients, the server,

and/or even a trusted third party. To keep it general, we use

P = (R,S,A) to denote a PRIVATIZER, where R is the

procedure at each client (usually a local randomizer), S is a

trusted third party that helps privatize data (e.g., a shuffler that

permutes received messages), and A is an analyzer operated at

the central server. Next, we will show how to integrate these

main ideas into a unified algorithmic learning framework.

B. Differentially Private Distributed Phased Elimination

With the main ideas presented above, we now propose a

unified algorithmic learning framework, called differentially
private distributed phased elimination (DP-DPE), which is

presented in Algorithm 1. The DP-DPE runs in phases and

operates with the coordination of the central server and the

participating clients in a synchronized manner. At a high level,

each phase consists of the following three steps:

• Action selection (Lines 4-6): computing a near-G-optimal

design (i.e., a distribution) over a set of possibly optimal

actions and playing these actions;

• Clients sampling and private feedback aggregation
(Lines 7-16): sampling participating clients and aggregating

their local feedback in a privacy-preserving fashion;

• Parameter estimation and action elimination (Lines 17-
19): using (privately) aggregated data to estimate θ∗ and

eliminating actions that are likely to be suboptimal.

In the following, we describe the detailed operations of DP-

DPE. We begin by giving some necessary notations. Consider

the l-th phase. Let tl and Tl be the index of the starting round

and the length of the l-th phase, respectively. Then, let Tl �
{t ∈ [T ] : tl ≤ t < tl + Tl} be the round indices in the l-th
phase, let Tl(x) � {t ∈ Tl : xt = x} be the time indices in

the l-th phase when action x is selected, and let Dl ⊆ D be

the set of active actions in the l-th phase.

Action selection (Lines 4-6): In the l-th phase, the action

set Dl consists of active actions that are possibly optimal.

We compute a distribution πl(·) over Dl and choose actions

according to πl(·). We briefly explain the intuition below. Let

V (π) �
∑

x∈D π(x)xx� and g(π) � maxx∈D ‖x‖2V (π)−1 .
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Algorithm 1 Differentially Private Distributed Phased Elimi-

nation (DP-DPE)

1: Input: D ⊆ R
d, α ∈ (0, 1), β ∈ (0, 1), and σn

2: Initialization: l = 1, t1 = 1, D1 = D, and h1 = 2
3: while tl ≤ T do
4: Find a distribution πl(·) over Dl such that g(πl) �

maxx∈Dl
‖x‖2V (πl)−1 ≤ 2d and |supp(πl)| ≤

4d log log d+ 16, where V (πl) �
∑

x∈Dl
πl(x)xx

�

5: Let Tl(x) = 
hlπl(x)� for each x ∈ supp(πl) and Tl =∑
x∈supp(πl)

Tl(x)
6: Play each action x ∈ supp(πl) exactly Tl(x) times if

not reaching T
7: Randomly select 
2αl� participating clients Ul

# Operations at each client

8: for each client u ∈ Ul do
9: for each action x ∈ supp(πl) do

10: Compute average local reward over Tl(x) rounds:

yul (x) =
1

Tl(x)

∑
t∈Tl(x)

(〈θu, x〉+ ηu,t)
11: end for
12: Let 
yul = (yul (x))x∈supp(πl)

# Apply the PRIVATIZER P = (R,S,A)
# The local randomizer R at each client:

13: Run the local randomizer R and send the output

R(
yul ) to S
14: end for

# Computation S at a trusted third party:

15: Run the computation function S and send the output

S({R(
yul )}u∈Ul
) to the analyzer A

# The analyzer A at the server:

16: Generate the privately aggregated statistics: ỹl =
A(S({R(
yul )}u∈Ul

))
17: Compute the following quantities:⎧⎪⎨

⎪⎩
Vl =

∑
x∈supp(πl)

Tl(x)xx
�

Gl =
∑

x∈supp(πl)
Tl(x)xỹl(x)

θ̃l = V −1
l Gl

18: Find low-rewarding actions with confidence width Wl:

El =

{
x ∈ Dl : max

b∈Dl

〈θ̃l, b− x〉 > 2Wl

}

19: Update: Dl+1 = Dl\El, hl+1 = 2hl, tl+1 = tl + Tl,

and l = l + 1
20: end while

According to the analysis in [2, Chapter 21], if action x ∈ D
is played 
hπ(x)� times (where h is a positive constant), the

estimation error associated with the action-related uncertainty

for action x is at most
√
2g(π) log(1/β)/h with probability

1 − β for any β ∈ (0, 1). That is, for a fixed number of

rounds, a distribution π(·) with a smaller value of g(π) helps

achieve a better estimation. Note that minimizing g(·) is a

well-known G-optimal design problem [33]. By the Kiefer-

Wolfowitz Theorem [34], one can find a distribution π∗

minimizing g(·) with g(π∗) = d, and the support set6 of π∗,

denoted by supp(π∗), has a size no greater than d(d + 1)/2.

In our problem, however, it suffices to solve it near-optimally,

i.e., finding a distribution πl such that g(πl) ≤ 2d with

|supp(πl)| ≤ 4d log log d + 16 (Line 4), which follows from

[35, Proposition 3.7]. The near-G-optimal design reduces the

complexity to O(kd2) while keeping the same order of regret.

Clients sampling and private feedback aggregation
(Lines 7-16): The central server randomly samples a subset

Ul of 
2αl� users (called clients) from the population U to

participate in the global bandit learning (Line 7). Each sampled

client u ∈ Ul collects their local reward observations of each

chosen action x ∈ supp(πl) by the server and computes the

average yul (x) as feedback (Line 10). Before being used to

estimate the global parameter by the central server, these

feedback 
yul � (yul (x))x∈supp(πl) ∈ R
|supp(πl)| are processed

by a PRIVATIZER P to ensure differential privacy. Recall

that a PRIVATIZER P = (R,S,A) is a process completed

by the clients, the server, and/or a trusted third party. In

particular, according to the privacy requirement under different

DP models, the PRIVATIZER P enjoys flexible instantiations

(see Section IV-C). Generally, a PRIVATIZER works in the

following manner: each client u runs the randomizer R on its

local average reward 
yul (over Tl pulls) and then sends the

resulting (potentially private) messages R(
yul ) to S (Line 13).

The computation function in S operates on these messages

and then sends results S({R(
yul )}u∈Ul
) to the analyzer A at

the central server (Line 15). Finally, the analyzer A aggregates

received messages (potentially in a privacy-preserving manner)

and outputs a private averaged local reward ỹl(x) (over partic-

ipating clients Ul) for each action x ∈ supp(πl) (Line 16). We

provide the rigorous formulation of different DP models for

PRIVATIZER P in our technical report [6], with corresponding

detailed instantiations of R,S , and A.

Parameter estimation and action elimination (Lines 17-
19): Using privately aggregated feedback (i.e., the private av-

eraged local reward ỹl of the chosen actions x ∈ supp(πl)), the

central server computes the least-square estimator θ̃l (Line 17).

We perform action elimination based on the following confi-

dence width:

Wl �

⎛
⎜⎜⎜⎝
√

2d

|Ul|hl︸ ︷︷ ︸
action-related

+
σ√
|Ul|︸ ︷︷ ︸

client-related

+ σn︸︷︷︸
privacy noise

⎞
⎟⎟⎟⎠

√
2 log

(
1

β

)
,

(3)

where σ is the standard variance associated with client sam-

pling, σn is related to the privacy noise determined by the

DP model, and β is the confidence level. We choose this

confidence width based on the concentration inequality for

sub-Gaussian variables. Specifically, the three terms in Eq. (3)

capture the action-related uncertainty, client-related uncer-

tainty, and the added noise for privacy guarantees, respectively.

6The support set of a distribution π over set D, denoted by suppD(π),
is the subset of elements with a nonzero π(·), i.e., suppD(π) � {x ∈ D :
π(x) �= 0}. We drop the subscript D in suppD(π) for notational simplicity.
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This privacy noise σn depends on the adopted DP model.

Using this confidence width Wl and the estimated global

model parameter θ̃l, we can identify a subset of suboptimal

actions El with high probability (Line 18). At the end of

the l-th phase, we update the set of active actions Dl+1 by

eliminating El from Dl and double hl (Line 19).

C. DP-DPE under Different DP Models

We now briefly explain how to instantiate the PRIVATIZER

P = (R,S,A) in DP-DPE using three representative DP trust

models: the central, local, and shuffle models. In addition, we

also present the formal definition of the privacy guarantees

regarding P under each trust model, which further implies

respective privacy guarantee of DP-DPE according to the post-

processing property of DP [36, Proposition 2.1]. We provide

the detailed descriptions in our technical report [6].

DP-DPE under the central DP model (CDP-DPE). Under

the central DP model, each client trusts the server, and the

outputs of the server on two neighboring datasets (differing

by only one client) must be indistinguishable [21]. To achieve

this, the PRIVATIZER functions as follows: while both R and

S are simply identity mappings, A injects well-tuned Gaussian

noise to the aggregated statistics for privacy. That is,

ỹl = A ({
yul }u∈Ul
) =

1

|Ul|
∑
u∈Ul


yul + (γ1, . . . , γsl), (4)

where sl � |supp(πl)|, γj
i.i.d.∼ N (0, σ2

nc), and the variance

σ2
nc is chosen according to the �2-sensitivity of the average
1

|Ul|
∑

u∈Ul

yul . Consider a particular phase l. The PRIVATIZER

P is (ε, δ)-differentially-private (or (ε, δ)-DP) if the following

is satisfied for any pair of Ul, U
′
l ⊆ U that differ by at most

one client and for any output ỹ of A:

P[A({
yul }u∈Ul
) = ỹ] ≤ eε · P[A({
yul }u∈U ′

l
) = ỹ] + δ.

DP-DPE under the local DP model (LDP-DPE). Under the

local DP model, since clients do not trust the server, each client

with a local randomizer R is responsible for privacy protection

by injecting Gaussian noise; S is an identity mapping; A is a

simple aggregation function. That is,

ỹl =
1

|Ul|
∑
u∈Ul

R(
yul ) =
1

|Ul|
∑
u∈Ul

(
yul + (γu,1, . . . , γu,sl)) ,

(5)

where γu,j
i.i.d.∼ N (0, σ2

nl) and the variance σ2
nl is chosen

according to the sensitivity of 
yul . Consider any phase l. Let Yu

be the set of all possible values of the average local reward 
yul
for client u. The PRIVATIZER P is (ε, δ)-local-differentially-

private (or (ε, δ)-LDP) if the following is satisfied for any

client u, for any pair of 
y, 
y′ ∈ Yu, and for any output

o ∈ {R(
y)|
y ∈ Yu}:

P[R(
y) = o] ≤ eε · P[R(
y′) = o] + δ.

DP-DPE under the shuffle DP model (SDP-DPE). Under

the shuffle model, without a trusted server, we instantiate DP-

DPE by building on the vector summation protocol recently

proposed in [37]. Specifically, each local randomizer R en-

codes its inputs by adding random bits; the analyzer A outputs

the random vector whose expectation is the average of the

input vectors; beyond that, we leverage a third-party shuffler S ,

which uniformly at random permutes users’ messages (in bits)

to hide their sources. That is,

ỹl = P ({
yul }u∈Ul
) = A(S({R(
yul )}u∈Ul

)), (6)

where the additional randomness introduced by S allows each

local R to inject only a small amount of noise σns while still

guaranteeing a private view at the analyzer A. Consider any

phase l. We use (S◦R)(Ul) � S({R(
yul )}u∈Ul
) to denote the

composite mechanism. Formally, the PRIVATIZER P is (ε, δ)-
shuffle-differentially-private (or (ε, δ)-SDP) if the following is

satisfied for any pair of Ul, U
′
l ⊆ U that differ by one client

and for any possible output z of S ◦ R:

P[(S ◦ R)(Ul) = z] ≤ eε · P[(S ◦ R)(U ′
l ) = z] + δ.

V. MAIN RESULTS

In this section, we study the performance of DP-DPE under

different DP models in terms of regret and communication

cost. We start with the non-private DP-DPE algorithm (called

DPE, with ỹl = 1
|Ul|

∑
u∈Ul


yul and σn = 0 for all l) and

present the main result in Theorem 1.

Theorem 1 (DPE): Let β = 1/(kT ) and σn = 0 in Algo-

rithm 1. Then, the non-private DP-DPE algorithm achieves the

following expected regret:

E[R(T )] = O(
√

dT log(kT )) +O(σT 1−α/2
√

log(kT )),

with a communication cost of O(dTα).
Remark 1: Theorem 1 gives a problem-independent regret

upper bound for DPE. We can observe an obvious tradeoff

between regret and communication cost, captured by the value

of α. While a larger α leads to a smaller regret, it also incurs

a larger communication cost. Setting α = 2/3 gives O(T 2/3)
for both regret and communication cost.

In Theorem 2, we present the performance of DP-DPE

under different DP models in terms of regret, communication

cost, and privacy guarantee. Let S � 4d log log d+ 16.

Theorem 2: Let β = 1/(kT ). DP-DPE under different DP

models with the following parameters achieves the correspond-

ing results in Table I:

(i) CDP-DPE. Set σnc = O

(
B
√

d ln(1/δ)

ε|Ul|

)
in (4) for each

phase l and σn = 2σnc

√
Sd in (3);

(ii) LDP-DPE. Set σnl = O

(
B
√

d ln(1/δ)

ε

)
in (5) for each

phase l and σn = 2σnl

√
Sd/|Ul| in (3);

(iii) SDP-DPE. Set σns = O
(

B
√
d ln(d/δ)
ε|Ul|

)
in (6) for each

phase l and σn = 2σns

√
Sd in (3).

Remark 2 (Privacy “for-free”): Comparing the above results

with Theorem 1 for the non-private case, we observe that the

DP-DPE algorithm enables us to achieve privacy guarantees

“for free” in the central and shuffle DP models, in the

sense that the additional regret due to privacy protection is
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(a) (b) (c)

Fig. 2. Performance comparisons of different algorithms. The shaded area indicates the standard deviation. (a) Final cumulative regret vs. the privacy budget
ε. (b) Per-round regret vs. time with privacy parameters ε = 10 and δ = 0.25. (c) Per-round regret vs. time for two non-private algorithms. Here, we choose
the number of clients in DPE-FixedU to be U = 97 based on the calculation.

only a lower-order additive term. Essentially, this is because

the uncertainty introduced by privacy noise is dominated by

the client-related uncertainty, which can be captured by our

carefully designed confidence width Wl in Eq. (3) and our

choice of σn for different PRIVATIZERs.

Remark 3 (Regret-privacy tradeoff under the shuffle model):
Consider the regret due to privacy protection. From Theo-

rem 2, we can see that while the local DP model ensures a

stronger privacy guarantee compared to the central DP model,

it introduces an additional regret of O(T 1−α/2) compared to

O(T 1−α) in the central DP model. The shuffle DP model,

however, leads to a much better tradeoff between regret and

privacy, achieving nearly the same regret guarantee as the

central DP model, yet assuming a similar trust model to the

local DP model (i.e., without a trustworthy central server).

Remark 4 (Communication cost): Both CDP-DPE and LDP-

DPE consume the same amount of communication resources

as the non-private DP-DPE algorithm, measured by the num-

ber of real numbers [15]. In contrast, SDP-DPE relies only on

binary feedback from the clients, and thus, the communication

cost is measured by the number of bits. It is worth noting

that sending messages consisting of real numbers could be

difficult in practice on finite computers [38], [39], and hence

in this case, it is desirable to use SDP-DPE, which incurs a

communication cost of O(dT 3α/2) bits.

VI. NUMERICAL RESULTS

In this section, we conduct simulations to evaluate the per-

formance of DP-DPE. The detailed setting of our simulations

is as follows: d = 20, k = 103, σ = 0.1, |U| = 105, α = 0.8,

and T = 106. We perform 20 independent runs for each set

of simulations.

First, we study the regret performance of DP-DPE under

different DP models. Recall that we use CDP-DPE, LDP-

DPE, and SDP-DPE to denote DP-DPE in the central, local,

and shuffle DP models, respectively. In Fig. 2(a), we present

the cumulative regret at the end of T rounds for the three

algorithms under different values of privacy budget ε. We can

observe an obvious tradeoff between the privacy budget and

the regret performance for all the DP models: the cumulative

regret decreases as the privacy requirement becomes less

stringent (i.e., a larger ε). In addition, it also reflects the regret-

privacy tradeoff across different DP models. That is, with the

same privacy budget ε, while LDP-DPE has the largest regret

yet without requiring the clients to trust anyone else (neither

the server nor a third party), CDP-DPE achieves the smallest

regret but relies on the assumption that the clients trust the

server. Interestingly, SDP-DPE achieves a regret fairly close

to that of CDP-DPE, yet without the need to trust the server.

This is well aligned with our theoretical results that SDP-DPE

achieves a better regret-privacy tradeoff.

In addition, we are also interested in the regret loss due

to privacy protection and how efficiently DP-DPE performs

the global bandit learning. Fix the privacy parameters ε = 10
and δ = 0.25. In Fig. 2(b), we plot how the per-round

regret of the three algorithms (i.e., CDP-DPE, LDP-DPE,

and SDP-DPE) varies over time compared to the non-private

DP-DPE algorithm (i.e., DPE). We observe that LDP-DPE

incurs the largest regret while ensuring the strongest privacy

guarantee (i.e., (ε, δ)-LDP). On the other hand, the regret

performance of CDP-DPE and SDP-DPE is very close to that

of DPE (that does not ensure any privacy guarantee), under

the assumption of a trusted central server and a trusted third

party shuffler, respectively. This observation, along with our

theoretical results, shows that DP-DPE can indeed achieve

privacy “for-free” under the central and shuffle models.

Finally, we show that the exponentially-increasing client-

sampling plays a key role in balancing the regret and the

communication cost. To this end, we compare DPE (i.e., non-

private DP-DPE) with another non-private algorithm, called

DPE-FixedU in Fig. 2(c). DPE-FixedU is similar to DPE but

samples only a fixed number U of participating clients in

each phase (i.e., the participating clients are different, but

the number of clients in each phase is fixed, in contrast to

our increasing sampling schedule). For a fair comparison, we

choose the value of U such that the communication cost is the

same under DPE and DPE-FixedU, i.e., U = 

∑L

l=1 |Ul|·Nl∑L
l=1 Nl

�.

The results show that DPE learns much faster than DPE-

FixedU while incurring the same communication cost.
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VII. CONCLUSION

In this paper, we studied a new problem of global reward

maximization with partial distributed feedback. This problem

is motivated by several practical applications where the ex-

pected reward of an action represents the overall performance

over a large population. In such scenarios, it is often dif-

ficult, if not impossible, to collect exact reward feedback.

To that end, we proposed a differentially private distributed

linear bandits formulation, where the learning agent samples

clients and interacts with them by iteratively aggregating such

partial distributed feedback in a privacy-preserving fashion.

We then developed a unified algorithmic learning framework,

called DP-DPE, which can be naturally integrated with dif-

ferent DP models, and systematically established the regret-

communication-privacy tradeoff.

In this work, we assumed that actions are correlated through

a common linear function with parameter θ∗. One interesting

direction for future work is to extend linear functions to gen-

eral (possibly non-convex) functions via kernelized bandits.

In addition, our work also raises several interesting questions

that are worth investigating. For example, can we further im-

prove the communication efficiency by using advanced shuffle

protocols? Can we generalize our formulation to studying

reinforcement learning problems?
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