
On Dynamic Regret and Constraint Violations in
Constrained Online Convex Optimization

Rahul Vaze
School of Technology and Computer Science

Tata Institute of Fundamental Research
Mumbai, India, rahul.vaze@gmail.com

Abstract—A constrained version of the online convex optimiza-
tion (OCO) problem is considered. With slotted time, for each
slot, first an action is chosen. Subsequently the loss function
and the constraint violation penalty evaluated at the chosen
action point is revealed. For each slot, both the loss function
as well as the function defining the constraint set is assumed
to be smooth and strongly convex. In addition, once an action
is chosen, local information about a feasible set within a small
neighborhood of the current action is also revealed. An algorithm
is allowed to compute at most one gradient at its point of choice
given the described feedback to choose the next action. The
goal of an algorithm is to simultaneously minimize the dynamic
regret (loss incurred compared to the oracle’s loss) and the
constraint violation penalty (penalty accrued compared to the
oracle’s penalty). We propose an algorithm that follows projected
gradient descent over a suitably chosen set around the current
action. We show that both the dynamic regret and the constraint
violation is order-wise bounded by the path-length, the sum of
the distances between the consecutive optimal actions. Moreover,
we show that the derived bounds are the best possible.

I. INTRODUCTION

Online convex optimization (OCO) has been a very at-
tractive research problem for the last two decades, because
of its versatility in modelling rich optimization problems.
With OCO, at each time t, an online algorithm selects an
action at, after which the loss incurred ft(at) is revealed.
Knowing all ft’s, 1 ≤ t ≤ T ahead of time, an optimal
offline algorithm chooses action x? = arg minx

∑T
t=1 ft(x),

and the static regret of an online algorithm is defined as
Rs = maxft,t=1,...,T

∑T
t=1 ft(at) −

∑T
t=1 ft(x

?), i.e., an
adversary can choose the functions ft. The name static comes
from the fact that the optimal offline algorithm is constrained
to use a single action.

Large body of work is known for static regret [1]–[5], where
if the functions ft are convex, the optimal regret is Θ(

√
T),

while if functions ft are strongly convex then algorithms with
regret at most O(log T) are known. When functions ft are
chosen by an adversary, but the arrival order is randomized,
algorithms with better guarantees are also known [3].

Natural generalization of the static regret is the dynamic
regret [6], [7], where the regret for a comparator sequence
u = (u1, . . . , uT) is defined as

Rd(u) = max
ft,t=1,...,T

T∑
t=1

ft(at)−
T∑
t=1

ft(ut). (1)

For this general dynamic regret definition, sub-linear (in T)
regret is not always possible, unless some structure is enforced

on the comparator sequence. For example, for a sequence
u, defining Vu =

∑T
t=2 ||ut − ut−1||, the online gradient

descent (OGD) algorithm was shown to achieve dynamic
regret Rd(u) = O(

√
T (1 + Vu)) [6], which has been im-

proved to O(
√
T (1 + Vu)) in [8], matching the lower bound

Ω(
√
T (1 + Vu)) [8].

A special case of (1) that is popularly studied [9]–[16]
is by restricting u = x? = (x?1, . . . , x

?
T), where x?t =

arg minx ft(x), the sequence of local optimizers. Moreover,
in this case, once the action at is chosen, the only information
available is ∇ft(at). For this case, the best known bound
on the dynamic regret has been shown to be O(Vx?) [12]
using the online projected gradient descent (OPGD) algorithm,
when functions ft are strongly convex, and smooth. Under the
special case that the minimizers x?t lie in the interior of the
feasible set, O(Vx?) regret can be achieved when functions
ft are just convex, and smooth [11]. For strongly convex and
smooth functions, defining Sx? =

∑T
t=2 ||x?t − x?t−1||2, [13]

showed that O(min{Vx? , Sx?}) is also achievable as long as
at each time t, gradient of ft at as many points required
is available. Most recently, [16] improved this guarantee to
O(min{Vx? , Sx? , FV }), where

FV =

T∑
t=2

sup
x∈χ
||ft(x)− ft−1(x)|| (2)

is the maximum function variation over the feasible set χ in
successive time slots.

In this paper, we focus on the constrained version of the
OCO that has been considered more recently in [17]–[19],
where at each time t, the objective is to minimize the loss
function ft subject to a constraint gt(x) ≤ 0. For applica-
tions of constrained OCO, we refer to prior work [17]–[19].
Similar to the unconstrained OCO, even with constraints, the
typical information structure is that information about ft, gt is
revealed after the action at is chosen. The optimizer at time t is
x?t = arg minx∈χ:gt(x)≤0 ft(x), and the objective is to choose
actions to minimize the dynamic regret (1) with u = x?, where
the constraint is already absorbed in the definition of x?t , and
the maximization in (1) is with respect to both ft and gt. In
addition to the dynamic regret, in this constrained OCO, an
additional metric of interest is the constraint violation penalty,

ISBN 978-3-903176-49-2 © 2022 IFIP 9

which can be defined in many different ways. For example,

Pg(x
?) = max

ft,gtt=1,...,T

T∑
t=1

||gt(x?t)− gt(at)||,

which measures the gap between the function gt evaluated at
the optimal point and the chosen action or

P ′g(x
?) = max

ft,gtt=1,...,T

T∑
t=1

gt(at),

which just counts the overall constraint violation. We use
Pg(x

?) rather than P ′g(x
?) since it is a stronger measure as

Pg(x
?) ≥ P ′g(x?) on account of gt(x?t) ≤ 0.

In prior work, starting from [17], where functions ft, gt are
assumed to be convex, Lipschitz and smooth, an algorithm
has been proposed that achieves Rd(x?) ≤ O(Vx?

√
T) while

P ′g(x
?) = O(T 1/2), which was improved in [18], to get

Rd(x
?) ≤ O(

√
TVx?) while P ′g(x

?) = O(V
1/4
x? T 3/4), and

most recently in [19], an algorithm based on the drift plus
penalty method has regret Rd(x?) ≤ O(max{

√
TVx? , Vg})

while P ′g(x
?) = O(

√
T , Vg), or Rd(x?) ≤ O(

√
TVx?) while

P ′g(x
?) = O(T 3/4, Vg), where Vg is as defined in (2) with

f = g.
However, notably [19] considers the full information setting,

where once at is chosen, full functions ft and gt are revealed,
and hence x?t can be computed. Clearly, obtaining this infor-
mation is highly imposing. Moreover, [19] also needs to know
the diameter D of the feasible set. In comparison, the result of
[18] requires the knowledge of Vx? instead of individual x?t ,
which is relatively less demanding, however, still very difficult
to obtain in practice, as well as the knowledge of T and D.

In this paper, we consider an alternate information structure
that is less imposing than considered in [18], [19]. The full
feasible set at time t is χt = {x ∈ χ : gt(x) < 0}. We
assume that once the current action at is chosen, for a fixed
constant dist > 0 that is independent of T , a subset of χt,
set χt(at) = {x : gt(x) ≤ 0} ∩ B(at,dist) is made available,
where B(x, r) is a ball with radius r centered at x. Set χt(at)
captures the feasible set in the neighborhood of the current
action. With full information, e.g., in [19], dist =∞. We will
show that our results hold for any dist > 0.

With this new information structure, we consider the prob-
lem of simultaneously minimizing the dynamic regret and
constraint violation penalty when ft, gt are strongly convex,
Lipschitz and smooth. Generalizing the results when ft, gt are
only convex, is part of ongoing work.

Towards this end, we propose an algorithm that uses the
projected gradient descent (PGD) algorithm [12] as a black
box, and depending on the chosen action at being feasible
gt(at) < 0, on the boundary gt(at) = 0 or infeasible gt(at) >
0, executes PGD over a suitably chosen subset that may or
may not be contained in the feasible region of gt. The main
concept that the algorithm relies on is the property of the PGD
algorithm [12] when executed over a convex set I and starting
point at, is that the next action at+1 satisfies

||x?I − at+1|| ≤ c||x?I − at||, (3)

for a constant c < 1, where x?I = minx∈I f(x) when f is
strongly convex and smooth.

If the whole feasible region χt = {x ∈ χ : gt(x) < 0} was
known, then using I = χt, (3) will imply that the algorithm
is making ‘quick’ progress towards the optimal point x?t .
Unfortunately only local information about the feasible region
χt is known. In particular, only χt(at) = χt ∩ B(at,dist) is
available for a constant dist. Thus, we proceed in two steps.
We identify a small region It at time t around at that is
contained in χt and use (3) to claim that we are making
progress towards the optimal point in this subset It (which
could be far away from the global optimal). Next, exploiting
the strong convexity and the smoothness of the functions, we
extend the same claim to the optimal point x?t which need not
be in It.

Since we have only local information about gt around at, it
can happen that the size of It is arbitrarily small or It is empty
in case gt(at) > 0 (current choice is infeasible). For both these
cases, we show that the algorithm makes progress of a finite
distance towards the optimal point x?t in χt, and establish a
relation similar to (3). Once we have (3), a simple application
of the triangle inequality and the Lipschitz condition, implies
the result.

Our contributions.
• We show that under the defined information structure, the

proposed algorithm simultaneously achieves Rd(x?) ≤
O(Vx?) and P ′g(x

?) ≤ Pg(x?) ≤ O(Vx?) for any dist >
0. Importantly, no information about x?t , Vx? , T or D is
needed.

• As a function of information variable dist > 0, both
Rd(x

?) and Pg(x?) scale inverse polynomially, which is
natural to expect since for any algorithm as information
availability is decreased, (smaller value of dist), the regret
should worsen. We do not know at this point if the
algorithm achieves the best scaling in terms of dist.

• In Remark 3, we also argue that our result is the best one
can hope for, given the minimal information structure.

Notation: For the rest of the paper, we follow the notation
described as follows. For a set I ∈ Rn, its interior is defined
as int(I), while its boundary as boundary(I). B(x, r) is the
ball of radius r centered at x. For a discrete set of points
S, convex hull(x ∈ S) represents the convex hull of points
x ∈ S. Proj(x, S) is the projection of point x on set S, i.e.
Proj(x, S) = arg miny∈S ||x− y||.

II. SYSTEM MODEL

Time is slotted with total time horizon T , and time slots
are indexed as t = 1, . . . , T . Let χ ⊂ Rn be a compact and
convex set. For each t, two functions ft and gt are of interest,
that are defined over χ. The feasible set at time t is defined as
χt = {x ∈ χ : gt(x) ≤ 0}. Let the optimizer for ft over the
constraint set gt(x) ≤ 0 be x?t , i.e., x?t = arg min{x∈χt} ft(x).

We make the following standard assumptions about ft
and gt. Functions ft and gt are assumed to be Lipschitz
with Lipschitz constants Lf and Lg , respectively. Moreover,
functions ft and gt are assumed to be smooth, i.e., the

10

gradients ∇ft and ∇gt are assumed to be Lipschitz with
Lipschitz constants Lf and Lg , respectively. Moreover, for all
1 ≤ t ≤ T, supx∈χ ||∇ft(x)|| ≤ G and supx∈χ ||∇gt(x)|| ≤
G. 1 Compared to prior work [18], [19] that assume that ft and
gt are convex, we assume that ft and gt are strongly convex
with strong convexity parameters νf , νg , respectively. 2

At each time t, an action at is chosen by an algorithm, for
which the cost is ft(at). The goal of the algorithm to choose at
such that the cost ft(at) is as small as possible while making
sure that at ∈ χt. However, the information available with the
algorithm to choose at is limited and described as follows.

Information structure: Similar to [17]–[19], once the action
at ∈ Rn is chosen at time t, gt(at) is revealed. Moreover,
the algorithm can also access ∇ft(x),∇gt(x) for at most
one point x of its choice. As described in the Introduction,
additionally, in this paper, we assume that, set χt(at) =
χt ∩ B(at,dist) is also revealed at time t for a fixed constant
dist > 0, after at has been chosen. Note that dist can be
arbitrarily small but is a constant that is fixed throughout the
time horizon and does not depend on t or T . Compared to prior
work, [17]–[19], acquiring this information is less imposing
and does not involve finding any x?t . The set χt(at) maps the
local behaviour of gt in a very small neighborhood of at. Note
that convexity implies that χt(at) is convex for any at.

Remark 1. For the considered problem to be meaningful, once
at is chosen, gt(at) has to be revealed, as already assumed
in prior work [17]–[19]. In this work, in addition, we are
assuming that χt(at) is also known which in turn requires
that gt(x) for x ∈ B(at,dist) is also known. When dist→ 0,
this new information is equivalent to just acquiring gt(at).
Since dist is allowed to be any arbitrarily small constant,
the extra information assumed is very minimal and can be
obtained similar to obtaining gt(at) (necessary), and can be
done efficiently by exploiting the convexity of gt.

The performance metric for an online algorithm that chooses
actions at, t = 1, . . . , T is defined as the dynamic regret

Rd(x
?) = max

ft,gt

T∑
t=1

||ft(x?t)− ft(at)||,

and penalty for constraint violation as

Pg(x
?) = max

ft,gt

T∑
t=1

||gt(x?t)− gt(at)||,

where at’s are the causal actions of the algorithm that can
depend on the information acquired till time slot t − 1.
Moreover, ft, gt can be chosen by an adversary (can be
adaptive, i.e., depend on previous actions aτ , τ ≤ t − 1) and
are not required to follow any structure, other than what has
been described earlier.

1For notational simplicity we are assuming the same constant G, which
can be generalized without any change in following analysis.

2We are assuming that all ft’s and gt’s have the same smoothness parameter
Lf and Lg only for notational simplicity. All results will go through with
different parameters as well.

Note that Pg is stronger than the penalty consid-
ered in earlier work [19] that is defined as P ′g(x

?) =

maxft,gt
∑T
t=1 gt(at), in two aspects. P ′g(x

?) can be negative,
while Pg(x?) is always positive, and Pg(x?) ≥ P ′g(x?) since
gt(x

?
t) can be negative.

III. ALGORITHM

We present the proposed algorithm as a pseudo code in
Algorithm 1, and describe it as follows. Let at time t,

x?t = arg min
x∈χt

ft(x).

Let the action chosen at time t be at. We want to choose at+1

in such a way that

||x?t − at+1||2 < c||x?t − at||2, (4)

for some constant 0 < c < 1 that does not depend on t. Recall
that while choosing at+1, no information about ft+1, gt+1 is
available. Thus, relation (4) is useful in the sense that it ensures
that at+1 is closer to x?t compared to at, in hope that if x?t
and x?t+1 are close, then at+1 will be close to x?t+1 as well.

The main idea of the algorithm is to accomplish this goal
(showing that (4) holds) depending on three possible cases,
namely : i) gt(at) < 0, i.e. at is strictly feasible for gt, ii)
gt(at) = 0, i.e. at is on the boundary of the feasible region for
gt, and finally, iii) gt(at) > 0, i.e. at is strictly infeasible for
gt. Just to be clear, all the described actions in the following
are taken after at is chosen and the information has been
revealed about ∇ft(x), gt(at), ∇gt(x) and χt(at) for some
one point x.

In case i) gt(at) < 0, and we know that at is strictly feasible
and potentially there is room to move to a point closer to
x?t , the optimizer of ft. Using the Lipschitz property of gt’s,
this implies that each point in the ball B(at, || gt(at)2Lg

||) is also

feasible. Thus, Algorithm 1 chooses the set B(at, || gt(at)2Lg
||) as

the feasible region to execute the PGD.
In case, the radius || gt(at)2Lg

|| of the identified feasible region
is smaller than the fixed constant dist, then using the extra
local information χt(at) as described earlier, the feasible
region is chosen as χt(at). A local gradient descent algorithm
over the chosen feasible region using subroutine OPTIMIZE
Algorithm 2 (online gradient descent) is used to find the next
action at+1.

In case ii) gt(at) = 0, at is on the boundary of the feasible
region. In this case, we use the local information about gt
around at and choose χt(at) as the feasible region. Next, a
local gradient descent is executed using subroutine OPTIMIZE
Algorithm 2 in the identified feasible region to find the next
action.

Finally in case iii) gt(at) > 0 at is strictly infeasible. Since
the current choice of at is infeasible for gt, and gt(x?t) ≤ 0, it
is sufficient to move towards the region for which gt(x) ≤ 0
to ensure (4) while staying infeasible. In fact, if we ‘blindly’
move into the feasible region, we cannot guarantee that at+1 is
closer to x?t than at, for example if gt(x?t) = 0. However, using
the Lipschitz condition, we know that each point in the ball

11

B(at, || gt(at)2Lg
||) is infeasible given that at is infeasible. Thus,

in this case as long as || gt(at)2Lg
|| ≥ ||∇gt(at) 1

Lg
|| we move a

distance of ||∇gt(at) 1
Lg
|| from at in the direction of negative

gradient of gt at at. Thus the new point at+1 is still infeasible,
but as we show in Lemma 7, at+1 is closer to x?t than at. In
case || gt(at)Lg

|| < ||∇gt(at) 1
Lg
||, the algorithm finds a feasible

region similar to case i) using the local information χt(at) and
follow a local gradient descent in this feasible region using
subroutine OPTIMIZE Algorithm 2 to find the next action. In
case, χt(at) turns out to be an empty set, we proceed similar
to the case when || gt(at)Lg

|| ≥ ||∇gt(at) 1
Lg
||, since the whole

of B(at,dist) is infeasible.

Algorithm 1 Algorithm

1: Input Lf , Lg,Lg,dist > 0, feasible set χ ⊂ Rn
2: Initialize t = 0
3: Choose action a1 arbitrarily belonging to χ
4: while t ≤ T − 1 do
5: t = t+ 1
6: if gt(at) < 0 then %previous action at was strictly

feasible for gt
7: δt = || gt(at)2Lg

||
8: if δt ≥ dist then
9: It = B(at, δt)

10: at+1 = OPTIMIZE(ft, It,
1

2Lf
, at)

11: else
12: Find the feasible region χt(at) = χt ∩
B(at,dist)

13: It = χt(at)
14: at+1 = OPTIMIZE(ft, It,

1
2Lf

, at)
15: end if
16: else if gt(at) = 0 then %at is on the boundary of the

feasible region
17: Find the feasible region χt(at) = χt ∩ B(at,dist)
18: It = χt(at)
19: at+1 = OPTIMIZE(ft, It,

1
2Lf

, at)

20: else if gt(at) > 0 then %at is infeasible
21: if δt ≥ ||∇gt(at) 1

Lg
|| then

22: at+1 = at + α(ât − at), where -
23: ât = at −∇gt(at) 1

Lg
,

24: else
25: Find the feasible region χt(at) = χt ∩
B(at,dist)

26: if χt(at) 6= ∅ then
27: It = χt(at)
28: a′t = Proj(at, It)
29: at+1 = OPTIMIZE(ft, It,

1
2Lf

, a′t)
30: else
31: at+1 = at + α(ât − at), where -
32: ât = at −∇gt(at) dist

||∇gt(at)||
33: end if
34: end if
35: end if
36: end while

Theorem 1. When both ft, gt are strongly convex, Lipschitz,
and smooth for all t ≤ T and 1 ≤ t ≤ T, supx∈χ∇ft(x) ≤
G and supx∈χ∇gt(x) ≤ G, with information structure as
defined, for Algorithm 1

||x?t − at+1|| < c||x?t − at||,

for some constant 0 < c < 1 that does not depend on t. In
particular,

c = max {c2, c3, c4, c5} < 1,

where c2 =
(

1− ανf
2Lf

)1/2
, c3 = D+αdist

D+dist and c4 = (1 −

ανg/Lg)
1/2, c5 =

(
1− α νg

max{G/dist,Lg}

)1/2
, and 0 < α < 1

is a constant to be chosen by subroutine OPTIMIZE, D is the
diameter of the feasible region and 0 < dist is a constant to
be chosen by Algorithm 1. Note that νg ≤ Lg and νf ≤ Lf
always, thus 0 < c < 1.

Algorithm 2 OPTIMIZE

1: Input(h, I, µ, xt)
2: Constant 0 < α < 1, xt+1 = xt + α(x̂t − xt), where

x̂t = Proj(xt −
1

µ
∇h(xt), I).

Using Theorem 1, we get the main result of the paper as
follows.

Theorem 2. When both ft, gt are strongly convex, Lipschitz,
and smooth (∇ft,∇gt are Lipschitz) for all t ≤ T and
1 ≤ t ≤ T, supx∈χ∇ft(x) ≤ G and supx∈χ∇gt(x) ≤ G,
with information structure as defined, with Algorithm 1, si-
multaneously,

Rd(x
?) = O(Vx?), and, Pg(x?) = O(Vx?).

Remark 2. Both the regret and constraint violation penalty
bounds derived in Theorem 2 are inverse polynomially pro-
portional to the chosen constant dist. In particular, they grow

as 1
1−c5 where c5 =

(
1− α νg

max{G/dist,Lg}

)1/2
. It is natural

to expect that regret grows with decreasing dist since for
any algorithm as information availability is decreased, (in
this case smaller value of dist), the regret should worsen.
However, dist can be any constant and not necessarily has
to be << 1, and there is a tradeoff between regret and the
amount of available local feasibility information B(at, dist).

Remark 3. For the unconstrained OCO, when at each step
gradient information is available only at a single point, the
best known algorithm when each ft is smooth, and strongly
convex, has Rd(x?) ≤ O(Vx?) [12]. Note that Vx? in the
constrained and the unconstrained OCO problem are different,
therefore directly we cannot compare our result with that of
[12]. However, since functions gt and ft are allowed to be
arbitrary with the constrained OCO, gt = ft for each t is
a valid choice for gt and ft. With gt = ft, the constrained
OCO collapses to the unconstrained OCO, for which the best

12

known result on regret is O(Vx?), making the derived result
(which also needs gradient availability at only one point) the
best possible.

Proof of Theorem 2. Using the triangle inequality, we get that∑T
t=1 ||x?t − at||

≤ ||x?1 − a1||+
T∑
t=2

||x?t−1 − at||+
T∑
t=2

||x?t − x?t−1||,

(a)

≤ ||x?1 − a1||+ c

T∑
t=2

||x?t−1 − at−1||+
T∑
t=2

||x?t − x?t−1||,

(b)

≤ ||x?1 − a1|| − c||x?T − aT ||+ c

T∑
t=1

||x?t − at||

+

T∑
t=2

||x?t − x?t−1||, (5)

where (a) is obtained by using Theorem 1, while to obtain (b)
we added and subtracted c||aT − x?T || and rearranged terms.

Regrouping terms in (5), we get
∑T
t=1 ||x?t − at||

≤ ||x
?
1 − a1|| − c||x?T − aT ||

1− c
+

1

1− c

T∑
t=2

||x?t − x?t−1||. (6)

Thus, using the Lipschitz property of ft and gt, (6) implies
that Rd(x?) =

∑T
t=1 ||ft(x?t)− ft(at)||

≤ Lf
1− c

T∑
t=2

||x?t − x?t−1||+
D

1− c
= O(Vx?)

and Pg(x?) =
∑T
t=1 ||gt(x?t)− gt(at)||

≤ Lg
1− c

T∑
t=2

||x?t − x?t−1||+
D

1− c
= O(Vx?),

where Vx? =
∑T
t=2 ||x?t − x?t−1||, the accumulated variation

of the per-step minimizers. 2

Next, we first briefly discuss the basic difference between
the proposed algorithm and the relevant prior work. In [18], a
primal dual algorithm has been proposed using the Lagrangian

L(x, λ) = ft(x) + λT gt(x) +
η

||λ||2
,

where at is updated using the gradient descent over the
Lagrangian to move towards the optimizer of ft with penalty
function λ as

at+1 = at − η∇xL(x, λ),

while gradient ascent is used to increase the penalty in case
of constraint violation as λt+1 = λt − η∇λL(x, λ).

Similarly, in [19], a primal dual algorithm is proposed where
the increase in λ is derived by minimizing the expected ‘drift’
of the constraint violation. In particular, it is given by

λt+1 = max{λt + ηtgt(at),−ηtgt(at)},

while

at+1 = ∇fTt (at)(x−at)+µt||x−at||2+[λt+ηtgt(at)]
T ηtgt(at).

Both these algorithms [18], [19] are long-term in the sense
that they want to remain close to x?t while minimizing the
constraint violation penalty P ′g(x

?) in the long term, i.e.,
they nudge the updates ‘slowly’ in the direction of constraint
satisfaction to avoid large accumulated constraint violation
penalty. In contrast, the proposed algorithm in this paper is
local, and is trying to go close to the optimal point in every
single step as shown in Lemma 5, 6 and 7. Thus, conceptually
our algorithm is entirely different than [18], [19].

In terms of restrictions, over and above [18], [19], we
assume that ft and gt are strongly convex, however in terms of
information, we require far less. In particular, at time t, after at
has been chosen, Algorithm 1 requires only gt(at), χt(at) and
∇ft(x),∇gt(x), at x = at or some x ∈ χt(at). In contrast,
[19] assumes that once at is chosen, full ft, gt are revealed,
making x?t known. Moreover, it requires the knowledge of the
diameter D. In [18], knowledge of Vx? , D, T is needed over
and above ∇ft(at),∇gt(at), gt(at).

In the rest of the paper, we prove Theorem 1, for which
we need the following Lemma regarding the subroutine OP-
TIMIZE.

Lemma 3. [12] If function h is νh-strongly convex, and ∇h
is Lipschitz with parameter Lh, and xI? = arg minx∈I h(x),
then if parameter µ ≥ Lh, the output xt+1 from subroutine
OPTIMIZE satisfies

||xI? − xt+1|| ≤ c||xI? − xt||, (7)

for c =
(

1− α νhµ
)1/2

< 1.

Corollary 4. For subroutine OPTIMIZE, let x̃ ∈ I be such
that h(x̃) < h(x̂t), then with parameter µ ≥ Lh, the output
xt+1 from subroutine OPTIMIZE satisfies

||x̃− xt+1|| ≤ c||x̃− xt||, (8)

for c =
(

1− α νhµ
)1/2

< 1 as long as function h is νh-strongly
convex, and ∇h is Lipschitz with parameter Lh.

Proof. The only place where optimality of xI? is used in the
proof of Lemma 3 in [12] is to show that h(x̂t) > h(xI?).
Thus, the proof goes through as it is, even with this weaker
condition that h(x̃) < h(x̂t). For completeness, the full proof
is given in Section V. Another way to see the result is that
by pruning I to get I ′ such that x̃ = arg minI′ h(x), while
keeping h a strongly convex function over I ′. Thus, the result
follows directly from Lemma 3. 2

For ease of exposition, we break the proof of Theorem 1
into three parts corresponding to gt(at) < 0, gt(at) = 0, and
gt(at) > 0 in the next three lemmas.

Lemma 5. When both ft, gt are strongly convex and smooth
for all t ≤ T with information structure as defined, with
Algorithm 1, for the case when gt(at) < 0

||x?t − at+1|| < c1||x?t − at||,

13

where 0 < c1 = max{c2, c3} < 1 for c2 =(
1− ανf

2Lf

)1/2
, c3 = D+αdist

D+dist < 1 that does not depend on
t. Since Lf ≥ νf (always), c2 < 1.

Proof. Recall that δt = || gt(at)2Lg
||.

Case a) δt ≥ dist. In this case, It = B(at, δt) and It ⊆ χt
using the Lipschitz condition on gt.

Subroutine OPTIMIZE is executed with set It and starting
point at. The output of Subroutine OPTIMIZE is

at+1 = at + α(ât − at), (9)

ât = Proj(at −∇ft(at)
1

2Lf
, It).

Subcase a-i) ât ∈ convexhull(at, x?t) (just the line segment
connecting at and x?t). If x?t ∈ It, then directly from Lemma
3, we get

||at+1 − x?t || ≤ c2||at − x?t ||, (10)

where c2 =
(

1− α νf
2Lf

)1/2
as we have chosen µ = 2Lf .

Otherwise, if x?t /∈ It, then ât ∈ boundary(It) since ft is
strongly convex, ât ∈ convexhull(at, x?t) and x?t /∈ It. Thus,
the distance between ât and at is at least dist since δt ≥ dist,
and the distance between at+1 and at is at least αdist, while
the distance between at+1 and x?t is at most D (the diameter).
Thus, we get that

||at+1 − x?t || ≤ c3||at − x?t ||, (11)

where c3 = D+αdist
D+dist .

Subcase a-ii) ât /∈ convexhull(at, x?t)
If x?t ∈ It, then directly from Lemma 3, we get that

||at+1 − x?t || ≤ c2||at − x?t ||, (12)

as we have chosen µ = 2Lf .
Thus, consider the case when x?t /∈ It. Let I ′t =

convex hull(at, ât, x?t) where I ′t ⊆ χt, i.e. full set I ′t is
feasible, since gt is convex.

Now, consider that if Subroutine OPTIMIZE is executed with
set I ′t and the same starting point at, the output of Subroutine
OPTIMIZE will be the same as (9), since

Proj(at −∇ft(at)
1

2Lf
, It) = Proj(at −∇ft(at)

1

2Lf
, I ′t),

irrespective of whether ãt = at − ∇ft(at) 1
2Lf

belongs to It
or not. However, since x?t ∈ I ′t, we get from Lemma 3 that

||at+1 − x?t || ≤ c2||at − x?t ||. (13)

An illustration of the basic idea of the proof when ãt /∈ It is
presented in Fig. 1.

Case b) δt < dist Except for the choice of set It which is
now χt(at) everything else is same as in case a). Moreover,
since χt(at) ∈ χt is feasible by definition, the same arguments
as detailed in case a) apply, and we either get (11) or (13).

The two distinct choices of It are essentially made to speed
up the algorithm. Always choosing It = χt(at) is sufficient
for analysis.

at
ât = Proj(ãt, It)

ãt = at −∇ft(at) 1
2Lf

xIt?t
It I ′t

x?t

Fig. 1: Illustration for the proof of Lemma 5 case a-ii), where
the blue dashed triangle is I ′t = convex hull(at, ât, x?t) ⊆ χt.

2

At this point it is difficult to appreciate the power of Lemma
5. What Lemma 5 saying is that irrespective of the size (how
small) of set It chosen by the algorithm, as well as independent
of the distance of x?t (however far) from It, we get a relation
(13), that states that the distance between the optimal point and
the updated point at+1 contracts by a fixed amount compared
to the original point at. The main tool that we are exploiting
to prove Lemma 5 is both the strong convexity as well as the
smoothness (gradient being Lipschitz) of the function ft, and
in some measure of gt. To gather more intuition we consider
a one-dimensional case in Figs. 2 and 3 to show how strong
convexity together with smoothness indicates that contraction
of distance from the optimal holds independent of the distance
between the present point at, the updated point at+1, and the
optimal point x?t .

In Fig. 2, for function f(x) which is assumed to be
strongly convex and smooth, we consider that the feasible
set is χ1 = (−∞, x2) and x? = x1, while in Fig. 3 it is
χ2 = (−∞, x2) and x? = x2. Clearly, by construction, at+1

remains the same when OPTIMIZE is executed with starting
point at, input function h = f with I = χ1 or χ2 and an
identical choice of µ. Thus, from Lemma 3, we get that

||at+1 − x1|| ≤ c||at − x1||. (14)

as well as
||at+1 − x2|| ≤ c||at − x2||. (15)

for the same c < 1. Clearly, as x2 is moved sufficiently far
away to the right, one does not expect (15) to hold together
with (14). However, since f is both strongly convex and
smooth, there is a limit on how far x2 can be compared to
x1, before f starts to increase. This is the key reason behind
both (14) and (15) to be true. Essentially, when f is both
strongly convex and smooth, it is ‘trapped’ between a lower
and an upper envelope.

In general, coming back to Lemma 5, because of the strong
convexity and smoothness, the function ft cannot continue to
decrease beyond a point, and the estimate one gets for the
contraction in (13) is an underestimate when x?t is close to at
and at+1, while becomes tighter as x?t is drawn away from at
and at+1.

14

at at+1 x1

f(x)

Fig. 2: χ1 = (−∞, x1)

x1 x2

f(x)

at at+1

Fig. 3: χ2 = (−∞, x2)

Lemma 6. When both ft, gt are strongly convex and smooth
for all t ≤ T with information structure as defined, with
Algorithm 1, for the case when gt(at) = 0

||x?t − at+1|| < c2||x?t − at||.

Proof. When gt(at) = 0, at is on the boundary, and the chosen
set is It = χt(at) which by definition is feasible. Thus, the
analysis is identical to that of Lemma 5, and we get the same
relation as in Lemma 5 as required. 2

Next, we consider the final case when g(at) > 0, which is
the most involved of the lot.

Lemma 7. When both ft, gt are strongly convex and smooth
for all t ≤ T , 1 ≤ t ≤ T, supx∈χ∇ft(x) ≤ G and
supx∈χ∇gt(x) ≤ G, with information structure as defined,
with Algorithm 1, for the case when gt(at) > 0

||x?t − at+1|| < c6||x?t − at||,

where c6 = max{c2, c3, c4, c5} < 1 for c4 = (1 −
ανg/Lg)

1/2, c5 =
(

1− α νg
max{G/dist,Lg}

)1/2
.

For proving Lemma 7, we will use the strong convexity of
gt as well as ft.

Proof. Case a) δt = || gt(at)2Lg
|| ≥ ||∇gt(at) 1

Lg
||, in which case

the update is
at+1 = at + α(ât − at), (16)

where
ât = at −∇gt(at)

1

Lg
.

Since δt = || gt(at)2Lg
|| ≥ ||∇gt(at) 1

Lg
||, the Lipschitz condi-

tion on gt implies that B(at, δt) ∩ χt = ∅. Thus, gt(ât) > 0,
i.e. ât is still infeasible for gt, and we want to show that

||x?t − at+1||2 ≤ c||x?t − at||2, (17)

for some fixed constant c < 1 that does not depend on t.
Towards this end, we will exploit the strong convexity of gt.

We will connect the update (16) with an update Sub-
routine OPTIMIZE will make on a suitable initial point
xt, function h, step size µ, and a feasible set I . Recall
that x?t = arg minx∈χt

ft(x). Consider a new set I ′t =
convex hull(at, ât, x?t), where at and ât are as defined in
(16). As discussed above, both gt(at) > 0 and gt(ât) >
0. Important to note that x?t is not necessarily equal to
arg minx∈I′t gt(x). However, gt(x?t) < gt(ât) < gt(at) since
gt(x

?
t) ≤ 0, while gt(at) > 0 and gt(ât) > 0, and

gt(ât) < gt(at) since ∇gt(at) is a descent direction for gt.
Consider the update xt+1 which Subroutine OPTIMIZE will

make if the initial/starting point xt = at, the set I = I ′t with
step size µ = Lg and h = gt. Since ât ∈ I ′t, ât = Proj(ât, I ′t).
Hence from Subroutine OPTIMIZE we get that

x̂t = Proj(at−∇gt(at)
1

Lg
, I ′t) = at−∇gt(at)

1

Lg
= ât, (18)

xt+1 = at + α(x̂t − at), (19)

coinciding with (16). Thus, the update of the algorithm (16)
is equivalent to executing Subroutine OPTIMIZE with starting
point xt = at, set I = I ′t with step size µ = Lg , for function
h = gt. So we would like to use Lemma 3. However, since
x?t need not be arg minx∈I′t gt(x), we cannot use Lemma 3
directly. Instead we exploit the fact that gt(x?t) < gt(ât) <
gt(at). Hence Corollary 4 becomes applicable, and we get
that

||at+1 − x?t || ≤ c4||at − x?t ||, (20)

with c4 = (1 − ανg/Lg)1/2 since we have chosen µ = Lg ,
inverse of the step size in Subroutine OPTIMIZE.

Case b) δt = || gt(at)2Lg
|| < ||∇gt(at) 1

Lg
||

In this case, we have no sufficiently sized estimate of the
infeasible region around at. Thus, we will exploit the strong
convexity and smoothness of ft, as follows.

b-i) Let χt(at) 6= ∅. In this case, It = χt(at), a′t =
Proj(at, It) and at+1 = OPTIMIZE(ft, It,

1
2Lf

, a′t).
Subcase b-i-i) Let It = χt(at) ⊆ int(B(at,dist)) which im-

plies that x?t ∈ It. Recall that by definition, a′t = Proj(at, It).
Thus, with x?t ∈ It, we get directly from Lemma 3 that

||at+1 − x?t || ≤ c2||a′t − x?t || ≤ c2||at − x?t ||,

where the last inequality follows since at /∈ It.
Subcase b-i-ii) Let It = χt(at) 6⊂ B(at,dist). In this sub-

case, we get that gt(a′t) = 0 and is identical to the case
considered in Lemma 6, except the starting point is a′t instead
of at. Thus, similar to (13), we get the first inequality

||x?t−at+1|| ≤ max{c2, c3}||x?t−a′t|| ≤ max{c2, c3}||x?t−at||,
(21)

15

where the second inequality follows since at /∈ It.
Case b-ii) Let χt(at) = ∅. In this case, the update is

at+1 = at + α(ât − at), (22)

where ât = at − ∇gt(at) dist
||∇gt(at)|| . Since χt(at) =

B(at,dist) ∩ χt is empty, gt(ât) > 0. Thus, we can exploit
the strong convexity and smoothness of gt as in case a).

Given the assumption that ∇gt(at) ≤ G, we get that
(22) is equivalent to executing OPTIMIZE with set It =
convex hull(at, ât, x?t), h = gt, and µ = max{G/dist, Lg}.
Thus, similar to (20), since gt(x?t) < gt(ât) < gt(at), we get

||at+1 − x?t || ≤ c5||at − x?t ||, (23)

where c5 =
(

1− α νg
max{G/dist,Lg}

)1/2
.

IV. CONCLUSIONS

In this paper, we considered a constrained OCO problem,
and provided the best (simultaneously) possible bounds for the
regret and the constraint violation penalty, when both the loss
function and the function defining the constraint are strongly
convex and smooth. Compared to prior work, we proposed
an algorithm that has better regret and penalty bounds while
using significantly less information requirement about the loss
function and the function defining the constraints. Extending
these results when the respective functions are just convex and
not strongly convex, remains open.

2

REFERENCES

[1] N. Srebro, K. Sridharan, and A. Tewari, “Smoothness, low noise and
fast rates,” Advances in neural information processing systems, vol. 23,
2010.

[2] P. Bartlett, E. Hazan, and A. Rakhlin, “Adaptive online gradient descent,”
in Advances in Neural Information Processing Systems 20: Proceedings
of the 2007 Conference. Neural Information Processing Systems (NIPS)
Foundation, 2009, pp. 65–72.

[3] D. Garber, G. Korcia, and K. Levy, “Online convex optimization in the
random order model,” in International Conference on Machine Learning.
PMLR, 2020, pp. 3387–3396.

[4] E. Hazan, “Introduction to online convex optimization,” arXiv preprint
arXiv:1909.05207, 2019.

[5] S. Shalev-Shwartz et al., “Online learning and online convex optimiza-
tion,” Foundations and trends in Machine Learning, vol. 4, no. 2, pp.
107–194, 2011.

[6] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proceedings of the 20th international conference
on machine learning (icml-03), 2003, pp. 928–936.

[7] E. Hall and R. Willett, “Dynamical models and tracking regret in
online convex programming,” in International Conference on Machine
Learning. PMLR, 2013, pp. 579–587.

[8] L. Zhang, S. Lu, and Z.-H. Zhou, “Adaptive online learning in dynamic
environments,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, 2018, pp. 1330–1340.

[9] O. Besbes, Y. Gur, and A. Zeevi, “Non-stationary stochastic optimiza-
tion,” Operations research, vol. 63, no. 5, pp. 1227–1244, 2015.

[10] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan, “Online
optimization: Competing with dynamic comparators,” in Artificial Intel-
ligence and Statistics. PMLR, 2015, pp. 398–406.

[11] T. Yang, L. Zhang, R. Jin, and J. Yi, “Tracking slowly moving clair-
voyant: Optimal dynamic regret of online learning with true and noisy
gradient,” in International Conference on Machine Learning. PMLR,
2016, pp. 449–457.

[12] A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro, “Online op-
timization in dynamic environments: Improved regret rates for strongly
convex problems,” in 2016 IEEE 55th Conference on Decision and
Control (CDC). IEEE, 2016, pp. 7195–7201.

[13] L. Zhang, T. Yangt, J. Yi, R. Jin, and Z.-H. Zhou, “Improved dynamic
regret for non-degenerate functions,” in Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, 2017,
pp. 732–741.

[14] P. Zhao, G. Wang, L. Zhang, and Z.-H. Zhou, “Bandit convex opti-
mization in non-stationary environments,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2020, pp. 1508–1518.

[15] L. Zhang, S. Lu, and T. Yang, “Minimizing dynamic regret and adaptive
regret simultaneously,” in International Conference on Artificial Intelli-
gence and Statistics. PMLR, 2020, pp. 309–319.

[16] P. Zhao and L. Zhang, “Improved analysis for dynamic regret of strongly
convex and smooth functions,” in Learning for Dynamics and Control.
PMLR, 2021, pp. 48–59.

[17] T. Chen and G. B. Giannakis, “Bandit convex optimization for scalable
and dynamic iot management,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 1276–1286, 2018.

[18] X. Cao and K. R. Liu, “Online convex optimization with time-varying
constraints and bandit feedback,” IEEE Transactions on automatic
control, vol. 64, no. 7, pp. 2665–2680, 2018.

[19] Q. Liu, W. Wu, L. Huang, and Z. Fang, “Simultaneously achieving
sublinear regret and constraint violations for online convex optimization
with time-varying constraints,” Perform. Evaluation, vol. 152, p. 102240,
2021. [Online]. Available: https://doi.org/10.1016/j.peva.2021.102240

V. PROOF OF COROLLARY 4

Using the νh-strong convexity, and L smoothness of func-
tion h, from (31) [12], we have that for any x ∈ I and xt ∈ I
as the starting point and x̂t as defined in OPTIMIZE, for µ ≥ L,
h(x)− νh

2 ||x− xt||
2

≥ h(x̂t) +
µ

2
||x̂t − xt||2 + µ(xt − x̂t)T (x− xt).

Choosing x = x′ ∈ I such that h(x′) < h(x̂t), and rearranging
terms, we get that h(x′)− h(x̂t)

≥ µ

2
||x̂t − xt||2 +

νh
2
||x′ − xt||2 + µ(xt − x̂t)T (x′ − xt).

Using the fact that h(x) < h(x̂t) < h(xt), the LHS is negative,
and dividing both sides by µ, and rearranging terms we get

(xt − x̂t)T (xt − x′) ≥
1

2
||x̂t − xt||2 +

νh
2µ
||x′ − xt||2. (24)

Recall that xt+1 = (1−α)xt+αx̂t. Using this, ||xt+1−x′||2

= ||xt − x′||2 + α2||xt − ât||2 − 2α(xt − x′)T (xt − x̂t).

Using the bound on (xt − x′)T (xt − x̂t) obtained in (24), we
get

||xt+1−x′||2 ≤
(

1− ανh
µ

)
||xt−x′||2+α(α−1)||xt− ât||2.

Since α ∈ (0, 1], the second term in RHS is non-positive.
Thus, we get

||xt+1 − x′||2 ≤
(

1− ανh
µ

)
||xt − x′||2, (25)

as required.

16

