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Abstract—This paper proposes a cooperative and dynamic
quality adaptation scheme for delay-sensitive video streaming
between the transmitter and the receiver. We present a novel
adaptive super-resolution (SR) technique that adaptively controls
the quality enhancement rate and computation time. Due to
the capability of enhancing the quality of video chunks at the
user device side, the transmitter can aggressively transcode video
chunks to reduce the delivery latency and power consumption.
Also, adaptive SR can control the tradeoff between playback
stall rate and CPU consumption of the user device. Simulation
results verify the performance of adaptive SR and show that
the proposed video delivery scheme is very good to balance
tradeoff among the following performance metrics for online
video services: 1) playback stall rate, 2) average quality measure,
3) transmission power, and 4) CPU consumption of the user
device.

I. INTRODUCTION

Motivated by improved capability of computations at mo-
bile devices, dynamic quality adaptation for video streaming
becomes available depending on the network state and com-
putational resources of user devices. As online video services
dominate the global data traffic and recent multimedia services
(e.g., UHD streaming, AR, VR) require much higher data
traffic [1], there have been extensive researches on reducing
data traffic, resource consumption, network costs, and energy
consumption incurred by video streaming. At the same time,
a variety of the quality-of-experience (QoE) components of
video services, such as average video quality, playback stall
rate, and latency, should be largely studied together [2].

As the video streaming system has launched in wireless
networks, limited wireless resources and time-varying chan-
nel conditions become significant bottlenecks in achieving
high QoE. Therefore, dynamic adaptive streaming over HTTP
(DASH) was designed to dynamically select the bitrate of
video streaming depending on the wireless network state [3].
Because a video stream is partitioned into sequential segments
or chunks to be delivered, adaptive bitrate (ABR) streaming
that allows video chunks to have different bitrates has been
extensively researched [4]. Quality adaptation and scheduling
were jointly optimized to maximize the expected bitrate of
the entire streaming while limiting playback stall events in
[5]. Similarly, adaptive bitrate selection for each delivering
video chunk and power allocation were jointly optimized to

maximize the average quality measure of users in [6]. Further,
the authors of [7] managed a variety of QoE components,
such as playback stall rate, average bitrate, quality fluctuations,
and packet drop rate, and balanced the tradeoff among them
by dynamically controlling streaming quality and transmission
rate. There have been also many studies on machine learning-
based ABR streaming schemes. In [8], QFlow, which is
a reinforcement learning approach of selecting bitrates for
wireless streaming by adaptively controlling flow assignments
to queues, was introduced. A deep reinforcement learning
(DRL) approach was adopted to jointly control transmission
power and ABR streaming [9].

As mobile edge computing (MEC) technologies have been
extensively developed, even small base stations (BSs) and
mobile devices can transcode video chunks before delivering
them to reduce the latency and communication overheads. The
authors of [10] provided the low-latency ABR streaming by
jointly optimizing computational transcoding tasks and video
delivery when scalable video coding (SVC) is utilized for
encoding the video file. Also, a joint transcoding and caching
strategy of partial video files with different quality levels were
designed to provide smooth and high-quality video services
[11]. In [12], the DRL-based quality adaptation scheme was
proposed to balance the tradeoff between the QoE of video
services and transcoding costs.

In parallel, super-resolution (SR) has been extensively popu-
lar for enhancing video quality, and modern SR techniques are
majorly developed using deep neural networks (DNNs) [13].
There have been extensive researches on SR technique itself;
however, application of SR to ABR streaming has not been
broadly studied yet. Recently, Dejavu that utilizes historical
sessions to improve the quality of real-time videoconferencing
was proposed [14], and the DNN-based SR technique was
applied to the ABR streaming system [15]. However, the
above studies have not considered the adaptive SR which
dynamically controls the quality enhancement level depending
on receiver and networks states, and not jointly optimized the
video delivery together.

When the DNN for SR is deployed at the mobile device
having sufficient computational resources, the transmitter can
aggressively transcode video chunks to reduce the delivery
latency and power consumption. However, SR tasks could
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Fig. 1: Adaptive SR network

require huge computational overheads and generate exces-
sive inference delays; therefore, the authors of [16] offload
the computational SR task to the cloud to avoid excessive
latency, but it requires upload and download of video files
causing additional delays. Accordingly, this paper considers
an adaptive control of SR at the receiver by designing the
DNN for SR based on the anytime neural network (ANN)
[17]. The ANN allows coarse and quick inference results from
the middle of the DNN blocks; therefore, we can dynamically
choose the quality of output images by selecting the block
to extract the prediction result. Thus, the main goal of this
paper is to adapt the transcoding rate at the transmitter and the
quality enhancement rate using ANN-based SR at the receiver
for maximizing the average video quality while limiting the
playback latency. The main contributions of this paper are as
follows:

• This paper presents the adaptive SR network by applying
the ANN to the SR network for dynamically controlling
the quality of prediction results and the required com-
putations. Our SR network is based on the generative
adversarial network (GAN) for image SR (SRGAN).

• This paper proposes the cooperative video quality adap-
tation by jointly selecting the transcoding rate at the
transmitter and the quality enhancement rate of SR at
the receiver depending on the network state and queue
states of the transmitter and the receiver. The proposed
scheme also efficiently consumes transmission power and
CPU resources of the receiver for operating SR.

• Simulation results show that the proposed cooperative
video quality adaptation scheme provides better perfor-
mances than ABR streaming without using adaptive SR
and balances the tradeoff among a variety of performance
metrics, such as playback stall rate, average quality
measure, transmission power and CPU consumption of
the receiver very well.

The rest of the paper is organized as follows. The adaptive
SR network is explained in Section II, and the video streaming
system using adaptive SR is described in Section III. The co-
operative quality adaptation scheme for delay-sensitive video
streaming is proposed in Section IV. Simulation results are
presented in Section V, and Section VI concludes this paper.

II. ADAPTIVE SUPER-RESOLUTION NETWORK

The SR technique has been firstly developed by minimiz-
ing the mean squared error (MSE) using the convolutional

neural network (CNN); therefore, the SR convolutional neural
network (SRCNN) was proposed [13]. Even though the MSE-
based SR achieves high peak-signal-to-noise-ratio (PSNR) and
structural similarity index measure (SSIM) for output images,
it suffers from an ill-posed problem in which a high-quality
texture could be lost during extracting coarse predictions
and averaging multiple output levels from different layers.
Therefore, we choose the SRGAN that is the SR network
based on GAN for designing the adaptive SR network because
it achieves soft textures and smooth images [18].

The SRGAN consists of generator G, discriminator D, and
feature extractor ϕ, and their model parameters are denoted
by θG, θD, and θϕ, respectively. G has a role of operating
SR, i.e., enhancing the quality of an input video chunks, and
its adversarial loss is derived as D evaluates the prediction
result of G. Also, ϕ converts input images to a feature
space to compute the content loss obtained by minimizing the
Euclidean distance between feature ϕθϕ(I

HR) extracted from
a high-resolution image and feature ϕθϕ(I

SR) extracted from
an image created by G. Then, the perceptual loss is generated
from both adversarial loss and content loss, and the SRGAN
trained for minimizing the perceptual loss could avoid the
ill-posed problem. Here, the VGG19 network [19] which is
pretrained with ImageNet consisting of 14 million images [20]
is adopted as ϕ.

To adaptively control the quality of output chunks and the
required computational burden, we apply the idea of the ANN
[17] to the SRGAN, in which auxiliary prediction results are
extracted from the middle of the residual layers. Let the model
of G have total U layers, and auxiliary prediction results can
be obtained from the Uj-th residual layers for all j ∈ J ≜
{1, · · · , J}, satisfying U1 < U2 < · · · < UJ and U = UJ . As
shown in Fig. 1, additional output layers are used to extract
auxiliary prediction results from every Uj-th residual layer,
and the model parameter set of partial Uj residual blocks of G
is denoted by θGj . In order to allow quick and coarse prediction
results from the middle of the model, we aim at training the
adaptive SR network (i.e., G) by minimizing losses of multiple
outputs from the Uj-the residual layers for all j ∈ J .

According to [18], the total loss function is comprised of
the MSE ℓMSE , Euclidean distance loss ℓD, and adversarial
loss ℓGen. Each loss component is defined as

ℓMSE ≜ ∥IHR − ISR∥2 (1)

ℓD ≜ ∥ϕ(IHR)− ϕ(ISR)∥2 (2)

ℓGen ≜ − logD(ISR), (3)

where ∥.∥2 stands for the L2 loss, IHR is the lossless high-
resolution image, and ISR is the output image of G. Particu-
larly, ℓD measures the Euclidean distance between features of
IHR and ISR extracted by ϕ, and LGen is based on failure
probabilities of D for discriminating the output image of G
and IHR.

The auxiliary prediction results can be generated by θGj for
any j ∈ J ; therefore, we have to design the total loss function
of the adaptive SR network using losses of output images from
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the Uj-th residual layers for all j as follows:

ℓASR = wM ℓ⋆MSE + wV ℓ
⋆
D + wGℓ

⋆
Gen, (4)

where ℓ⋆MSE ≜
∑J

j=1 δjℓMSE,j , ℓ⋆D ≜
∑J

j=1 δjℓD,j , ℓ⋆Gen ≜∑J
j=1 δjℓGen,j , and wM , wV and wG are the scaling coeffi-

cients for ℓ⋆MSE , ℓ⋆D and ℓ⋆Gen, respectively. Also, δj is the
weight factor for the loss of the output from the Uj-th layer,
satisfying

∑J
j=1 δj = 1; therefore, ℓ⋆MSE , ℓ⋆D and ℓ⋆Gen are

the weighted averages of ℓMSE , ℓD and ℓGen generated by
θGj for all j ∈ J . Here, ℓMSE,j , ℓD,j , and ℓGen,j are the
MSE loss, the Euclidean distance loss, and the adversarial loss
of the output image generated by θGj , respectively. According
to [17], fore layers of G are strongly trained by minimizing
multiple losses caused by different Uj-th residual layers; on
the other hand, rear layers of G can be trained from the result
predicted by the entire model θG. Accordingly, we use δi < δj
for any i < j and i, j ∈ J .

III. VIDEO STREAMING SYSTEM USING ADAPTIVE
SUPER-RESOLUTION

This paper considers dynamic streaming with the help
of adaptive SR. Let the transmitter have the capability of
transcoding the high-quality video chunks and the user device
have sufficient computation resources to operate adaptive SR.
This section describes video transcoding and delivery at the
transmitter, and quality enhancement of received video chunks
at the receiver.

A. Video Transcoding and Delivery at Transmitter
Suppose that the transmitter has highest-quality videos only

and can transcode them to lower quality versions with any
transcoding rate r ∈ R ≜ {1, · · · , R}. Each video file is
partitioned into sequential chunks, and each chunk can be
separately transcoded and delivered. The video chunks with
the highest quality requested by the user are accumulated in
the transmitter queue to be delivered, and its queue length
is updated by Qt+1 = max{Qt − Kt + vt, 0} and Q0 = 0,
where Qt is the queue length, Kt is the number of delivering
chunks at slot t, and vt is the number of desired chunks at
slot t. We assume that vt follows the uniform distribution, i.e.,
vt ∼ U [0, vmax]. Before delivering Kt chunks, the transmitter
transcodes them to reduce communication latency with the rate
rt, as shown in Fig. 1. Denote P(rt) and M(rt) as the quality
measure and the size of a chunk transcoded with the rate rt.

The Rayleigh fading channel model is assumed, and the
channel gain between the transmitter and the receiver is
denoted by h =

√
Sg where S = 1/dγ denotes the inverse of

the path loss, γ is the path loss exponent, and g ∼ CN (0, 1)
is the fast fading component. Also, we assume block fading;
therefore, h is static during one discretized time slot. Then,
the channel capacity Ct limits the number of delivering chunks
(i.e., Kt) depending on rt as follows:

KtM(rt) ≤ Ct = t0B log2
(
1 +

Pt|ht|2

σ2

)
, (5)

where ht is the channel gain at slot t, t0 is the time duration
of each slot, B is the bandwidth, and σ2 is the noise variance.

The transmission power budget Pmax is given, i.e., Pt ≤ Pmax;
therefore, we can assume E[Kt] ≤ Kmax. Also, for power
efficiency, we limit the long-term expected power consumption
by threshold P0.

Thus, the transmitter determines 1) how many chunks to
deliver (i.e., Kt), 2) how much to transcode them (i.e., rt),
and 3) how much to consume power for delivering (i.e., Pt),
for limiting the queuing delay and saving power consumption.

B. Video Quality Enhancement at Receiver

The receiver has the pre-trained adaptive SR network ex-
plained in Section II and sufficient computation resources to
operate it. When delivered video chunks arrive, the receiver
first makes decision on the layer number lt of the adaptive
SR network to extract the output image, meaning that the
quality of an input chunks is enhanced by θGlt and the auxiliary
prediction result from the Ult -th residual layer of G is used
as an output chunk. Here, lt ∈ J , and if lt = 0, the receiver
directly plays the arrived Kt chunks without enhancing their
quality. Also, the receiver determines the number of CPU
cycles denoted by ct to use for operating adaptive SR. Then,
the inference time of the adaptive SR network for each video
chunk depends on the layer number to extract the output
image, and the number of CPU cycles for operating SR, which
is denoted by τ(rt, lt, ct). We can experimentally measure the
expected value of τ(lt, ct) for each combination of {lt, ct} as
shown in Table II. Note that τ(lt, ct) = 0 when ct = 0.

Consider the receiver buffer in which the expected inference
time of adaptive SR for received video chunks is accumulated.
The buffer dynamics is formulated by Bt+1 = max{Bt +
µt − t0, 0} and Z0 = 0, where the arrival process µt is the
expected inference time for enhancing the quality of video
chunks arrived at slot t; therefore, it is defined as µt = Kt ·
τ(lt, ct). Because we assume that E[Kt] ≤ Kmax and τ(lt, ct)
is finite, E[µt] ≤ µmax is satisfied. The receiver can justify
whether it aggressively exploits the adaptive SR network for
enhancing the quality of received chunks at the expense of the
inference delay and CPU consumption or not by observing
how long Bt is. If Bt is excessively large, the user could
experience a playback stall because a SR task of the next
chunk to be played may not be completed yet.

After finishing SR operation for the received Kt video
chunks, the user can play these chunks. The final streaming
quality depends on both transcoding at the transmitter and
adaptive SR at the receiver, and its measure is denoted by
P(rt, lt). Therefore, cooperative quality adaptation between
the transmitter and the receiver is required for maximizing the
streaming quality.

IV. COOPERATIVE QUALITY ADAPTATION AND RESOURCE
ALLOCATION FOR VIDEO STREAMING

This section proposes the jointly optimized cooperative
quality adaptation and resource allocation that maximizes the
expected video quality while limiting the playback latency
and resource consumption. However, since the transmitter
dynamically controls amounts of delivering chunks at each
slot, we cannot expect how many chunks will be delivered
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during the long-term time duration. Therefore, according to
[6], we minimize the entire quality degradation compared to
the highest-quality measure P , as follows:

min
Ψ

lim
T→∞

1

T

T∑
t=1

E
[(
P − P(rt, lt)

)
Kt

]
(6)

s.t. lim
T→∞

1

T

T∑
t=1

E[Qt] <∞ (7)

lim
T→∞

1

T

T∑
t=1

E[Bt] <∞ (8)

lim
T→∞

1

T

T∑
t=1

E[Pt] ≤ P (9)

lim
T→∞

1

T

T∑
t=1

E[ct] ≤ c (10)

KtM(rt) ≤ t0C(Pt) (11)
0 ≤ Pt ≤ Pmax (12)
rt ∈ R, lt ∈ J , ct ∈ C, (13)

where Ψ = {K, r,P, l, c} which is a decision parameter set.
Here, K = [K0, · · · ,KT ], and r, P, l and c are defined in
a similar manner. We assume that there are finite number |C|
of available CPU cores so that C ≜ {1, · · · , cmax}. Also, P
and c are target thresholds for the average transmit power and
the average CPU usage, respectively, and Pmax is the power
budget. Expectations of (6)–(10) are with respect to random
channel realizations. The constraints of (7) and (8) are for
limiting the queueing delay and the inference delay of adaptive
SR. The transmit power consumption and usage of CPU cores
are limited by the constraints of (9) and (10), respectively, and
the constraint (11) comes from (5), which demonstrates that
decisions on Kt and rt depend on the channel capacity.

Note that constraints (7) and (8) pursue stability of the
transmitter queue and the buffer, respectively, rather than
guaranteeing strict upper bounds. However, it is very difficult
to make the instantaneous queuing delay bounded to a given
value due to dynamic delivery decisions and time-varying
channel conditions; therefore, we focus on limiting the time-
average queue lengths because the average queueing delay is
proportional to the average queue length [21]. Also, according
to the Lyapunov optimization theory [21], the time-average
queue length can be limited by pursuing strong stability of a
queue, as shown in (7) and (8).

To deal with (9) and (10), we present the virtual queues
W (t) and V (t) whose update equations are given by

Wt+1 = max{Wt − P + Pt, 0} (14)
Vt+1 = max{Vt − c+ ct, 0}. (15)

According to [22], the strong stability of Wt and Vt pushes
the long-term time average of Pt and ct to be smaller than
P and c, respectively. Then, let Θt = [Qt, Bt,Wt, Vt]

T and
define L(Θt) = 1

2{Q
2
t + kBB

2
t + kWW 2

t + kV V
2
t }, where

kB , kW and kV are scaling coefficients. Then, let ∆(.) be a

conditional quadratic Lyapunov drift on t that is formulated as
E[L(Θt+1)−L(Θt)|Θt]. According to Lyapunov optimization
theory [22], the dynamic policy is designed to solve the given
optimization problem by observing Θt and choosing Ψt to
minimize a bound on drift-plus-penalty which is given by

∆(Θt) +A · E
[(
P − P(rt, lt)

)
Kt

]
, (16)

where A is a system parameter that gives a weight to the
objective function of the problem in (6)–(13).

Then, the upper bound on the Lyapunov drift can be
obtained as

L(Θt+1)− L(Θt) ≤
1

2

{
K2

t + v2t + kB(µ
2
t + t20)

+ 2Qt(µt −Kt) + 2kBBt(µt − t0) + kW (Pt − P )2

+ kV (Vt − c)2 + 2kWWt(Pt − P ) + 2kV Vt(ct − c)
}

≤ H +
{
Qt(vt −Kt) + kBBt(µt − t0)

+ kWWt(Pt − P ) + kV Vt(ct − c)
}
, (17)

where H is chosen to satisfy the following inequality:

v2max +K2
max +µ2

max + t20+P
2
+P 2

max + c2+ c2max ≤ 2H. (18)

According to (16) and (17), when Θt is observed, minimiz-
ing a bound on drift-plus-penalty is consistent with minimizing

− E[QtKt] + E[kBBtµt] + E[kWWtPt]

+ E[kV Vtct] +A · E
[
(P − P(rt, lt))Kt

]
, (19)

Here, we use the concept of opportunistically minimizing the
expectations; therefore, (19) is minimized by independently
choosing Ψt = {Kt, rt, Pt, lt, ct} to minimize

D(Kt, rt, Pt, lt, ct) = −QtKt + kBBtKtτ(lt, ct)

+ kWWtPt + kV Vtct +A ·Kt(P − P(rt, lt)). (20)

Thus, we can reformulate the long-term time-average problem
of (6)–(13) into the opportunistic problem as follows:

min
Ψt

D(Kt, rt, Pt, lt, ct) (21)

s.t. (11), (12), (13). (22)

The appropriate initial values of kB , kV , kw and A need to be
obtained experimentally because they depend on the channel
environments and constraints on performances (i.e., P and c).
Also, all weight parameters should be positive.

To efficiently exploit the channel condition, if rt and Pt

are given, the transmitter is better to deliver as many chunks
as possible because the average queuing delay is proportional
to the expected queue length [21]. Therefore, the inequality
constraint on the data rate in (11) can be converted into the
equality constraint. Then, according to (11), the optimal power
to deliver Kt transcoded with rate rt is

P ∗
t =

σ2

|ht|2
(
2

KtM(rt)
t0B − 1

)
. (23)

Then, we formulate the subproblem with respect Kt and ct
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for given rt = r and lt = l as follows:

min
Kt,ct

kWWt
1

|ht|2
(
2

Ktrt
t0B − 1

)
+ kV Vtct

+Kt

[
kBBtτ(lt, ct)−Qt +A · (P − P(rt, lt))

]
. (24)

Denote the optimal solutions of (24) by K ′
t and c′t without

any constraints. Then, the problem in (24) is convex and can
be solved by using Karush–Kuhn–Tucker (KKT) conditions.

If kBBtτ(lt, ct) − Qt + A · (P − P(rt, dt)) < 0, K ′
t and

c′t should satisfy the following equations for achieving KKT
conditions:

kW
Wt

|ht|2
M(rt)

t0B
ln 2 · 2

M(rt)
t0B K′

t +A · (P̄ − P(rt, lt))−Qt

+ kBBtctτ(lt, ct)

√
kBBtctτ(lt, ct)K ′

t

kV Vt
= 0 (25)

c′t =

√
kBBtctτ(lt, ct)K ′

t

kV Vt
. (26)

Otherwise, K ′
t = 0 and u′

t = 0, which means that no chunk is
delivered and the receiver does not consume CPU resources.

Since ct ∈ C = {0, 1, · · · , cmax} and Kt is a nonnegative
integer, we have to compare boundary conditions depending
on the value of c′t for obtaining the optimal K∗

t and c∗t with
consideration of the boundary constraints on Kt and ct. If 0 ≤
c′t ≤ cmax, four possible combinations of K∗

t ∈ {⌊K ′
t⌋, ⌈K ′

t⌉}
and c∗t ∈ {⌊c′t⌋, ⌈c′t⌉} are compared. Meanwhile, if c′t ≥ cmax,
we compare the following three conditions as follows: 1)
K∗

t = 0 and c∗t = 0, 2) K∗
t = ⌊K ′

t⌋ and c∗t = cmax, and
3) K∗

t = ⌈K ′
t⌉ and c∗t = cmax. Then, we find the optimal

solution of the problem in (21)–(22) by greedily testing all
joint combinations of decisions on rt and lt. The details are
given in Algorithm 1.

V. PERFORMANCE EVALUATION

This section first demonstrates the proposed adaptive SR
network, and provides performances of the proposed quality
adaptation scheme for a delay-sensitive dynamic streaming.

A. Adaptive Super-Resolution Network

Youtube 8K MPEG-DASH dataset is used to train and test
the adaptive SR network [23]. The preprocessed dataset is
randomly cropped with the size of 144× 144× 3. Note that
video images with resolutions of 360p, 480p, 720p, and 1080p
are bicubic interpolated from the highest-resolution video (i.e.,
2160p) with transcoding rate r = {6, 4, 3, 2}, respectively.
When training the adaptive SR network, the training set and
batch contain all pre-processed images regardless of r, and
parameters of wM = 3.03, wV = 3.03, wG = 10−2,
δ5 = 0.0165, δ10 = 0.0660, δ15 = 0.264, δ20 = 0.323, and
δ25 = 0.330 are used.

The adaptive SR network consists of UJ = 25 residual
blocks, and all residual blocks have 64 filters with a 3 × 3
kernal-size, the stride of 1 and the padding of 1. The Adam
optimizer is used for both generator and discriminator with a
learning rate of 0.001.

Algorithm 1 Solving problem in (21)–(22)

1: At slot t, Qt, Bt, Wt, Vt, and D∗ = 1010 are given.
2: for r∗t ∈ R and l∗t ∈ J do
3: if kBBtτ(lt, ct)−Qt +A · (P −P(rt, dt)) ≥ 0 then
4: K ′

t = 0 and c′t = 0
5: else
6: Obtain K ′

t and c′t by (25) and (26)
7: if 0 ≤ c′t ≤ cmax then
8: Compare four combinations of K∗

t ∈
{⌊K ′

t⌋, ⌈K ′
t⌉} and c∗t ∈ {⌊c′t⌋, ⌈c′t⌉} and pick one of them

minimizing (24)
9: else

10: Compare the following conditions and pick one
of them minimizing (24): 1) K∗

t = 0 and c∗t = 0, 2)
K∗

t = ⌊K ′
t⌋ and c∗t = cmax, and 3) K∗

t = ⌈K ′
t⌉ and

c∗t = cmax
11: end if
12: Obtain P ∗

t by (23) and D(Ψ∗
t ) by (20)

13: if D(Ψ∗
t ) < D⋆ then

14: D⋆ ← D(Ψ∗
t ), K⋆

t ← K∗
t , r⋆t ← r∗t

15: P ⋆
t ← P ∗

t , l⋆t ← l∗t , c⋆t ← c∗t
16: end if
17: end if
18: end for
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Fig. 2: Average PSNR

Table I summarizes PSNR and SSIM measures of output
images of adaptive SR depending on the layer number to
extract the prediction result and the transcoding rate. Also, the
required CPU cycles and inference time to extract the output
image from different layers are shown in Table II. As explained
in Section II, as the deeper layer generates the prediction
result, the quality of an input image becomes more enhanced
at the expense of CPU consumption and processing delay.
Based on this specification of the adaptive SR network, we
simulate the proposed cooperative quality adaptation algorithm
for dynamic video streaming.

B. Numerical Results of Dynamic Video Streaming

In this subsection, P = 2.5, c = 2.5, A = 0.01, B = 3
MHz, t0 = 1 sec, Kmax = 30, cmax = 10, kB = 1.0,
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TABLE I: Quality measure (i.e., PSNR, and SSIM) of output images of the adaptive SR network

PSNR/SSIM Baseline j = 1 j = 2 j = 3 j = 4 j = 5
r = 2 30.60/0.859 30.66/0.866 31.01/0.885 31.87/0.899 32.20/0.904 32.26/0.906
r = 3 27.45/0.749 27.51/0.773 28.42/0.795 29.08/0.816 29.39/0.823 29.45/0.826
r = 4 25.82/0.672 26.29/0.701 26.85/0.724 27.49/0.749 27.73/0.759 27.79/0.762
r = 5 24.81/0.620 25.22/0.641 25.74/0.663 26.23/0.688 26.46/0.698 26.54/0.702

TABLE II: Computational cost metrics of adaptive SR

Metric j = 1 j = 2 j = 3 j = 4 j = 5
Clocks [109] 1.007 1.441 1.864 2.283 2.669

Inference time [ms] 8.6 12.3 15.9 19.4 22.8
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kW = 1.0, and kV = 1.0 are used. We consider the non-
adaptive SR scheme that fully enhances the quality of received
chunks always and joint optimization process for other deci-
sion parameters (i.e., Kt, rt, Pt, and ct) is identical to that of
the proposed one as a comparison technique. Figs. 2–5 show
the plots of average PSNR, delay incidence, transmit power
consumption, and CPU usage versus the SNR, respectively.
Because the final quality of video chunks depends on both
transcoding at the transmitter and SR at the receiver, the
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Fig. 5: CPU consumption

proposed scheme that jointly controls both decisions provides
better a PSNR performance than the non-cooperative scheme
overall. The transmitter and the receiver of the non-cooperative
scheme separately control their decisions in sequence, the
receiver decisions (i.e., layers of the adaptive SR network and
CPU cycles) are strictly dependent on the transmitter decisions
(i.e., number of delivering chunks, transcoding rate, trans-
mit power). Therefore, we can observe that transmit power
consumption of both schemes is very similar; meanwhile,
the proposed scheme outperforms the non-cooperative one in
terms of the performance metrics related to receiver decisions
(i.e., delay incidence and CPU consumption).

Both techniques satisfy the target thresholds for trans-
mit power and CPU resources; however, the non-cooperative
scheme spends much lower CPU cycles than the available
amounts. From this point, we realize that our scheme effi-
ciently controls the tradeoff among the video quality, delay
incidence, consumption of transmitter and receiver resources.
The proposed scheme spends more CPU cycles but not larger
than a threshold value to improve the final quality of video
chunks while even guaranteeing almost zero playback delay.

VI. CONCLUSION

This paper proposed an adaptive SR network and a coop-
erative quality adaptation technique for delay-sensitive video
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streaming using adaptive SR. Inspired by ANN [17], we build
an adaptive SR network that can adaptively control a quality
enhancement level and amounts of required computations.
With the help of adaptive SR at the receiver, the transmitter
can aggressively transcode video chunks to reduce the queuing
delay and to save transmit power. This paper jointly optimizes
transcoding at the transmitter, adaptive SR operation at the
receiver, and resource allocations to maximize the video
quality while limiting the playback delay. Numerical results
show that the proposed scheme strikes a balance among a
variety of conflicting performance metrics of video streaming
carefully, i.e., video quality, playback delay incidence, transmit
power consumption, and CPU usage.
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