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Abstract—The base station (BS) densification in Internet of
Things (IoT) networks provides a viable pathway for enhancing
network capacity to meet the ever increasing demand for data.
Increasing the number of BSs also increases the energy consump-
tion, which compromises the network energy efficiency (EE).
This is important in 3 dimensional (3D) IoT deployments where
volume spectral efficiency (VSE) and EE are key performance
indicators (KPIs). In such networks, BS sleep modes provide
an effective way to constrain both the interference and energy
consumption, thereby improving the EE. In this paper, both the
VSE and EE of a densified 3D IoT network are investigated
when BS and UE counts follow independent 3D Homogeneous
Poisson Point Process (HPPP) models and UEs are placed either
uniformly or in clusters. The simulation results show that when
unloaded BSs are turned off completely, including the backhaul,
sufficiently densified 3D IoT networks can be made energy
efficient.

Index Terms—Energy Efficiency, Volume Spectral Efficiency,
ultra-dense networks, small cell densification, Internet of Things,
sleep mode, Spectral Efficiency, 5G Networks, 6G Networks

I. INTRODUCTION

Small cell base station (BS) densification is an effective
solution for increasing radio access network (RAN) capacity
to cope with the ever increasing user demand for more data
[1], [2], [3]. As data becomes more heterogeneous with very
diverse quality of service requirements, the IoT network is
evolving into an Internet of Everything (IoE) with different
types of user equipment (UE) exchanging data with different
types of BSs [4], [5]. Improving the capacity of IoT networks
through BS densification is expected to meet this growing data
demand.

To model the IoT scenario where both the UEs and BSs
could be anywhere within a given geographic space [6], [7],
the conventional 2 dimensional (2D) planar model employed in
most literature, for example, [8], [9], [10], becomes inaccurate.
Instead, a 3D model which introduces a third degree of
freedom in the vertical direction is more appropriate [11],
[12]. Building on the authors’ previous work in [13], [14],
[15], [16], the contributions of this paper include the use
of 3D Homogeneous Point Poisson Process (HPPP) models
[17] for determining both BS and UE counts and the use
of both clustered and uniform distributions for positioning
UEs. Independent 3D HPPP models allow identical BSs and
UEs to be distributed randomly within a pre-defined space. In

addition, the RAN capacity performance is evaluated using
a volume spectral efficiency (VSE) metric for the 3D de-
ployment, whereas energy efficiency performance is evaluated
using the RAN energy efficiency (EE) metric.

Despite the potential benefits of improved capacity and
EE, BS densification in RANs typically leads to increased
network energy consumption due to the larger number of BSs
installed in a given geographic area [18], [19]. This eventually
compromises the RAN EE since densification increases the
RF interference, which reduces capacity, as well as increasing
the network energy consumption. Often, the open literature
focuses on investigating the capacity enhancement or EE
improvement obtained with densification without addressing
the underlying increase in network energy consumption [20],
[21]. BS sleep modes provide an effective solution to this
problem in a densified RAN without needing to change the
deployed infrastructure [22]. With BS sleep modes, unloaded
BSs without UE associations, or empty cells, may be put into
low power sleep modes with reduced RF transmission power
and reduced traffic independent operational power. Therefore,
BS sleep modes both constrain the RF interference and reduce
the energy consumption leading to improved EE.

In this work, the VSE and EE of a densified 3D IoT network
is investigated as the BS density is increased with different
sleep mode depths and UE densities as parameters. Using a
3D IoT network model with either a uniform or clustered UE
distribution, the simulation results show that without any BS
sleep modes, the RAN VSE first increases but then decrease
with increasing BS density in a pre-defined space, whereas the
RAN EE decreases monotonically. However, with BS sleep
modes, both the RAN VSE and EE recover providing all the
empty cells are turned off completely, including the backhaul.
Both observations hold for the different UE distributions and
UE densities considered.

The remainder of this paper is organised as follows. Section
II introduces the 3D HPPP system model as well as the
evaluation metrics used in the study. Section III presents the
UE uniform and clustered distributions, the simulation results
and a discussion of the results. Finally, section IV provides
the conclusions.
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II. SYSTEM MODEL

A. Simulation Model

The downlink (DL) traffic of a Long Term Evolution (LTE)
IoT RAN is considered in this work. All the BSs in set B in the
RAN are identical with a density of λBS BS/m3 according to a
3D HPPP distribution model. A typical-UE is assumed to be at
the centre of a cuboid space, with an additional set of virtual-
UEs that follows another independent 3D HPPP model with
density λV UE UE/m3 within the same space. Virtual-UEs are
distributed to activate BSs. All the BSs and UEs are assumed
to have isotropic antenna. The UE association rule is based
on the strongest power received. BSs with the typical-UE or
any VUE associations are considered active and fully loaded.
In contrast, the remaining BSs are empty and unloaded. The
traffic model is full buffer so that UEs are always in demand
of data on DL.

The power in dBm received by the typical-UE from its
serving BS b0 on a certain LTE Resource Block (RB) n is
given by:

Prx,b0,n [dBm] =Ptx,b0,n [dBm] +GBS [dBi]
+GUE [dBi]− Lb0,n [dB]

(1)

where Ptx,b0,n is the per-RB transmission power from BS b0;
BS and UE antenna gains GBS and GUE between b0 and
the typical-UE, respectively, are both 0 dBi; and Lb0,n is the
channel loss of the given RB, including both the large scale
pathloss (PL) and shadow fading (SF), as well as the small
scale Rayleigh multipath fading (MPF). The transmission
power level from an arbitrary BS b depends on the normalised
load activity factor αb, which is unity if b is in an active cell
and 0.1 [23] if b is in an empty cell without UE association.

The generic expression for the PL at 3D distance db0 away
from the BS b0 in dB is given by:

PL =


PL1(db0) [dB] db0 ≤ d1
PL2(db0) [dB] d1 < db0 ≤ d2
PL3(db0) [dB] db0 > d2

(2)

where d1 and d2, which are set to 200 m and 500 m in this
work, differentiate the pathloss models, PLi, i = 1, 2, 3, used
for the a certain distance range, whose expressions are:

PLi =

{
βi,LoS + ζi,LoS × log10(db0) [dB] if LoS
βi,NLoS + ζi,NLoS × log10(db0) [dB] if NLoS

(3)
i = 1, 2, 3, where both the dimensionless constant βi and
pathloss components ζi depend on the signal carrier frequency
and transmission environment. Both these constants are differ-
entiated by the LoS and NLoS transmission path conditions.
This adopted PL model captures the dependence of signal
fading on distance, and is multi-piece probability weighted
as suggested in [24], [25] and applied in [8]. Eq. (2) and (3)
from the 3GPP documents are designed to cover the terrestrial
traffic. They are applied into the 3D model in this work where
BSs and UEs are spread over the ground within reasonable

cuboid height. The multi-piece LoS probability from [24], [25]
is given in (4) at the top of the following page.

Without loss of generality, the SF is modelled as a nor-
mal distribution for simplicity with mean µSF and standard
deviation σSF as suggested in [24] and [25]. The Rayleigh
multipath fading is modelled as an independent and identical
distribution (iid) random variable [26]. The combined fading
effects in dB for a specified range case i, i = 1, 2, 3, is given
by:

Lb0,n,i =
(
PLi,LoS(db0) + SFi,LoS

)
× Pi,LoS(db0)

+
(
PLi,NLoS(db0) + SFi,NLoS

)
×
(
1− Pi,LoS(db0)

)
+MPFn [dB]

(5)

The Signal-to-Noise-plus-Interference-Ratio (SINR) experi-
enced by the typical-UE on RB n is then:

γb0,n =
Prx,b0,n∑

b∈B,b6=b0
Prx,b,n + σn2

. (6)

where
∑

b∈B,b6=b0
Prx,b is the total interference received by the

typical-UE, and σn is the standard deviation of the noise on the
UE side in the DL, including the thermal noise at 293 K and a
4 dB noise figure [26]. Then the throughput of the typical-UE
may be calculated using the Shannon capacity formula for an
arbitrary Transmission Time Interval (TTI) by:

SUE =
12× 14×

∑nRB

n=1 log2

(
1 + γb0,n

)
δt

(7)

where 12 is the subcarrier number included in RB n, 14 is
the symbol number included in RB n, nRB is the total RB
number per TTI, and δt is the 1 ms time duration of a TTI.
The typical-UE is assumed to occupy all the resource provided
by the serving BS b0. Therefore, all the nRB RBs available in
a TTI from the serving BS b0 are allocated to the typical-UE
for all TTIs considered.

B. Evaluation Metrics

This work uses 2 performance metrics to evaluate the
capacity and energy efficiency of the 3D HPPP modelled BS
densification in the IoT RANs. The capacity metric is RAN
VSE in units of bit/s/Hz/m3, and the energy efficiency metric
is the RAN Energy Efficiency in units of bit/J.

The RAN VSE is defined as:

V SERAN =
NUE × SUE

Bb0 × VRAN
(8)

where NUE is the number of virtual-UEs and the single
typical-UE, NUE × SUE calculates the RAN throughput as-
suming the typical-UE uses all the resource provided by b0,
Bb0 is the total channel bandwidth for signal transmission, and
VRAN is the volume in cubic metres of the cuboid space oc-
cupied by the RAN, which is calculated by the multiplication
of the cuboid length, width, and height. The RAN throughput
mapped from the typical-UE throughput provides an upper
bound on the throughput, which becomes accurate for highly
densified RANs where each active cell serves a single UE.
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PLoS(db0) =


0.5−min

(
0.5, 5× exp

(
−156
db0

))
+min

(
0.5, 5× exp

(
db0

30

))
db0 > d2

min
(

18
db0
, 1
)
×
[
1− exp

(
−db0

36

)]
+ exp

(
−db0

36

)
d1 < db0 ≤ d2

min
(

18
db0
, 1
)
×
[
1− exp

(
−db0

63

)]
+ exp

(
−db0

63

)
db0 ≤ d1

(4)

The RAN EE is defined as:

EERAN =
MRAN

ERAN
(9)

based on the definition of EE in [27], where MRAN is the
total amount of data transmitted in the RAN with units of
bit during a certain time period T , and is determined by the
product of the total number of UEs and the amount of data
sent to the typical-UE as given by:

MRAN = NUE ×
T∑

t=0

MUE,t = NUE ×
T∑

t=0

(δt×SUE) (10)

The total RAN energy consumption ERAN during the same
T time period is given by:

ERAN = T × PRAN = T ×
∑
b∈B

Pb(αb) (11)

where
Pb(αb) = PRH(αb) + POH (12)

is the BS power consumption [28], partly dependent on the
normalised load activity factor αb. An active BS b has αb=1
[23]; and an empty BS b has αb=0.1 [23] without sleep mode
on or αb=0 with sleep mode on [1]. The subscript RH stands
for radio head and PRH accounts for the traffic dependent part
of the BS power consumption [29]. In contrast, POH calculates
the traffic independent part of the BS power consumption
including the backhaul, where OH stands for overhead. Based
on the expressions in (10) and (11), the RAN EE can be written
as:

EERAN =
NUE × SUE

PRAN
(13)

if both MRAN and ERAN are divided by T . Similarly, the
RAN EE mapping the MUE to MRAN becomes accurate for
high BS densities, before which RAN EE provides an upper
bound on EE.

III. SIMULATION RESULTS

This section evaluates the VSE and EE performance of a
densified IoT RAN with a clustered UE distribution. Within
a 100 m × 100 m × 30 m cuboid space, 2 to 1000 BSs
are uniformly and randomly scattered. The equivalent BS
density is listed in Table I. A total of NUE active UEs are
placed in the same space comprising the typical-UE placed
at the cuboid centre and NUE − 1 virtual-UEs. For the
uniform distribution of UEs, the virtual-UEs are randomly
uniformly scattered throughout the cuboid space. For the
clustered distribution of UEs, one third of the virtual-UEs are
randomly uniformly scattered in the cuboid space, while the
rest are randomly uniformly scattered in five randomly placed

TABLE I
SIMULATION PARAMETERS

Case index i i = 1 i = 2 i = 3
BS count in RAN 2 - 1000

BS density λBS per m3 0.000007 - 0.003333
Virtual UE count NUE in RAN 99, 199, 499

Virtual UE density λV UE per m3 0.000330, 0.000663, 0.001663
UE density λUE per m3 0.000333, 0.000667, 0.001667
Carrier frequency [GHz] 2

Channel bandwidth [MHz] 20
RB count per TTI (nRB) 100

BS transmission power (Ptx,b) [dBm] 21.14
Pathloss βLoS [dB] 41.1 34.02/4.02 30.8

Pathloss βNLoS [dB] 2.9 30.5 32.9
Pathloss ζLoS 20.9 22/40 24.2

Pathloss ζNLoS 42.8 36.7 37.5
Shadow fading µSF [dB] 0, 0

Shadow fading σSF,LoS [dB] 10 3 8
Shadow fading σSF,NLoS [dB] 10 4 8

Noise variance σ2
n [dBm] per RB -117.38

spherical clusters each with 1.5 m radius (i.e., a typical room
size). The considered virtual-UE counts and the corresponding
densities are given in Table I. The variation of both the BS
and virtual-UE heights within the 0 to 30 m range and the
fact that BSs could either be below or above the typical
UE using this 3D model reflect realistic IoT scenarios with
more accuracy than a conventional fixed height 2D model
[10]. Other key simulation parameters regarding transmission
channel conditions and channel loss are listed in Table I as
well. Case 1 to 3 in the table refers to the 3GPP hotspot, urban
micro (UMi), and urban macro (UMa) scenarios, respectively
[25], [24]. Based on the chosen threshold distances stated in
Section II and the cuboid space dimension mentioned above,
only case 1, the 3GPP hotspot scenario, is considered in this
paper.

When a BS has UE association, it is active with α being
unity, and has all the overhead components on. Based on (12),
the power consumption of such an active BS is PRH(α = 1)+
POH,on. In contrast, if the BS does not have UE association,
it transmits a low power pilot only but has all the overhead
components on. The power consumption of such an empty BS
is PRH(α = 0.1) + POH,on and this status is denoted in the
results as sm=0. If the sleep mode is on, the empty BS does not
transmit the pilot to reduce interference, but can either keep all
the overhead components on, or keep only the backhaul (bh)
on, or turn all the overhead components including the backhaul
off to save energy. The power consumption of an empty BS
in sleep mode is thus PRH(α = 0) + POH,on, PRH(α =
0)+POH,bh, and PRH(α = 0)+POH,off , respectively. These
increasing sleep mode depths are referred as sm=1, sm=2, and
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TABLE II
PARAMETERS FOR BS POWER CONSUMPTION

Item Value [W] Item Value [W]
PRH(α = 1) 0.4134 POH,on 9.7059
PRH(α = 0.1) 0.1307 POH,BH 5
PRH(α = 0) 0 POH,off 0
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Fig. 1. Cumulative Distribution Function versus ISD for various BS counts

sm=3, respectively. The BSs remain in sleep mode until new
UEs enter the coverage area. The parameters are listed in Table
II [29].

Fig. 1 plots the Cumulative Distribution Function (CDF)
versus BS ISD with the number of BSs as a parameter.
Densification adds more BSs into the same space, reducing
the ISDs as well as the BS-UE separation. The results show
that increasing the number of BSs from 2 to 100 to 1000,
the average ISD reduces from 38.66 m to 9.60 m to 4.29
m, respectively. For this ISD range, the BS-UE separations
is smaller, hence, both the signal and interference power at
the typical-UE from all transmitting BSs are high. Thus the
typical-UE is interference limited with interference dominating
the capacity performance.

Fig. 2 graphs the IoT RAN Volume Spectral Efficiency
versus BS density with both sleep mode status and UE
distribution as parameters for a RAN UE count of 100. When
sleep mode is off (sm=0), the typical UE briefly experiences
a capacity benefit from densification, which increases the UE
throughput and thus RAN VSE. With further BS densification,
the high interference from both active and empty BSs leads
to a decrease in UE throughput and RAN VSE. This tendency
is observed for both uniform and clustered UE distributions
with the optimum performance turning point around 0.000014
BS/m3 (4 BSs in the RAN). The RAN VSE then decreases
quickly for BS densities up to 0.000066 BS/m3 (20 BSs in
the RAN) when the average distance between UEs and BSs
changes rapidly, which is reflected in Fig. 1. With further BS
densification, the rate of change in UE-BS separation slows,
leading to a decrease in the RAN VSE gradient. However, the
uniform UE distribution achieves slightly lower RAN VSE
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Fig. 2. RAN Volume Spectral Efficiency (VSE) versus BS density for sleep
mode on (sm=1,2,3) and off (sm=0) and different UE distributions, 100 UEs

than the clustered distribution. This is because the clustered
UEs activate fewer BSs than the uniform case resulting in
less RF interference. When sleep mode is on, all of the modes
sm=1, 2, and 3 turn off the RF transmission from empty cells,
which is more effective at high BS densities. Therefore, with
sleep modes the RAN VSE starts to increase at 0.000234 and
0.000334 BS/m3 (70 and 100 BSs in the RAN) for uniform
and clustered UE distributions, respectively. Again, the lower
interference due to clustered UEs activating fewer BSs enables
slightly higher VSE at high BS densities.

Fig. 3 graphs the IoT RAN Energy Efficiency versus BS
density with sleep mode status and UE distributions as param-
eters for 100 UEs in the RAN. As mentioned, sm=1, 2, and 3
reflect the increasing sleep mode depth that reduces the power
consumption of an empty cell. Without sleep mode switched
on, all the BSs consume energy all the time. Thus increasing
the BS density also increases the RAN energy consumption,
which degrades the energy efficiency. This is reflected by the
decreasing RAN EE for both types of UE distribution and
is related to the decreasing RAN VSE. Again, the clustered
UE distribution activates fewer BSs than the uniform case,
leading to higher capacity, lower energy consumption, and
consequently higher energy efficiency. However, this does
not change the overall decreasing EE tendency. Similarly,
the reduction in energy consumption from turning off pilot
transmission while leaving either the overhead on (sm=1) or
just the backhaul on (sm=2) does not affect the decreasing
EE tendency, even though capacity is improved. Only when
the overhead including backhaul is turned off in empty cells
(sm=3), i.e., when empty cells are completely shut down,
does EE increase again. This is because the overall energy
consumption is prevented from increasing substantially in the
high densification region. The turning point occurs at 0.0001
BS/m3 (300 BSs in the RAN) for both UE distributions, which
is slightly higher than the VSE turning point at 0.000066
BS/m3. Again, the RAN EE is slightly higher when a clustered
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UE distribution is used due to the lower BS interference.
Fig. 4 graphs the IoT RAN Volume Spectral Efficiency

versus BS density with both sleep mode status and UE count
as parameters. Though higher UE densities result in higher
VSEs, the change in UE density does not affect the RAN
VSE vs. BS density trend. First, the VSE increases due to
higher received signal power but then decreases due to higher
received interference power. When sleep mode is off (sm=0)
the VSE levels off, whereas with sleep mode on (sm=1,2,3) it
starts to increase again. However, the amount of this increase
and associated turning point depend on the UE density. The
larger the UE density the smaller the capacity increase and the
greater the BS density turning point as more BSs are activated,
which increases interference. Though there are no available
EE results for a 3D model that the authors are aware of, the
work in [8] has the similar capacity improvement performance
against the BS densification using a 2D model with the sleep
mode between different UE densities. However, the results in
[8] do not capture the quick capacity degradation due to severe
interference.

Fig. 5 graphs the IoT RAN Energy Efficiency versus BS
density with sleep mode status and UE count as parameters.
The RAN EE curves for the same UE density behave similarly
as the BS density increases. Again, adding more UEs to the
same space activates more BSs for a certain BS density, which
increases the RAN energy consumption. This effect is the
most prominent for sm=3 where the power consumption of
active and empty BSs differs the most. The improvement in
capacity with UE density shown in Fig. 4 off sets this energy
consumption increase to some extent. As a result, the RAN
EE increases with UE count from 100 to 500 for sm=0, 1,
and 2, albeit with diminishing steps. In contrast, for sm=3 the
RAN EE first improves with increasing UE count for small BS
densities up to 0.000998 BS/m3 (300 BSs in the RAN) and
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then decreases with increasing UE count. The reduction in EE
with increasing UE count for sm=3, corresponds to the region
in Fig. 4 when the capacity turning points shift to higher BS
densities at higher UE counts. The work in [1] has a similar
EE improvement against the BS density using a 2D model
when sleep mode is enabled. However, the EE degradation at
low BS densities is not captured in [1].

IV. CONCLUSIONS

The BS densification in IoT RANs is evaluated in this work
using the metrics of RAN volume spectral efficiency (VSE)
and RAN energy efficiency (EE). The application of sleep
mode with different depths has also been investigated. Both
BS and UE counts follow independent 3D HPPP distributions,
which provide three degrees of spatial freedom compared
with conventional 2D models. Also, performance for uniform

355



and clustered UE distributions is investigated. The simulation
results show that without any sleep mode, the BS densification
in IoT networks would degrade RAN VSE due to interference,
and also degrade the RAN EE due to both VSE decrease and
energy consumption increase. In contrast, placing empty cells
into sleep mode constrains the interference, which improves
the RAN VSE when the IoT network is sufficiently dense.
However, the RAN EE only improves at high BS densities
when all the empty cells are turned off completely, including
the backhaul. These observation hold for both uniform and
clustered UE distributions. For future work, mathematical
analysis of SINR and UE/RAN throughput will be carried out
under the 3D HPPP model and extended to heterogeneous
network deployments.
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