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Abstract—Optimizing power consumption of 5G systems and
next generation technology deployments is a critical problem. It
is essential that the solution for optimizing power consumption
takes into account the tradeoffs with maintaining service level
agreement (SLA). Mobile network operator (MNO) may have
different priorities for the objectives of saving power and for
maintaining SLA, which depends on factors, such as customer
contract, location, time of day, type of traffic, etc. In this paper,
we design an intelligent solution using switching cells on-off
action to save power, using machine learning (ML)/ deep learning
(DL) methods to forecast future traffic load. We firstly identify
the problem of training imbalance in traffic load prediction
due to data imbalance in real cellular networks, and MNO
preferences for the competing objectives of saving power and SLA
maintenance. We then propose a novel solution that incorporates
Balancing Loss Function, which addresses the training imbalance
problem. Compared with the performance of previous approaches
such as Mean Square Error (MSE) minimization traffic forecast
based methods, we demonstrate using network field data that our
method is able to achieve upto 3X improvement in service quality
outage, with fairly similar power savings.

Index Terms—Power saving, SLA, Load Prediction, Machine
Learning, RRM Optimization, Bias, Balanced Training

I. INTRODUCTION

Power saving in RAN is critical for reducing operating
cost and following environmental stringent requirements, while
ensuring SLA in a cellular network [14], [15]. Different actions
can be taken, as a function of future load, in a cellular network
to save system level power. Consider an example scenario,
where there are a couple of co-located cells, cell-A operates
at a higher frequency carrier and cell-B operates at a lower
frequency carrier. If we can predict that the resource utiliza-
tion/load (both terms used interchangeably in the paper) in cell-
A and cell-B will be low for a future time interval, then carrier
corresponding to cell-A can be switched off, while offloading
its UEs to co-located cell-B carrier in that time interval, thereby
saving operating power by switching off carrier corresponding
to cell-A. We refer to this carrier on-off as cell on-off in the
rest of the paper. Cell switch-off allows an entire cell (i.e. a
frequency layer) to be switched off, leading to most of its RF
and Digital Front End components to be set to sleep mode.
In addition to cell on-off, different energy saving alternative
actions can be taken in cell-A to reduce power consumption,
for example, reducing operating bandwidth, reducing/on-off
MIMO channels, other advanced sleep modes etc.

Currently, the AI/ML based intelligent energy saving use case
leveraging data from the RAN, is being discussed in 3GPP and
O-RAN standards [21] [22]. The introduction of an intelligent
controller leverages AI techniques to embed intelligence in
RAN functionality. While messaging between intelligent con-
troller and different RAN components; functionality and inputs
of energy saving AI/ML models; are undergoing standardiza-
tion discussions, the detailed energy saving AI/ML algorithms
are out of scope of standardization. In this work, we identify
certain critical aspects for designing an efficient energy saving
solution, based on our field data study. Here we focus on cell
on-off energy saving action, while presenting a general solution
approach which can be applied to different energy saving action
scenarios.

Estimating future load correctly is essential for designing
cell on-off solution [11], [12]. Suppose in the earlier example
scenario, the predicted load were lower than the actual load.
Switching off cell-A, in this case may cause SLA outage as cell-
A would be switched off while its actual future load were high.
SLA outage here denotes the degradation of service quality
due to incorrectly switching off a cell, and the terms are used
interchangeably in the paper. In the case of load overprediction,
cells may not be switched off when the actual future load is
low, thereby, resulting in less power saving while not affecting
the service quality. There is an innate tradeoff between the two
metrics of power saving and service quality degradation, which
is governed by the estimate of future load [9], [10]. Therefore,
we aim to incorporate MNO’s preferences in the future load
estimate. MNOs may prefer to either prioritize maintaining
service quality or high power saving in their network based
on factors, such as customer contract, geographical location,
time of day, type of traffic etc. For example, in downtown area
during the day operators would place higher weight on avoiding
underprediction events causing service quality degradation,
while ensuring sufficient power saving; whereas at night time
during less traffic hours, the operator may choose to place
higher weight on power saving for these cells.

In the earlier discussed power saving scenario, the perfor-
mance of the load prediction algorithm in cases of high load
may be significantly more important than the performance
in other load regimes. This is because, underprediction in
high load scenario can cause service quality outage, whereas,
prediction error in low load scenario could result in less power
saving, which could be less catastrophic for the operators that
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have more preference towards SLA maintenance. In addition,
based on our analysis of the field data, we identify that for a
particular cell, majority of load samples does not belong to high
load regime, whereas the intended region of more importance
could be high load regime which constitute minority number of
load samples. Therefore, there is a mismatch in the importance
of cell load regime and number of samples in the corresponding
region and there is a bias in the data. Training on biased data
can lead to incorrect predictions for minority class of samples
[18]–[20]. This limited number of samples in the high load
regime, and further the different MNO priorities for competing
objectives of power saving and SLA maintenance leads to
imbalance in training. Not accounting for the imbalance, leads
to biased and incorrect load estimates and undesirable power
saving/SLAs.

We further observe that each cell in a network may have
different load distribution; different power saving priorities,
and hence a different degree of imbalance. Therefore, we
need to address the problem of training imbalance at a per
cell level based on the corresponding data characteristics and
MNO preference. Previous works [1]-[6], do not make the
observation of mismatch of majority of load samples, and the
intended range of cell load for the power saving at a per cell/s
level. These solutions were designed under the assumption
that the data is balanced and evenly distributed in different
load regimes. They follow an approach to come up with
sophisticated ML models to decrease mean error (for example,
mean square error) for load prediction over the entire load
range, but do not focus on performance of load prediction for
power saving use case in load regime of importance. Recently
training imbalance and fairness has received high attention in
ML community applied to different fields for example computer
vision etc [18]–[20]. However, it has not been clearly identified
and addressed in intelligent RAN power saving design to the
best of our knowledge.

While mean error metrics, for example MSE, is a commonly
used notion of measuring the prediction accuracy and captures
errors from an overall perpective, which means it calculates
the loss by firstly sum up all the errors from the whole data
set and then calculates the average value. This can capture the
errors from the load in majority regime and minority regime
equally when the load data sets are balanced. However, when
the data set is imbalanced, the error from the majority regime
contributes much more to the loss value than the error from
the minority regime. In this way, MSE loss function is biased
towards majority class and fails to capture the errors from two
regimes equally. Further, prediction error in some regimes may
be much more important than in other regimes making MSE
an inadequate loss function. To address these drawbacks of
MSE and previous load prediction models, we propose to use
a load prediction solution, where the loss function is tuned to
the imbalanced RAN load data and operator preferences.

The idea of intelligent RAN power saving using cell on-
off action is not new, and has been explored earlier [9]–[12].
However, the earlier solutions used load prediction based upon
MSE minimization, and did not balance the service quality

outage and power saving based on MNO’s preferences. In this
work, we make the following contributions :

• Using real field data we identify the problem of imbalance
in training for power saving due to load samples in more
important load regime being a minority in number, and
MNO preferences .

• We propose a novel Balancing Loss Function (BLF) to
balance the training for load prediction. This approach
provides us with parameters that act as handle to balance
the power saving and SLA outage based on operator pref-
erences. To the best of our knowledge, balanced training
based load prediction has not been used earlier to balance
SLA and the RAN power saving.

• We characterize the performance of load prediction into
two types of errors, indicating SLA outage and power
saving, rather than previously used single mean error
metric

• We demonstrate a reduction in SLA outage by upto 3X
using our proposed approach, as compared to baseline
approaches, while having fairly similar power saving.

Next, we provide details on the field cellular dataset in section
II, and corresponding characteristics that provide us the moti-
vation for our solution. In section III, we introduce the problem
formally and propose our solution in section IV. We evaluate
the proposed solution with help of the dataset and compare the
performance w.r.t. baseline algorithms in section V. And finally
conclude in section VI

II. NETWORK DATASET

We analyze open-source Telecom Italia [17], call detail
records (CDRs) data, which contains two month records of
Milan city cellular network. The dataset contains CDRs at a
granularity of 10 minutes. CDRs are used as an estimate of
data traffic load with appropriate assumptions listed in the next
section. The city is divided into square grids (10,000 in number)
and data traffic per grid across the city is studied. We observe
temporal and spatial variations of the traffic volume, as shown
in Fig.1, for 100 grids in 2 weeks interval (144 samples per
day). In the figure, x-axis denotes the time samples and y-axis
denotes the adjacent square grid number, and the brighter color
corresponds to higher cellular data traffic. Overall, the traffic is
observed to be higher during the day and lower at night. Also,
some of the grids have much higher traffic volume as compared
to others. Note the imbalance of darker and ligher regions in
the plot, indicate bias towards low traffic volume in the RAN
data.

Next, we quantify the imbalance by calculating the percent-
age of load samples lower than a particular load threshold in
different grids. The threshold is set to be half of high percentile
(95th) traffic across all grids over entire time duration (reason
for factor half is that in next sections we will consider sum of
traffic for pair of grids to make energy saving decisions). We
observe, that in Fig.2 the imablance of load across different
grids is variable. In the figure, y axis denote the percentage
of load samples lower than threshold load and x axis denotes
grid number. In some grids the imbalance is much more severe
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than in other grids, and we need to take a solution approach
that addresses the imbalance based on data characteristics of
each grid.

Figure 1: Cellular traffic (CDRs) heat map w.r.t. time (2weeks,
x axis) and grids (100, y axis)

Figure 2: Percentage of samples (y axis) in different grids (x
axis, 100 grids) that have traffic (CDRs) below a high traffic
threshold .

We finally observe, that the traffic volume per cell at a
granularity of 10 min. have sudden peaks and valleys, and does
not follow a regular pattern as also earlier observed in [12],
[13]. We observe a strong correlation of future load samples for
a cell with immediate past load samples. Therefore, limited past
samples can aid in prediction of future load samples. However,
there can be sudden peaks which could be difficult to predict
and can cause underprediction at relatively high traffic, thereby
leading to SLA outage.

A. Mapping data to Power saving in cellular network

Next, we map the Telecom Italia dataset to the power saving
scenario in cellular networks. Though the dataset is rich in
spatial and temporal domains, we have to make appropriate as-
sumptions to map the dataset to cellular power saving scenario.
Firstly, we map the grids to cells, by assuming n and n+ 1th

grid constitute a pair of co-located cells, where n corresponds
to higher frequency cell and n + 1 maps to lower frequency
cell, n ∈ 1, 3, 5.., .. Note that we do not have cells per grid

information available in the dataset. Given that each grid is
a square of side ∼ 200m, there would be limited number of
cells per grid in the actual deployment. Hence, the temporal
characteristic of cellular traffic is mantained, by mapping each
grid to a cell. Further, we observe that there is significant
correlation of a grid traffic with adjacent grid, and therefore
justifies our assumption of mapping two consecutive grids to
two co-located cells given the limited information in dataset.

While there are sophisticated traffic models available, we
assume a simple traffic model where each call duration consists
of 2 MB data transfer. Therefore, we can estimate traffic
intensity/data rate which is defined as amount of MBs of data
incident on the cell per 10 min. time interval, in each grid
using the CDR data. Although, each cell in the network can
have a different maximum data rate based on factors such as
bandwidth, transmission scheme etc., for simple mapping we
assume the maximum data rate achievable for a cell is the
top (for example 98th/99th) percentile data rate seen across
all cells over the entire time duration. The estimate of data rate
and maximum data rate for a cell helps us to approximate the
load/resource utilization, and come up with power consumption
using well known power consumption models [16].

III. SYSTEM MODEL AND PROBLEM STATEMENT

Let us say, given a cluster of cells (say Macro cells and
small cells) has common service area A, with each cell i having
ni sleep/active states. We need to determine what sleep/active
state each cell should be in, for minimizing power consumption
and to mantain service quality. Suppose, we have |B| cells
in the cluster, and each cell has at max. K sleep states, then
optimistically speaking there are K |B|possible states for the
cluster. With dense network scenarios, |B| can be large causing
the complexity of the problem to be very high. Note that each
cell cannot take ‘any’ sleep state value, for example in a 2-cell
co-located scenario, cell with higher center frequency will go
into sleep state rather than lower frequency cell to guarantee
coverage. Similarly, cells based on licensed frequency may have
higher priority to be in sleep state given less traffic, as compared
to unlicensed cells. We assume that this priority order of cells
is known or learnt over time (longer time scale) and is denoted
by C. Ties of cells with same priority are broken randomly.

Let Z denote a vector of length |B| and Z ∈ C is sleep
state vector for a future time interval T , where each entry in Z
corresponds to the sleep state for corresponding cell. Further,
let X denotes future load for the group of cells for time interval
T . The power saving problem can be stated as:
Power Saving Problem

maxZf(X,Z)− P (X,Z)

subject to Z∈ C
(1)

Where, P (X,Z) is a function of system power con-
sumed, for example P (X,Z) = α ∗ Plicensed(X,Z) + β ∗
Punlicensed(X,Z), Plicensed denotes the system power con-
sumed on licensed spectrum which is a function of vector
X , whereas Punlicensed corresponds to unlicensed spectrum.
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f(X,Z) is a measure of system service quality outage/ SLA
outage, for example 100−µ(X,Z), where µ is the percentage
of outage events in high load scenarios. α and β signify the
relative importance/priority of power saving w.r.t. performance.
The constants α and β can be set by network operator to
prioritize power saving on licensed and un-licensed bands over
the performance and vice versa. The value of α and β can
change across different cluster of cells, and also with time
within each cluster. The difference of the f() and P () in
(1) denotes, that we aim to maximize the service quality and
minimize power consumption.

Although the number of cells in cluster C is usually lim-
ited in a practical deployment limiting the complexity, the
major challenge in solving the problem (1) is to obtain a
reasonable estimate of X , and further there is no closed
form expression available for the objective. Power consumed
and SLA would depend on the combination of the following
factors: (i) surrounding conditions for example, channel models
etc.,(ii) configuration parameters for example, scheduler algo-
rithm used etc., (iii) type of traffic, (iv) implementation details
for example, implementation of non-standardized algorithms.
Moreover, combination of parameters in these factors can grow
exponentially. Thus, we abstain from theoritical modelling to
keep the solution general across different surrounding condi-
tions, configuration settings and implementation details, and
do not use a closed form expression for the SLA and power
consumption function. We limit the number of cells in a cluster
to 2 from now onwards in the paper, so as to focus on the load
prediction aspects of the problem in a practical deployment,
though the proposed solution can be extended to multiple cells
based on the priority order C.

We assume that a rich pipeline of RAN data comprising
of history of load information for a cell and its neighbors,
such as number of RRC connected/ active users, PRB usage
in DL/UL are available, which can be leveraged to design
intelligent power saving scheme. Further, data available to us
include cell specific data which is more or less static with
time. Metadata comprising of events like holidays, games in
cell deployed in a stadium, and other events affecting traffic in
the network is available to us as well. Finally, we also assume
access to performance data for example cell throughput, SLA
outage, power consumtion etc. The time granularity of the data
is assumed to be non real time, that is order of seconds/minutes.

IV. PROPOSED SOLUTION

We address the problem of intelligent power saving for RAN
by first proposing a general solution framework. Next, we
provide the load prediction solution tuned to balance the power
saving and SLA.

A. Solution Framework

In Fig.3, we provide a solution framework for intelligent
system level power saving problem. The traffic collection
module leverages data from the RAN to come up with load
trends per cell, so as to train the load prediction module. In
our study, RAN data collection maps to leveraging the CDR

Figure 3: Solution framework for power saving

Telecom Italia dataset and estimating traffic volume based
on assumptions mentioned in section II. The load prediction
module predicts future load estimate using the relevant features
from the RAN data. The load prediction should incorporate
the bias in number of samples and importance for a particular
operating range. Further, the total estimate of predicted load
(L1+q.L2): (L1 being load on lower frequency carrier, and L2
corresponding to higher frequency carrier) is compared against
a threshold load to make the cell switch on-off decision. If
the total load estimate is lower than the threshold, we take a
decision to switch off cell operating at higher frequency. On
the other hand, we make a decision of cell operating at higher
frequency to be on if the estimate exceeds threshold. Further,
the load estimate should incorporate the spectral efficiency
ratio (q) of the cells to balance the cell/operating conditions
in different cells. The prediction module is trained on the data,
where the cell switch on-off is not enabled so that the future
load is not affected by the on-off action. The algorithm can
be extrapolated to determine on-off action when the number
of cells is more than two, by considering the total estimate of
predicted load and corresponding thresholds.

The load prediction model can be tuned based on prediction
performance of the model. Moreover, the performance of the
model may not be restricted to prediction error but can include
maximizing the objective (1). Further, on-off threshold could be
tuned so as to maximize the objective. Next, we choose the cost
function best suited for training the model for load prediction.
The choice of cost function is critical for balancing the SLA
and power saving, as desired by problem objective (1).

B. Cost Function

As discussed earlier, there might not be sufficient number
of training samples lying in the load regime of importance,
thereby causing bias in trained model. Further, we need to
prioritize power saving and SLA based on MNO preference.
The Mean Square Error or L2 cost function used for training
the model is the average of sum of squared difference between
actual and predicted load. Similarly, L1 cost function used
for training the model is the average of absolute value of
difference between actual and predicted load. L1 loss function
can be used to predict the median future load, while L2 loss
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function can be used to predict the mean future load. Note
that, in the L1 and L2 cost function all over-predictions or
under-predictions errors have equal weight and do not account
for either countering the bias or balancing the two metrics
of SLA and power saving based on the operator. In the case
of power saving, under-predictions and overpredictions need
different weights naturally, based on balancing of SLA and
power saving required by the network operator. The L1 or L2
cost minimization load prediction could be misleading in this
case. Therefore, we design a tunable cost function.

We introduce two parameters ν&w, where ν could be used
to tune the balance of underprediction and overprediction.
Further, w is used to balance the number of samples in
intended region of samples for the power saving use case. We
propose a loss function based on ν&w, given by:
Balancing loss function (BLF)

Lν,w(X, X̂) =∑
k:ek>0,Xt+k∈SL

w ∗ ν ∗ (ek) +
∑

k:ek<0,Xt+k∈SL

w ∗ (−1) ∗ (ek)

+
∑

k:ek>0,Xt+k /∈SL

ν ∗ (ek) +
∑

k:ek<0,Xt+k /∈SL

(−1) ∗ (ek)

where w > 0&ν > 0. Xt+k denotes actual load value
corresponding to future time t + k and ˆXt+k is the predicted
value of load corresponding to the time step t + k, where
1 =< k <= T − t. ek is the underestimation error, which
is Xt+k− ˆXt+k. SL is the set of load corresponding to desired
regime of importance for the power saving use case.

The first two terms of the loss function corresponds to the
load samples in the desired regime of importance SL, and
weight w is used to balance the mismatch in the number of
samples in the desired region. Thereby, multiplying by a weight
w. The first term of summation in the above loss function,
chooses training samples for which the actual load is greater
than the predicted load (ek > 0) and the second term of the
summation corresponds to overprediction (ek < 0) . In the first
term corresponding to underprediction, the error is weighted
by a factor ν as compared to second term corresponding to
overprediction error. If we choose a high ν = 9, then we
favor overprediction, by weighing the overprediction error by 1
and underprediction error by 9. Favoring overprediction would
lead to prioritizing mantaing the SLA as compared to power
saving. The last two terms of the loss function corresponds to
the load samples not in the desired SL, while mantaining the
underprediction and overprediction error ratio same as it is in
the first two terms, are weighted w times less than the first two
terms to balance the bias.

We can calculate appropriate value of w for a particular cell
based on the load range of importance [Ll, Lh] . Appropriate
w is estimated as the ratio of number of training samples not
in the range [Ll, Lh] to the number of samples inside the
range. Therefore we amplify the error for samples in load
range of importance, given the samples in intended region
are a minority. The calculation of ν is challenging as the
translation of overprediction and underprediction error to the

SLA maintenance and power saving is complex and not known.
The following procedure can be followed:

• The prediction model predicts load vector for P , where
P contains ν elements such as [1,2,...,9,10] and the value
of ν chosen based on load prediction performance in a
particular use case. The value can also be chosen based on
maximizing the objective (1) based on MNO preference.

• Alternatively, ν (or jointly with w) should be chosen as a
hyperparameter and it could be chosen for power saving
using Bayesian optimization or random search. The
objective is based on observed value of the objective in
(1).

Though we use v to balance SLA maintenance with power
saving, it can also be used to balance performance metrics for
example, cell throughput, latency etc. with power saving as
well.

C. Prediction Model Solution

As pointed earlier, we observe that the on-field cell load
time series has dynamic peaks and troughs, which are dif-
ficult to predict. Therefore, estimating point estimate value
or conditional distribution of the future load is challenging.
Function estimation using model parameter weights, forms a
natural solution choice for load prediction. We can use the
observed load samples and appropriate features for training the
model weights. Neural network (NN) architectures combined
with stochastic gradient descent algorithm are known to be very
efficient predictors in different applications. Also, XG-boost
ML models are known to perform very well in many application
areas and form a natural choice for the function estimation.
Various features along with the past load samples can be input
into these standard ML/DL models for a particular cell c. We
identify some features which form a reasonable correlation with
cell load mentioned in Appendix A.

D. Evaluation criterion

The evaluation criterion for a load prediction should essen-
tially be based on the RAN power saving switch on-off decision
accuracy, instead of standard mean/median error metrics. Using
the metrics for evaluation, which are based on mean error
rather than assigning higher weight to a particular range of load
(important to a use case) can lead to erroneous performance
evaluation. For example, suppose objective in the power saving
use case we need to detect if the load is overshooting a thresh-
old (say 70%), average percentage error for a load prediction
model (over all load samples) may show error < 10% but
in the high load regime (where there are fewer samples, due
to to innate bias in data) the average error might be much
higher (say > 40%), thus, leading to SLA outage. Therefore,
mean error metrics over entire samples gives us a false sense
of performance, due to the training imbalance observed from
field data. This observation has not been considered in previous
energy saving works, and mean error metrics have been used
to evaluate the performance of load prediction.
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We evaluate two types of error events indicative of RAN
power saving performance for load prediction module at cell/-
group of cell level:

• Type A- When sum of load of pair of cells is high and
there is underprediction of more than a particular value,
thereby indicating SLA outage

• Type B- When sum of load is low and there is overpredic-
tion by more than a particular threshold, thereby indicating
less power saving

Finally, we also evaluate the performance of the solution in
terms of SLA outage and Power consumed and demonstrate
that the balancing cost function based load prediction helps to
balance the two performance metrics much better than baseline
predictions.

E. Model Architecture

We evaluate the Multi Layer Perceptron (MLP) NN based
model for load prediction. NN architecture evaluated using
tensor-flow for load prediction is the following: (a) Model =
Multi layer Perceptron model, (b) Number of hidden Layer = 1,
(c) Number of neurons per hidden layer = 10, d) Epochs = 200,
(e) Batch size = 4, (f) Learning rate = 0.003, (g) Optimization
algorithm= Adam optimizer, (h) Cost function= Balancing loss
function.
We tune the NN architecture and obtain the best performance
using a simple single layer NN and past five load samples with
additional features as an input to the model. The features in
addition to past load samples are the following: (i) First order
moment of load at same time across multiple days, (ii) second
order moment of load at same time across multiple days and
(iii) time of the day. We further tune NN architecture with more
layers, along with more complicated LSTM models and also
with additional features like higher order moments, neighboring
cell load etc. We also evaluated XG-boost ML algortihm.
However, the different architectures showed no additional gains.
Thus, to be concise, we present results based on MLP model
in the paper. For simplicity, we use the same value of ν for
all the cells, and different values of w per cell. Thus the
cost function is based on data charactacteristics per cell and
also MNO preference. We use different ν values and find the
best one that obtains a reasonable balance between the SLA
maintenance and power saving objective (1).

F. Power Saving model used

The power saving model used for pair of co-located cells is
the following

• When both the cells are on power consumed is 334 +
2.73 ∗ (x1 + x2) W, where x1 and x2 is percentage load
for cell operating on higher and lower carrier frequency
respectively.

• When the cell operating at higher frequency is switched
off and the lower carrier frequency is on, power consumed
for pair of cells is 167 + 2.73 ∗ (x1 + x2) W.

The model is extrapolated from [16]. Power consumption
is calculated and summed for 250 pair of cells (500 cells)
across 2 days (144*2) test data. Finally, the calculated
average power saving per cell per sample results are shown
in section V.

V. EVALUATION

We present an extensive evaluation of the proposed power
saving solution on the cellular network field data described
in section II. We firstly evaluate the load prediction
solution based on the Type A and Type B error metrics
(defined in section IV), while comparing with the base-
line solutions. Further, we evaluate the SLA and power
consumed balance while demonstrating the advantage of
using our balancing loss function based load prediction
approach. Finally, we provide an example scenario for
choosing the right ν for optimizing the desired objective,
while balancing SLA outage and power saving percentage.

A. Load Prediction evaluation

We aim to predict the next future sample value of traffic
volume in a cell using the past traffic volume samples
along with additional features. We evaluate the perfor-
mance of load prediction on the field data at a granularity
of 10 min. (averaged at 10 min. timescale).
The field data processed us is worth 14 days (14*144
samples). For a given cell, first 12 day consecutive time
samples (12*144 samples) are used to train the model
per cell and the remaining two day data is used to test
the performance of model. The performance is evaluated
for 500 cells with appropriate assumptions as mentioned
in section II. Note that for each cell we train a separate
model, and the performance is aggregated across test sets
of different cells. The past load samples at a granularity
of 10 min. are used to predict the next 10 min. load. We
compare our solution with following baseline predictors:
– Previous Sample Predictor– The next load sample value

is equal to the present load sample value.
– Mean Square Error Predictor– The cost function used

for training the load predictor is the average of square
of difference of predicted load value and actual future
load value.

– ARIMA predictor– This is a well known classical time
series predictor. Note that weight update is based on all
the past load samples available rather than just training
set. Model order used is (5,1,0) which fits best on the
data.

– Window Average– Next sample is the average of last
five load samples.

We evaluate performance of our proposed solution based
on BLF for different v value for load prediction. For each
cell, we calculate appropriate w for the loss function using
training data based on section IV solution. We further,
calculate the percentage of load samples higher than half
(as we consider pair of co-located cells) of high load
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threshold (95 percentile) and if it is > 50%, we use BLF
with corresponding v value to balance the training, and if
the value is < 50 we use MSE loss function for the cell
as we have sufficient samples for high importance load
regime.

Figure 4: Load prediction evaluation based on Type A & Type
B events

MNOs prefer Type A percentage to be as low as possible,
while mantaining low Type B to be reasonably low. In
Fig. 4 we evaluate the Type A and Type B errors per cell
for different load prediction algorithms. For Type A events,
we consider scenarios when sum of actual load of pair of
co-located cells is greater than the threshold for high load
which is 95 percentile (of traffic gathered from 500 cells),
and Type A error is commited if the sum of predicted
load of pair of co-located cells is lower than the high load
by an amount greater than buffer of 5 MB. Similarly, for
Type B events, we consider scenarios when actual load
sum is lower than the threshold of low load affected by
overprediction, which is 95 percentile minus a buffer of
5MB, and Type B error is commited if the prediction is
higher than the threshold by an amount greater than buffer
of 5 MB.
In Fig. 4 we observe that the BLF based MLP prediction
outperforms the other baselines w.r.t. Type A events, which
are very important for MNOs. For ν = 10 the Type A
events are reduced to 1.4%, while affecting the Type B
accuracy by upto 3.6% w.r.t. MSE. Whereas, the MSE
based prediction suffers from high 4.2% Type A errors
leading to SLA outage. Moreover, BLF for ν = 5 is able
to balance the two event types. Therefore, BLF based ap-
proach can outperform the baseline solutions by efficiently
balance the two types of error. Finally, comparing the Type
A events value of 4% for BLF, ν = 1 to percentage of
1.4% for BLF, ν = 10 underscores the significance of the
parameter ν in the proposed BLF.

B. Power saving and SLA outage evaluation

Next, we aim to evaluate the actual power saving and
SLA outage using the solution in section IV. We make
decision to switch off a high frequency cell, if the sum
of predicted future load of the two cells is lower than

95 percentile (of traffic gathered from 500 cells). The
power saving model used is extracted from [16] (more
details in section IV F). In the below table, we evaluate
the percentage of SLA outage events (translates to type
A events) and power saving for different load prediction
models. We observe that, baseline solutions provide at
best an SLA outage event percentage of 3.9 %, while on
average power utilization achieved is 144 W. However,
the MNO would suppose want to further reduce the outage
percentage to say < 2%. Here we demonstrate that the
BLF proposed for the RAN load prediction is critical
in such a scenario. For example, BLF ν = 10 for the
MLP reduces the SLA outage to 1.4 % while marginally
increasing power consumed. BLF based prediction is able
to improve the SLA by 3X as compared to MSE cost
function. Therefore, BLF based ML model are critical to
balance both the outage and power consumption. Without
much loss in power saving, we can balance the SLA outage
which is not possible with other baseline load prediction
methods. Note that, proposed approach obtains similar
gains over baseline schemes by setting different on-off
threshold values as well. Ideal prediction algorithm refers
to a genie based scenario, where future load are known
accurately beforehand. Ideal prediction algorithm obtains
32.5 % power saving over the case when there is no power
saving (213.2 W power consumed in case of no power
saving).

Figure 5: Service quality outage and Power saving using
different load prediction algorithms

C. Choosing right γ based on operator preference

Figure 6: Service quality outage and Power saving tradeoff
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Finally, we aim to chose the right ν based on MNO’s
preferred objective. In Fig. 6 we plot the SLA outage,
and power saving advantage of using the corresponding
load prediction algorithm w.r.t. always all cell on case. As
can be seen from the figure, appropriate γ can be chosen
so as to balance the SLA outage and power saving. For
example, suppose the objective is maximizeγk ∗ f(γ) +
P (γ) , where P denotes percentage gain in power saving
w.r.t. previous sample predictor, f denotes the functional
form of SLA outage and k denotes the weight of SLA
maintenance over power saving. Let us suppose avoiding
outage is 100% more important than saving power for an
operator, k value is 2. Also , f is 1(SLAoutage<2%). For
ν = 7 objective is 2*1 -1.5=0.5, ν = 5 objective is 2*0-
1.1= -1.1, we will choose ν = 7 out of the two. Similarly,
we will choose ν = 7 over value of 10, based on the
objective function. Thus, we can select the appropriate ν
dynamically, from different values of ν to balance SLA
and power saving based on MNO preference.

VI. CONCLUSION

We have proposed a balancing loss function based solution
for the problem of balancing SLA outage and power saving
in a cellular network. The proposed solution achieves
superior performance on real field data as compared to
the state of the art MSE cost based ML and other baseline
solutions. The proposed technique will apply to a broad
set of decision/selection to optimize energy and we’re
here showing a specific action space of cell on-off. There
remain some open issues we have not explored here. For
instance, in this work we have considered SLA outage
as a performance metric, but not mapped our solution
to performance metrics such as latency, throughput etc.
We used ML models per cell but multiple cells could
be grouped/clustered based on different criterions, with a
common ML model so as to improve the performance of
load prediction performance. Also, we have not explored
the performance of the solution using online training [7]-
[8] approaches such as reinforcement learning for the
problem. We plan to expand our work incorporating these
issues and more energy saving actions in the future.
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APPENDIX A
APPENDIX: MODEL FEATURES

The features are-
– Related load metrics known for the cell. For example, if

we aim to predict the PRB usage, related load metrics
include number of RRC connected users, number of
active users etc.

– Metadata related to time and events, like whether a
particular day is a holiday/special event, has a special
weather pattern, time of the day or day of the week etc.
Some of these features like time of the day along with
past load or related metrics.

– First, second and even higher order moments of features
(including max. and min. values) and load time series
of the cell for example, mean, variance or higher order
moments of the load could be used. The moments can
be specific to particular times of the day of interest.

– Cell specific configuration information for cell, for ex-
ample, bandwidth, center frequency, number of antennas
etc.

– Finally, other similar load and feature time series of
neighboring cells/group of cells in the network.
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