
A Hierarchical Green Mean-Field Power Control
with eMBB-mMTC Coexistence in Ultradense 5G

(Invited Paper)

Sami Nadif∗, Essaid Sabir◦, Halima Elbiaze◦, Oussama Habachi• and Abdelkrim Haqiq∗
∗IR2M lab., FST, Hassan I University of Settat, Morocco

◦Department of Computer Science, University of Quebec at Montreal, Montreal, QC H2L 2C4, Canada
•LIMOS Lab., University of Clermont Auvergne, France

sami.nadif@live.com, {sabir.essaid, elbiaze.halima}@uqam.ca, oussama.habachi@uca.fr, ahaqiq@gmail.com

Abstract—Small cell densification is recognized as one of the
most significant characteristics in the fifth-generation of commu-
nication systems (5G) and beyond. A substantial capacity boost
can be achieved at a low cost by supplementing macro networks
with numerous small cells to create ultra-dense heterogeneous net-
works, which can serve as the foundation for the next generation of
services. In this paper, we investigate a model that accounts for the
location and channel quality of an enhanced Mobile Broadband
(eMBB) user as well as the locations, density, and energy levels of a
large number of Internet of Things (IoT) devices. More specifically,
the eMBB user is randomly distributed in the coverage area of
the MBS, and given its channel gain, it adjusts its transmit power
to achieve an acceptable Quality of Service (QoS). In contrast,
the IoT devices are gathered around SBS and regulate their
transmission power in accordance with their energy budget to
minimize energy-efficient utility function. Due to the coupling,
the Stackelberg-Nash differential game is initially used to model
the power allocation problem, with the eMBB user playing the
role of the leader and the IoT devices playing the role of the
followers. Then, we use the mean-field approximation to construct
a hierarchical mean-field game from which we can recover a
set of equations that may be solved iteratively to provide the
optimal power allocation strategies. Simulation results illustrate
the optimal power allocation strategies and show the effectiveness
of the proposed approach.

Index Terms—5G and Beyond; Internet of Things (IoT); Power
Allocation; Stackelberg Game; Mean-Field Equilibrium.

I. INTRODUCTION

In a recent report, Cisco predicts that the 5G network will
have to deal with up to 13.1 billion mobile users by 2023. Fur-
thermore, the number of Internet-enabled devices that should be
handled after integrating the Internet of Things (IoT) into 5G
will have increased from 18.4 billion in 2018 to 29.3 billion by
2023 [1]. Since this increasing trend doesn’t seem to be slowing
down, the massive access challenge is one of the most important
targets for the sixth-generation of communication systems (6G).
This massive access challenge has raised the need to rethink
the PHY and the MAC layers in order to intelligently share
the available spectrum between enhanced Mobile Broadband
(eMBB) and massive Machine Type Communications (mMTC).
Indeed, network densification is recognized as one of the most
significant characteristics in 5G and future generations [2], [3].
Note that ultra-dense networks (UDNs) enable us to achieve a
powerful capacity enhancement with a relatively low cost. In
fact, Small Base Stations (SBSs) are densely deployed under

the coverage of a traditional Macro Base Station (MBS) to share
the frequency resources and enhance the spectrum efficiency.
Indeed, UDN can be seen as a key technology for 6G since it
enables us to handle high density, increase network capacity,
improve the coverage and the quality of service (QoS) [4].

A. Related Work

In [9] , the authors proposed a resource allocation technique
that maximizes the energy efficiency in UDNs. Authors of [5]
proposed a three-stage joint clustering and resource allocation
in user-centric UDNs in order to maximize the sum rate. In
[8] , L. Sun et al. proposed a CSI compression mechanism to
reduce the upload overhead and improve the spectral efficiency
in cell-free UDNs. Authors of [6] and [7] proposed a cell-free
mMIMO operating in mmWave for UDNs and investigated the
effect of shadowing correlation and beamforming techniques.

Game theory is an interesting mathematical tool to model
the interaction between the network’s components and derive
distributed algorithms. Particularly, resource allocation has been
deeply investigated using game theory, especially for densely
deployed networks [13], [15], [16], [17]. When the network gets
denser, it is more interesting for a player to interact with the
collective behavior of its opponents rather than being concerned
with the specific individual strategy of each player in the
game. Hence, Mean-Field Game (MFG) theory has increasingly
gained attention in ultra-dense 5G networks. It is worth noting
that MFG simplifies the resolution of game by reducing the
mathematical complexity to a two-body complexity. In fact,
MFG is mainly based on the coupled equations Hamilton-
Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK),
instead of considering all the one-to-one interactions. The
former equation characterizes the interactions between the
players and the mean-field, enabling them to make decisions,
whereas the latter equation rules the evolution of the mean
field according to the players’ decisions. Afterward, the mean
field equilibrium (MFE) is obtained by iteratively solving these
coupled equations. For example, authors of [10] proposed a
Mean-Field Deep Deterministic Policy Gradient algorithm to
solve the resource allocation problem for NOMA-MEC in an
ultra-dense network. They illustrated through numerical results
that the proposed algorithm efficiently reduces both the energy
consumption and the delay of users. Zhang et al. have proposed
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in [11] a power control algorithm based on Mean Field Game
to mitigate the interference in UDNs taking into account the
SINR requirement, and proved that they were able to improve
both energy efficiency and spectrum efficiency.

B. Our Contributions

In this paper, we consider a general model that takes into
account the eMBB user’s location and channel quality, and
also the IoT devices’ locations, density, and energy levels.
More precisely, the eMBB user is randomly distributed in the
coverage area of the MBS, and given its channel gain, it adjusts
its transmit power to obtain a satisfactory Quality of Service
(QoS). The IoT devices, on the other hand, are grouped around
SBS using a general cluster process, and given their energy
budget, they adapt their transmit power to optimize an energy-
efficient utility function over a period of time T . The power
allocation problem is initially treated as a Stackelberg-Nash
differential game with the eMBB user acting as the leader and
the IoT devices serving as the followers due to the coupling
of interference. Then, using stochastic geometry analysis and
mean-field approximation, we construct a hierarchical mean-
field optimal control problem to offer distributed power alloca-
tion strategies for both the eMBB user and the IoT devices.
The contributions of this paper can be summarized as follows:

– We construct a Stackelberg-Nash differential game
model that incorporates the location and channel gain
dynamic of the eMBB user as well as the density, loca-
tions, and energy budget dynamics of the IoT devices;

– We present a hierarchical mean-field power allocation
scheme by leveraging stochastic geometry analysis and
mean-field theory. By implementing a proper estimating
procedure to know and update the channel statistics of
the eMBB user, our approach enables each IoT device
to determine its optimal power allocation strategy based
entirely on the initial energy state distribution (mean-
field) and its own energy budget. The eMBB user, on
the other hand, adjusts its transmit power dependent on
its channel gain;

– We propose an iterative algorithm to solve the hierar-
chical mean-field power allocation problem in an ultra-
dense network;

The rest of the paper is organized as follows: The spatial model,
the transmission model, and the Stackelberg-Nash differential
game model are all presented in Section II. In Section III, the
basic structure of the mean-field framework is laid out. The
numerical and simulation findings are presented in Section IV.
Finally, Section V concludes the paper.

II. SYSTEM MODEL

In this paper, we analyze a MBS that uses a wide-bandwidth
Bw to connect to an eMBB user and multiple SBSs that utilize
L orthogonal channels, denoted by L = {ℓi, i = 1, . . . , L},
with narrow-bandwidths of length Bw

L to provide connectivity
for a large number of IoT devices that operate mostly in the
uplink and belong to a certain closed subscriber group. As an

illustration, consider a NB-IoT system with a total bandwidth of
180 kHz using the single-channel configuration (either the 3.75
or 15 kHz channel bandwidth) [13]. Additionally, we assume
synchronous deployment in all small cells using the same chan-
nels. It means that the bandwidth utilized for communication
is the same across the entire network.

A. Spatial Model

In the proposed framework, we consider a single MBS at
location m. The spatial domain of our analysis is denoted by
Dm, which is the coverage area of the MBS, i.e., the disk
with center m and radius Rm. We also consider an ultra-dense
small cell cellular network in which the SBSs are randomly
distributed in the compact set Dm according to a homogeneous
Poisson Point Process (PPP) denoted by ϕs = {si, i = 1, 2, . . . }
with intensity λs where si is the location of the i − th SBS.
Active IoT devices transmit simultaneously using a cluster-
based setting, where the cluster centers are the SBSs. The
number of active IoT devices associated with a specific SBS
at the location s ∈ ϕs, defined as Ns, is a Poisson random
variable with mean intensity λa.
Let Ds be the coverage area (disk of center s and radius Rs)
of the SBS at the location s. We denote by ϕx,s = {xi,s, i =
1, 2, . . . } the point process of active IoT devices associated to
SBS at the location s whose locations are independently and
identically distributed with a probability density function f(·|s).
Moreover, by using the polar coordinate system, we write

f(x|s) = fr(|| x − s ||)
2π || x − s ||

, x ∈ Ds/{s}, (1)

where || · || denotes the euclidean distance and fr(·) is a
probability density function on ]0, Rs].
In this work, the distance r between an arbitrary active IoT
device at the location x and its serving SBS at the location
s, given as r =|| x − s ||, follows a general probability
density function, such that r

Rs
follows a Beta(a, b) distribution,

expressed as:

fr(r) =
1

Rs

( r
Rs

)a−1(1− r
Rs

)b−1∫ 1

0
ua−1(1− u)b−1du

, 0 < r ≤ Rs. (2)

This density allows us to implement different cases of IoT
device distribution per small cell, based on the parameters a
and b :
• If a > 1 and b > 1, the IoT devices are away from both the
SBS and the small cell edges.
• If a ≥ 1, 0 < b ≤ 1 and (a, b) ̸= (1, 1), the IoT devices
are away from the SBS and are around the small cell edges. In
addition, if (a, b) = (2, 1), then, in this case, our cluster process
is a Matern cluster process.
• If 0 < a ≤ 1, b ≥ 1 and (a, b) ̸= (1, 1), the IoT devices are
around the SBS and are away from the small cell edges.
• If 0 < a < 1 and 0 < b < 1, the IoT devices are around both
the SBS and the small cell edges.
• If a = 1 and b = 1, the IoT devices are distributed uniformly
in the circle of radius Rs.
It is worth mentioning that the resulting cluster process ϕx =
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⋃
s∈ϕs

ϕx,s = {xi, i = 1, 2, . . . } is a stationary point process
with intensity λsλa. Moreover, the number of active IoT
devices (resp. the number of active IoT that attempts an uplink
transmissions using a specific channel ℓi ∈ L) in Dm, denoted
as Na (resp. Na), is a Poisson random variable with mean
intensity λsλaπR2

m (resp. 1
LλsλaπR

2
m).

In the other hand, we consider a single eMBB user at random
location y distributed in Dm with a probability density function
given as

g(y|m) =
gr(|| y − m ||)
2π || y − m ||

, y ∈ Dm/{m}, (3)

where gr(·) is a probability density function on ]0, Rm] derived
as a special case of (2) by selecting a = 2 and b = 1, given by

gr(r) =
2r

R2
m

, 0 < r ≤ Rm. (4)

The distance between a SBS at the location s and the eMBB
user is denoted by ru =|| s−y ||. Conditioning on the distance
between the MBS at the location m and the SBS at the location
s, given as rm =|| m − s ||, the probability density function of
ru is given by [14]:

fru(r|rm) =


ψ1(r)

πR2
m

, 0 ≤ r ≤ Rm − rm,

ψ2(r)

πR2
m

, Rm − rm < r ≤ r,Rm + rm,

(5)

where
ψ1(r) = 2πr (6)

ψ2(r) = 2r cos−1

(
r2m −R2

m + r2

2rmr

)
, (7)

B. Transmission Model

The outcome of a transmission is assessed through the
received time varying Signal to Interference-plus-Noise Ratio
(SINR).
IoT device i (follower):
Without loss of generality, the experienced SINR of the IoT
device i at time t, whose serving SBS is at location s, writes:

γi(t,pi(t),p−i(t), pu(t)) =

pi(t)hi,i(t) || xi − s ||−α

σBw

L + Ii,u(t, pu(t)) + Ii(t,p−i(t))
,

(8)

where in the above expression, pi(t) ∈ [0, Pmax] is the transmit
power of active IoT device i, pu(t) ∈ [0, Pu] is the transmit
power of eMBB user , p−i denotes the transmit power vector of
the active IoT devices using the same channel without i, hi,j(t)
is a parameter representing the multipath fading between the
device j and base station serving the device i, σ is the noise
power spectral density, Ii,u(t, pu(t)) denotes the interference
caused by eMBB user given by

Ii,u(t, pu(t)) = pu(t)hi,u(t) || s − y ||−α, (9)

and Ii(t,p−i(t)) denotes the interference caused by the active
IoT devices using the same channel for transmission expressed
as:

Ii(t,p−i(t)) =

|Na|∑
j=1,j ̸=i

pj(t)hi,j(t) || xj − s ||−α . (10)

eMBB user u (Leader):
The experienced SINR of eMBB user at time t writes:

γu(t, pu(t),p(t)) =
pu(t)Hu(t)

σBw + I(t,p(t))
, (11)

where Hu(t) is a channel gain between the eMBB user and the
MBS, p(t) denotes the transmit power vector of the active IoT
devices, and I(t,p(t)) denotes the interference caused by all
the active IoT devices expressed as:

I(t,p(t)) =
|Na|∑
j=1

pj(t)hu,j(t) || xj − m ||−α . (12)

Finally, we suppose that the channel between all the transmitters
and all the receivers experiences an independent Rayleigh
fading h, exponentially distributed with unity mean, and a path-
loss exponent α > 2.

C. Stackelberg-Nash Differential Game Model

We consider a dynamic Stackelberg-Nash differential game
involving a leader and a large number of followers making
decisions over a finite horizon T . To learn more about the
feedback Stackelberg equilibrium of a stochastic differential
game, we advise the reader to [12]
• Player sets:
N = {u,Na} where u denotes the eMBB user (the leader) and
Na = {1, 2, . . . , |Na|} denotes the set of active IoT devices
(the followers).
• State:
- The leader : The state of the eMBB user at time t is described
by her experienced channel gain Hu(t) ∈ [Hmin, Hmax]
evolving according to the following dynamic:

dHu(t) =
1

2
(τ −Hu(t)) +

√
2νdW(t), Hu(0) = H0, (13)

where H0 is a random initial condition with prescribed proba-
bility density function mu,0, τ and ν are constants coefficients
linked to the channel statistics, and the infinitesimal of the
Wiener process W(t) is introduced as the uncertainty term. In
practice, proper estimating procedures can be implemented if
those coefficients (τ and ν) must be known and updated [15].
- The followers : The state of an active IoT device i at
time t is described by its remaining energy budget, given
by Ei(t) ∈ [0, Ei,0], evolving according to the following
differential equation:

dEi(t) = −pi(t) dt, Ei(0) = Ei,0, (14)

where Ei,0 is the energy budget fixed by the active IoT device
i to spend during the transmission. The dynamics (14) implies
that the variation in the energy budget during dt is proportional
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to the transmission power.
• Actions:
- The leader : Transmit power of the eMBB user pu(t) ∈
[0, Pu].
- The followers : Transmit power of the active IoT devices
pi(t) ∈ [0, Pmax] for all i ∈ Na.
A power allocation strategy of the active IoT device i (resp.
eMBB user) will be denoted by pi (resp. pu).
• Utility function:
- The leader : The eMBB user is assumed to have a large energy
budget and aims at achieving a satisfactory Quality of Service
(QoS). Namely, the eMBB user must have at any time t:

γu(t, pu(t),p(t)) ≥ γthu . (15)

To satisfy this SINR requirement, we consider a satisfactory
average utility function expressed as:

Uu(pu,p) = E

[∫ T

0

Fu(t, pu(t),p(t)) dt

]
, (16)

where
Fu := (γu − γthu )2. (17)

- The followers : The goal of each IoT device is to adapts
its action according to its energy level while maximizing its
throughput. Thus, the average utility function of an active IoT
device i is given by:

Ui(pi,p−i, pu) = E

[∫ T

0

Fi(t, pi(t),p−i(t), pu(t)) dt

]
, (18)

where
Fi := − log2(1 + γi) + c pi. (19)

where c ≥ 0 is the pricing coefficient per transmit power unit.
Such a utility function is especially relevant when the IoT
devices seek to meet a certain trade-off between achieving the
highest possible throughput and expending as little power as
necessary.
• Stackelberg-Nash equilibrium:
We consider a continuous-time feedback Stackelberg-Nash
game, where at time t, the eMBB user (leader) takes an action
first based on its state and states of all active IoT devices.
Then, after observing the leader’s action at time t, the active
IoT devices (followers) make their instantaneous actions. More
precisely, the solution procedure requires the leader to first
anticipate the followers’ best response to its announced policy.
The anticipation is derived from analyzing the followers’ Nash
equilibrium given the leader’s optimal power allocation strategy.
We then substitute the followers’ strategies into the leader’s
problem and solve for the leader’s optimal decisions. Therefore,
A set of strategies

(
p∗u,p∗ = (p∗1, p

∗
2, · · · , p∗|Na|)

)
is called a

feedback Stackelberg-Nash equilibrium if the following holds:
1- The eMBB user, anticipating the IoT devices optimal power
allocation strategies p∗, obtain its optimal power allocation
strategy p∗u, by solving the following optimal control problem:

inf
pu

Uu(pu,p∗). (20)

2- Given the optimal power allocation strategy p∗u of the
eMBB user, a power allocation strategy profile p∗ =
(p∗1, p

∗
2, . . . , p

∗
|Na|) is a feedback Nash equilibrium of the IoT

devices’ dynamic differential game if and only if ∀i, p∗i is a
solution of the following optimal control problem:

inf
pi

Ui(pi,p∗
−i, p

∗
u). (21)

To obtain the optimal power allocation strategies, the stan-
dard solution concept consists of analyzing the Stackelberg-
Nash equilibrium. However, the complexity of this approach
increases with the number of active IoT devices. Furthermore,
it necessitates that each player (leader or follower) be fully
aware of the states and actions of all other players, resulting in
a tremendous volume of information flow. This is not feasible
and impractical for an ultra-dense network. Nevertheless, since
the effect of active IoT devices on a single player’s average
utility function is only via interference, it is intuitive that, as the
number of followers increases, a single follower has a negligible
effect. Thus, we suggest using a mean-field limit for this game
to convert these multiple interactions (interference) into a single
aggregate interaction known as mean-field interference.

III. MEAN-FIELD STACKELBERG-NASH POWER CONTROL

A. Mean-field Stackelberg-Nash Regime

The general setting of a mean-field Stackelberg-Nash regime
is based on the following assumptions:
- The existence of large number of active IoT devices (follow-
ers).
- Interchangeability: the permutation of the state among the
followers would not affect the optimal power allocation strate-
gies. To guarantee this property, we assume that each follower i
only knows its individual state and implements a homogeneous
transmit power pi(t) = p(t, Ei(t)).
- The eMBB user (leader) only knows its individual state
and implements a homogeneous transmit power pu(t) =
pu(t,Hu(t)).
- Finite mean-field interference.
Let [0, Emax] be the energy domain of our analysis. We define
the empirical energy state distribution of the followers in Dm

at time t in [0, T ] as:

M(t, e) =
1

|Na|

|Na|∑
i=1

δe(Ei(t)), ∀e ∈ [0, Emax], (22)

where δe is the Dirac measure.
The basic idea behind the mean-field regime is to approximate
a finite population with an infinite one, where the empirical
energy state distribution M(t, e) almost surely converges to a
probability density function denoted as m(t, e). We will refer to
the energy state distribution of the followers

(
m(t, .)

)
t≥0

as the
mean-field. Additionally, as the followers become essentially
indistinguishable, we can focus on a generic follower by
dropping his index i where his individual dynamic is written
as:

dE(t) = −p(t, E) dt, E(0) = E0. (23)
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Thus, the evolution of the mean-field (mt)t≥0over time tin
[0, T ] is described by a first-order partial differential equation,
known as Fokker-Planck Kolmogorov (FPK) equation, given by
[13]: {

∂tm(t, e)− ∂e(pm)(t, e) = 0,

m(0, .) = m0.
(24)

Furthermore, we designate by mu(t, h) the probability density
function of the leader’s channel state variable Hu evolving over
time t in [0, T ] as follows [15]:∂tmu(t, h)−

1

2
∂h

(
mu(τ − h)

)
(t, h) = ν∂h2mu(t, h),

mu(0, .) = mu,0.
(25)

Now, we turn our attention to determining the interference,
SINR, and utility function, which are solely dependent on
the players’ (leader and generic follower) individual transmit
powers, the probability density function mu, and the mean-
field.
The new parameters of the game are defined as:
1- Mean-field interference: By following a stochastic geometry-
based approach, the mean-field interference caused by the
followers at the MBS is given by:

Imf (t) = E
[
I(t,p(t))

]
= 2πλsλa

[
1

2
+

1−R2−α
m

α− 2

]
P (t),

(26)

where P (t) =
Emax∫
0

p(t, e)m(t, e) de.

For a better understanding, we direct the reader to [13], [16],
[17].
Additionally, the mean-field interference caused by the follow-
ers using the same channel for transmission at a generic SBS
is given by:

Imf (t) = E
[
Ii(t,p−i(t))

]
=

2π

L
λsλa

[
R2−α

min −R2−α
m

α− 2

]
P (t),

(27)

where Rmin = max
(
Rsafe,

1
2
√
λs

−Rs

)
and Rsafe repre-

sents the minimal distance between a SBS and the nearest
interfering IoT device.
Finally, based on (5), the mean-field interference caused by the
leader at a generic SBS writes:

Iu(t) = E
[
Ii,u(t,p(t))

]
= Pu(t)

1

Rm

Rm∫
0

 r2+Rm∫
[r2−Rm]+

r−α
1 fru(r1|r2)dr1

 dr2,
(28)

where Pu(t) =
Hmax∫
Hmin

pu(t, h)mu(t, h)dh and [r2 − Rm]+ =

max(0, r2 −Rm).

2- Mean-field SINR: we define the mean-field SINR for the
leader as:

γu,mf

(
pu(t,Hu), Imf (t)

)
=

pu(t,Hu)Hu

σBw + Imf (t)
. (29)

On the other hand, by using (2), the mean-field SINR for a
generic follower is given by:

γmf

(
p(t, E), Iu(t), Imf (t)

)
=

p(t, E)( a
a+bRs)

−α

σBw

L + Iu(t) + Imf (t)
. (30)

3- Mean-field utility function: The mean-field utility function
of the leader is generalized as follows:

Uu,mf (pu,mu, Imf ) =
Hmax∫

Hmin

T∫
0

Fu,mf

(
pu(t, h), Imf (t)

)
mu(t, h) dt dh,

(31)

where
Fu,mf := (γu,mf − γthu )2. (32)

Moreover, The mean-field utility function for a generic follower
is is generalized as follows:

Umf (p,m, Iu, Imf ) =
Emax∫
0

T∫
0

Fmf

(
p(t, e), Iu, Imf (t)

)
m(t, e) dt de,

(33)

where
Fmf := − log2(1 + γmf ) + c p. (34)

B. Mean-Field Stackelberg-Nash Optimal Control

Optimal control of the leader :
The optimal control problem of the leader is derived based
on (20) and consists in finding the optimal power allocation
strategy p∗u satisfying:

inf
pu

Uu,mf (pu,mu, I
∗
mf ). (35)

where I∗mf is the mean-field interference caused by the follow-
ers at the equilibrium, by assuming that the followers use their
optimal power allocation strategies, and mu is a solution of∂tmu(t, h)−

1

2
∂h

(
mu(τ − h)

)
(t, h) = ν∂h2mu(t, h),

mu(0, .) = mu,0.
(36)

The optimization problem (35) under the partial differential
equation constraint (36) has a closed-form solution expressed
as:

p∗u(t, h) =
σBw + I∗mf (t)

h
γthu . (37)

Optimal control of a generic follower :
The mean-field optimal control problem of a generic follower
is derived based on (21) and consists in finding p∗ and m∗

satisfying:
inf
p
Umf (p,m, I

∗
u, I

∗
mf ), (38)
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Algorithm 1: Follower’s MF-Nash Power Control
Initialization:

1 Generate random vector p0;
2 Estimate τ and ν channel statistics of the leader ;
3 Find mu using (36) with initial condition mu,0 ;

Learning pattern:
4 Find m using (39) with initial condition m0 ;
5 Estimate interference Imf using (27);
6 Estimate leader interference Iu using (28) and (37) ;
7 Find µ using (42) with final condition (43);
8 Update transmit power p using (41);
9 Repeat until convergence : go to step 4;

where I∗u and I
∗
mf are the mean-field interferences at the

equilibrium, by assuming that the leader and the interfering
followers use their optimal power allocation strategies, and m
is a solution of{

∂tm(t, e)− ∂e(pm)(t, e) = 0,

m(0, .) = m0.
(39)

Since there is no closed-form solution to the optimization
problem (38) under the partial differential equation constraint
(39), the mean-field optimal control problem of the followers
is solved iteratively until the convergence point is reached.

First, we derive the first-order optimality conditions using
the adjoint method. We refer the interested reader to [18] for a
rigorous derivation of these first-order optimality conditions.
Let’s start by defining the Lagrangian of the minimization
problem (38) under the constraint (39) as

L(p,m, µ) =
Emax∫
0

T∫
0

(
Fmf (p, I

∗
u, I

∗
mf )m− µ

(
∂tm− ∂e(pm)

))
dt de,

(40)
where we omit the dependency on t and e and

(
µ(t, e)

)
∀t,e

represents the Lagrange multipliers.
Let (p∗,m∗, µ∗) be the optimal solution. By using the integra-
tion by parts, the optimality conditions are expressed as (39)
together with:

∂pFmf (p
∗, I∗u, I

∗
mf )− ∂eµ

∗ = 0, (41)

∂tµ
∗ − p∗∂eµ

∗ + Fmf (p
∗, I∗u, I

∗
mf ) = 0, (42)

µ∗(T, .) = 0. (43)

Note that the equation (42) reflects the adjoint equation of
(39), popularly known as the Hamilton-Jacobi-Bellman (HJB)
equation in mean-field game theory.
Then, we use a successive sweep method consisting of gen-
erating a sequence of nominal solutions p0, p1, . . . , pk, . . .
that converges to the optimal power allocation strategy of
the followers p∗. This iterative approach is summarized in
Algorithm 1 in our context. We refer the reader to [19] for

Parameter Values Description
Rm 2 km Coverage area of MBS
Rs 20 m Coverage area of SBS
λs 10−3, 10−4

SBS / m2
SBS density

λa 30 Average number of active
IoT devices per SBS

a 2 Parameters of the beta
b 4 distribution

Bw 180 kHz Total bandwidth
L 48 Number of channels
c 60 Pricing coefficient

Pmax 0.025 W Maximal transmit power
of the IoT device

Pu 0.2 W Maximal transmit power
of the eMBB user

T 4 s Time horizon
Emax 100 mJ Maximum energy budget
Hmin 10−7 Channel state
Hmax 10−2 domain
γth
u 100 SINR threshold
σ -174 dBm/Hz Thermal noise density
α 4 Path-loss exponent

TABLE I: Simulation parameters

a review of several aspects of numerical approaches for mean-
field optimal control problems.
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Fig. 1: Mean-field at the equilibrium with λs = 10−4 SBS/m2.

IV. NUMERICAL SIMULATION

In this section, we provide numerical results on the perfor-
mance of the proposed scheme. The key simulation parameters
are shown in Table I. The SBS density is specified for each
figure.

IoT devices (followers) :
The evolution of the energy state distribution (mean-field) at
the equilibrium is shown in Fig. 1. For this simulation, we
take into account a uniform initial energy state distribution
m0. As time passes, fewer IoT devices have higher energy
budgets. Additionally, the frequency of IoT devices with zero
energy has increased (nearly 30% of the IoT devices consume
their whole energy allowance while transmitting). However, due
to the utility function, precisely the pricing coefficient C, the
IoT devices with a larger energy budget at the beginning of
the transmission save energy at the end of the transmission.
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Fig. 2: Optimal power allocation strategy of IoT devices with
λs = 10−4 SBS/m2.

The Fig. 2 shows the optimal power allocation strategy as a
function of time and energy. Based on its remaining energy
budget at each time instant, an IoT device controls the amount
of power it transmits. Moreover, Fig. 3 shows a cross-section
of the optimal power allocation strategy for different energy
budgets and SBS densities. The IoT devices having a higher
energy budget start their transmission with a high transmit
power especially in an ultra-dense environment (λs = 10−3

SBS / m2). In the meanwhile, the IoT devices that are starting
the game with lower energy budgets abstain from transmitting at
higher transmit power and even reduce their transmit power in a
dense environment (λs = 10−4 SBS / m2) in order to allow the
IoT devices with greater energy budgets to boost their power.
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Fig. 3: Cross-section of the optimal strategy of the IoT devices
for various energy budgets and SBS densities.

eMBB user (leader) :
The Figs. 4 and 5 show the optimal power allocation strategy of
the eMBB user as a function of time and channel gain for two
SBS densities. The eMBB user can regulate its transmit power
based on its channel gain at each instant. Moreover, when the
channel quality deteriorates, the eMBB user increases its trans-

mit power to maintain a reasonable QoS. It can also be noted
that, in an ultra-dense environment (λs = 10−3 SBS / m2), the
eMBB user with a good channel gain starts transmission with
a lesser transmit power and gradually increases it as time goes.
This is because IoT devices with larger energy budgets increase
their transmit power towards the end of the transmission.
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Fig. 4: Optimal power allocation strategy of eMBB user with
λs = 10−4 SBS/m2.
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Fig. 5: Optimal power allocation strategy of eMBB user with
λs = 10−3 SBS/m2.

V. CONCLUSION

In this paper, we present a distributed power allocation
strategies with the eMBB user acting as the leader and the
IoT devices serving as the followers. To satisfy both the QoS
requirement of the eMBB user and the energy limitations of
the IoT devices, we construct a hierarchical mean-field optimal
control. Our approach enables each IoT device to determine
its optimal strategy based just on the initial mean-field and
its own energy budget. The eMBB user, on the other hand,
adjusts its transmit power dependent on its channel gain. The
numerical findings show the optimal power allocation strategies
under various SBS densities.
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