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Abstract—The high degree of variability present in current and
emerging mobile wireless networks calls for mathematical tools
and techniques that transcend classical (convex) optimization
paradigms. The aim of this short survey paper is to provide a
gentle introduction to online learning and optimization algorithms
that are able to provably cope with this variability and provide
policies that are asymptotically optimal in hindsight – a property
known as no regret. The focal point of this survey will be
to delineate the trade-off between the information available as
feedback to the learner, and the achievable regret guarantees –
starting with the case of gradient-based (first-order) feedback,
then moving on to value-based (zeroth-order) feedback, and,
ultimately, pushing the envelope to the extreme case of a single bit
of feedback. We illustrate our theoretical analysis with a series of
practical wireless network examples that highlight the potential
of this elegant toolbox.

Index Terms—Online optimization; online learning; regret
minimization; multi-armed bandits; feeback reduction.

I. Introduction

Motivated by the highly dynamic nature of future and

emerging wireless networks (e.g., B5G, 6G, Internet of

Things), online optimization methods have been successfully

exploited to design resource allocation policies for problems

ranging from signal covariance optimization in multi-antenna

terminals [1], channel selection and cognitive medium access

[2] to network design and management [3].

In classic optimization, the core underlying assumption is

that the objective to be optimized is known by the opti-

mizing agent and remains fixed for the entire runtime of

the algorithm computing a solution. Stochastic optimization

provides an extension of this framework to problems where the

objective function may also depend on a stationary stochastic

process. Game theory takes an alternative, multi-agent view of

such problems, often revolving around worst-case guarantees

against an adversary. However, all these extensions rely on

strong assumptions regarding the variability of the problem’s

objective, the agents’ rationality and common knowledge of

rationality (in games), the information at the agents’ disposal.

By contrast, online optimization provides an elegant toolbox

which goes beyond the above by allowing for variations in the

problem that are completely arbitrary – typically accounting

for exogenous (stationary or otherwise) parameters affecting
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Fig. 1. A bird’s eye view of the links between online optimization and other
optimization paradigms.

it (cf. Fig. 1). An example of this framework is encoun-

tered in wireless communication networks, where traditional

static/stationary paradigms no longer suffice to capture and

cope with issues such as non-random fluctuations in the

wireless medium, the unpredictable behavior of the commu-

nicating devices in distributed networks, Internet of things

(IoT), etc. [1, 4]. Likewise, in multimedia indexing problems,

the online framework allows to exploit distributed annotations

from multiple sources (such as Internet users), as opposed to

relying on centralized annotation of very large data sets, and

also to relax all the stochastic assumptions among annotations

that are common in offline metric learning [5].

In addition to its wide scope, another major advantage of

the online framework is that the derived algorithms – referred

here as online policies – come with provable theoretical

guarantees in the face of uncertainty. These guarantees

are based on Hannan’s seminal notion of regret [6], which

compares an algorithm’s performance to that of the best fixed

policy in hindsight. As such, the aim of online optimization and

related literature is to derive causal, online policies leading to

no regret and achieving the best possible regret minimization

rates in a broad range of problems and with the fewest possible

assumptions.

This paper aims to provide a light overview of online

optimization and no-regret learning, including the theory’s

lower bounds, the algorithms that achieve them, and their

applications in wireless communications and beyond. We pay

specific attention here on algorithms with reduced feedback

requirements, and the trade-offs involved in their performance.

To that end, we begin by introducing the online first-order or
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gradient-based descent algorithms. Then, we move to zeroth-

order algorithms that only require the observed value of

the objective (and not its gradient). Based on this value, a

stochastic gradient approximation is built to enable the use

of gradient-like methods that attain no regret at the cost of a

slower regret minimization rate. Finally, we discuss a series of

cases where it is possible to learn with a single bit of feedback

that is jointly exploited by a multi-armed bandit algorithm to

derive efficient online policies in wireless networks.

II. Online Convex Optimization: preliminaries

The core online optimization framework is as follows: At

each stage t = 1, 2, . . . , the optimizing agent selects an action

xt from some compact convex set X ⊆ �d and incurs a loss of

ℓt(xt) based on some (a priori unknown) loss function ℓt : X →
� (as in the bandit case, this loss function could be determined

stochastically, adversarially, or otherwise). Subsequently and

based on some strictly causal feedback information vt about

the incurred loss, the agent selects a new action xt+1 for the

next stage and the process repeats as shown below:

Process 1 Generic online decision process

Require: action set X , sequence of loss functions ℓt : X → �
1: for t = 1 to T do
2: play xt ∈ X # action selection
3: incur ℓt(xt) # incur loss
4: observe vt # receive feedback
5: update xt+1 ← xt, vt # update action based on feedback
6: end for

In this paper, we will focus on a fundamental class of

online optimization problems: online convex optimization, in

which ℓt : X → � is convex for all t. In particular, we make

no assumptions in terms of the underlying dynamics of the

loss function: ℓt(x) can vary in a completely arbitrary manner

with respect to time t (including non-stationary or adversarial),

going beyond the scope of stochastic optimization or Markov

decision process (MDP) reinforcement learning.

A. Regret performance metric

When designing an online policy xt,∀t ∈ {1, . . . ,T } an ideal

goal would be to track and close the gap with the optimal

instantaneous policy:

ℓt(xt) −min
x∈X
ℓt(x), ∀t. (1)

Of course, this is not achievable in general by strictly causal

online processes, unless some restrictive assumptions are made

regarding the temporal variability of the losses. For this reason,

we will instead focus on a less ambitious target, the agent’s

regret [6]

RT =

T
∑

t=1

ℓt(xt) −min
x∈X

T
∑

t=1

ℓt(x), (2)

defined as the difference between the aggregate loss incurred

by the agent after T stages and that of the best action in

hindsight. In other words, the agent’s regret contrasts the per-

formance of the agent’s online policy xt to that of the optimum

fixed action x∗ ∈ arg minx∈X
∑T

t=1 ℓt(x), which minimizes the

total incurred loss over the given horizon of play.

Of course, this optimum action x∗ cannot be calculated if

the loss functions encountered by the optimizer are not known

in advance. Consequently, the figure of merit in an online

optimization problem is to design a strictly causal, online

policy that achieves no regret, i.e., RT = o(T ).

Online optimization focuses on designing algorithms that

attain the best possible regret minimization rate, not only in

terms of the horizon of play T , but also in terms of the

multiplicative constants that come into play, and which depend

on the geometry and dimensionality of the optimizer’s feasible

set X , as detailed in the next sections.

Before, we discuss below the links with static and stochastic

optimization and also with multi-armed bandits (MABs) from

reinforcement learning.

B. Link with static optimization

A static or classic optimization problem can be stated as

minimize f (x)

subject to x ∈ X .
(Opt)

Viewed as an online optimization problem, this corresponds

to facing the same loss function ℓt = f at each stage. In this

case, if xt is a no-regret policy and f is convex, an immediate

application of Jensen’s inequality shows that the so-called

“ergodic average” x̄T =
1
T

∑T
t=1 xt enjoys the guarantee

f (x̄T ) −min f ≤ 1

T

T
∑

t=1

[ f (xt) −min f ] ≤ RT

T
. (3)

Thus, x̄T converges to the solution set of (Opt) as T → ∞;

moreover, the rate of this convergence is controlled by the

regret minimization rate of xt. This key property of no-regret

policies has been the cornerstone of a vast literature on fast

optimization algorithms; for an overview, see [7].

As an application, in Section IV-B, online policies are com-

pared to classical iterative water-filling algorithms in static

multiple-input and multiple-output (MIMO) systems composed

of rate-driven multiple interfering users [8, 9].

C. Link with stochastic optimization

A stochastic optimization problem is

minimize �ω f (x;ω)

subject to x ∈ X
(Opt-S)

where f (x;ω) is a stochastic objective function that depends

on a random variable ω. The expectation in (Opt-S) is usually

very difficult to compute so, when designing algorithms to

solve (Opt-S), it is assumed that f is sampled at an independent

and identically distributed (i.i.d.) realization ωt of ω at each

iteration. For instance, in offline metric learning for multimedia

indexing (see also Section VI), all examples are readily avail-

able in a training dataset, but they cannot be exploited simul-

taneously because of their prohibitive number and size [10].

Instead, much smaller random population samples are drawn

and exploited iteratively, despite the fact that the stochastic

average of this sampling procedure cannot be computed.

From an online viewpoint, this corresponds to a sequence

of loss functions of the form ℓt(x) = f (x;ωt). Similarly to
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static optimization, we can use again the Jensen’s inequality

argument to see that see that �[ f (x̄T ;ω)] − min�[ f ] ≤ R̄T

T
,

where R̄T =
∑T

t=1 �[ f (xt;ωt)] − min�[ f ] denotes the pseudo-

regret and represents the figure of merit in stochastic settings.

III. Multi-armed bandits

The generic online decision process in Section II includes a

fundamental discrete choice problem, i.e., multi-armed bandits

(MABs) from reinforcement learning, that has been the focus

of a very active and vigorous literature and also provides a

gentle introduction to the exploration vs. exploitation trade-off

that underlies much of online optimization, hence, deserves a

dedicated section.

Introduced by Thompson [11] and Robbins [12], a multi-

armed bandit problem can be described as follows: At each

stage t = 1, 2, . . . , of a repeated decision process, an optimizing

agent (the decision-maker) selects an action at from some

finite set A = {1, . . . , A}. Based on this choice, the agent

incurs a reward (or loss) ut(at) = −ℓt(at), they select a new

action at+1 and the process repeats. 1 Originally the agent was

a gambler choosing a slot machine in a casino (a “one-armed

bandit”), and its reward was the amount of money received

minus the cost of playing [12]. In clinical trials [11], the choice

of action represents the drug administered to a test patient and

the incurred loss is the patient’s time to recovery. Wireless

communication examples are provided in Section V-B.

It is easy to see that the optimizer faces a trade-off be-

tween exploration and exploitation. On the one hand, by

“exploring” more arms, the agent obtains more information

and can make better choices in the future. On the other hand,

in so doing, the agent fails to “exploit” arms that yield better

payoffs now, thus lagging behind in terms of performance.

Achieving and maintaining a balance between exploration and

exploitation is the main objective of the literature on MABs.

Two main classes of MABs are discussed next based on the

way the sequence of losses is generated.

A. Stochastic bandits

Assume that the reward at each stage ut(a) of the a-th

arm is an i.i.d. random variable va,t drawn from a statistical

distribution Pa. The arms’ reward distributions are not known

to the agent, so the objective is to identify and exploit the arm

with the highest mean reward in as few trials as possible.

A straightforward idea, known as “follow the leader”, would

be to keep a running average of the losses obtained by each arm

and then play the arm with the best past average reward. This

pure exploration policy is a reasonable first try but it can easily

get stuck at a suboptimal arm: if the best arm performs very

badly in its first draws, it won’t be drawn again in the future.

This highlights the need for adding at least some exploration

into the mix.

Building on this, the landmark idea of [13, 14] was to

retain optimism in the face of uncertainty, i.e., to construct

1As opposed to other reinforcement learning frameworks (e.g., MDP and
dynamic programming), in MABs, no explicit notion of environment state (nor
stochastic state transitions) is taken into account and the agent’s decisions are
solely reward-driven.

an “optimistic” estimate for the mean payoff of each arm,

and then pick the arm with the highest such estimate. The

resulting upper confidence bound (UCB) algorithm with tuning

parameter α > 2 is defined via the recursion

at+1 = arg max
a∈A



















µ̂a,t +

√

α log t

2na,t



















, (4)

where

µ̂a,t =
1

na,t

t
∑

s=1

1(as = a) va,s (5)

denotes the empirical mean payoff of arm a and na,t is the

number of times arm a has been chosen so far. Heuristically,

the first term in (4) drives the agent to exploit the arm with

the highest empirical mean while the second one encourages

exploration by giving a second chance to arms which have not

been played often enough (i.e., na,t is small relative to t).

For the specific variant considered here with parameter

α > 2 , the analysis of [15] gives a logarithmic pseudo-regret

R̄T = O(log T ). Importantly, the regret guarantee of UCB is

optimal in T and no causal policy played against a bandit

with Bernoulli reward distributions can achieve regret lower

than Ω(log T ) [13].

B. Adversarial bandits

When the problem at hand is not purely statistical in

nature (or when its statistics are influenced by exogenous,

contextual factors), UCB can be brought to a halt. In fact,

Cover’s impossibility result [16] states that: no deterministic

algorithm can hope to achieve sublinear regret against an

adversarial bandit.

Tracing its roots to the “rigged casino” problem of [17], this

paradigm is known as adversarial because the agent is called

to learn against any possible sequence of rewards, including

those designed by a mechanism that actively tries to minimize

the agent’s cumulative payoff over time. More precisely, at

each step, the rewards ut(a) = va,t of each arm a ∈ A are

determined by the adversary simultaneously with the agent’s

action at, possibly with full knowledge of the decision process

employed by the agent at step t.

A key idea in balancing exploration vs. exploitation in this

setting is to keep a cumulative score of the performance of each

arm and then employ a random arm drawn with probability xt

that is exponentially proportional to this score, leading to the

so-called exponential weights (EW) algorithm:2

yt+1 = yt + γvt,

xt+1 = Λ(yt+1),
(6)

where the logit choice map Λ : �A → ∆(A) is given by

Λ(y) =
(exp(ya))a∈A
∑

a∈A exp(ya)
. (7)

By carefully tuning the learning rate which trades off be-

tween exploration vs. exploitation: γ =
√

2 log A/T , the regret

is shown in [17] to be sublinear R̄T = O
(
√

T log A
)

. Moreover,

2Other variants of EW are the multiplicative weights (MW) algorithm, the
exponential-weight algorithm for exploration and exploitation (EXP3), etc.
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the regret of any causal algorithm with full information (i.e.,

the vector of all arms’ rewards vt is known and not just

the reward of the chosen arm) is bounded from below as

R̄T = Ω
(
√

T log A
)

[18].

C. Link with online optimization

Let X = ∆(A) = {x ∈ �A
+ :
∑

a∈A xa = 1} denote the simplex

of probability distributions over the set of arms of an MAB.

If the agent uses mixed strategy xt ∈ X at stage t and the

bandit’s reward vector is vt, the agent’s mean reward will be

linear ℓt(xt) = −v⊤t xt, falling thus under the umbrella of online

convex optimization.

To sum up, for MAB problems, deterministic policies suffice

to achieve a logarithmic regret in stochastic environments.

However, when playing against an informed adversary, such

algorithms are doomed to fail: only randomized algorithms

can attain a no-regret state. Moreover, there is a gap of

Ω(
√

T/ log T ) between stochastic and adversarial bandits, even

with full information for the latter. For more in-depth discus-

sions, see our extended online version [19].

IV. First-order (gradient) feedback

As an illustrating first example, consider the distributed

IoT network in Fig. 2 composed of multiple transmitters

communicating to their receivers over S orthogonal frequency

bands (OFDM), investigated in [20]. Each transmitter aims

at minimizing their power consumption provided that a

minimum target rate is achieved:

ℓt(p) =
∑S

s=1 p(s) + λ
[

Rmin − Rt(p)
]+

, where

p = (p(1), . . . , p(S )) is the power allocation vector

over the S subcarriers. The Shannon achievable

rate equals Rt(p) =
∑S

s=1 log(1 + wt(s)p(s)) where

wt represents the effective channel vector of entries

wt(s) =
gt(s)

σ2+
∑

j g j,t(s)p j,t(s)
, ∀s. The feasible set of power

vectors is X =
{

p ∈ �S
∣

∣

∣ p(s) ≥ 0,∀s,
∑S

k=1 p(k) ≤ Pmax

}

as

per usual.

This convex optimization problem is relatively easy if wt

is known at the transmitter. However, since wt encompasses

the effects of the wireless medium (noise, pathloss, device

mobility) and depends on the transmit characteristics of all

interfering users (which may go on- and off-line in an ad-hoc

manner), it may completely unpredictable and not known in

advance, calling for online optimization algorithms.

A. Online gradient descent

The most popular and straightforward approach for solving

classic, offline optimization problems is based on (projected)

gradient descent: at each stage, the algorithm takes a step

against the gradient of the objective and, if necessary, projects

back to the problem’s feasible region. Dating back to the sem-

inal work of Zinkevich [21], online gradient descent (OGD)

is the direct adaptation of this idea to an online context. In

particular, writing vt = −∇ℓt(xt) for the negative gradient of

the t-th loss function sampled at the agent’s chosen action

(again at round t), OGD can be described via the recursion

xt+1 = Π(xt + γvt), (8)

Rx1

D11

D12

D13

D14

Rx2

D21
D22

Fig. 2. IoT network composed of six transmit devices (D11, D12, etc.) and
two receivers (Rx1, Rx2). The blue and green arrows represent the direct links
while the red ones (double-lined) are interfering links [20].

Algorithm 2 Online gradient/mirror descent (OGD/OMD)

Require: regularizer h : X → � # for OMD only

step-size γ > 0

1: choose x ∈ X # initialization

2: for t = 1 to T do

3: incur loss ℓ̂ ← ℓt(x) # losses revealed

4: observe v← −∇ℓt(x) # gradient feedback

5: play x← Π(x + γv) or x← Px(γv) # OGD or OMD

6: end for

where Π(y) = arg minx∈X ∥y − x∥2 denotes the (Euclidean)

projector and γ > 0 is a step-size parameter (see also

Algorithm 2).

Theorem 1 (Worst-case regret of OGD [21]). Against L-

Lipschitz convex losses, the OGD algorithm with step-size

γ = (diam(X )/L)/
√

T enjoys the regret bound

RT ≤ diam(X )L
√

T , (9)

where diam(X ) ≡ maxx,x′∈X ∥x′ − x∥ is the diameter of X .

In the absence of stronger assumptions on the curvature of

the losses, the above bound is tight and RT = Ω(
√

T ). In

the above example, OGD yields RT ≤
√

S T and the same

performance is achieved also in the adversarial MABs setting

of Section III.

B. Online mirror descent

In adversarial MABs, the above highlights an important hid-

den gap in the problem’s geometry. Indeed, the EW algorithm

yields RT = O(
√

log A T ), which scales much better than OGD

in terms of the problem dimension A. Recovering logarithmic

scalability is crucial in many Big Data and wireless communi-

cations applications. For instance, in massive MIMO networks

the problem dimension is proportional to the (potentially very

high) number of transmit antennas (see Section IV-C).

A systematic way to exploit the geometry of the problem

is via the method of online mirror descent (OMD) [22]. To

illustrate this method (which can be traced back to the seminal
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work of Nemirovski and Yudin [23] for offline problems), it

is convenient to rewrite the Euclidean update (8) of OGD as

xt+1 = Π(xt + γvt) = arg min
x∈X

1
2
∥xt + γvt − x∥2

= arg min
x∈X

{

γv⊤t (xt − x) + D(x, xt)
}

, (10)

where we have defined

D(p, x) = 1
2
∥p − x∥2 = 1

2
∥p∥2 − 1

2
∥x∥2 − x⊤(p − x). (11)

The key novelty of mirror descent is to replace this quadratic

term by the so-called Bregman divergence: Dh(p, x) = h(p) −
h(x)−∇h(x)⊤(p− x), where h : X → � is a smooth K-strongly

convex function (usually referred to as a regularizer). In so

doing, we obtain the online mirror descent (OMD) algorithm

xt+1 = Pxt
(γtvt) (12)

where the mirror-prox operator P is defined as

Px(v) = arg min
x′∈X

{

v⊤(x − x′) + Dh(x′, x)
}

, (13)

As before, vt = −∇ℓt(xt) denotes the negative gradient of the

loss function of the t-th sampled at xt.

Example 1 (Euclidean regularization). Of course, the regular-

izer h(x) = 1
2
∥x∥2 yields the archetypal OGD algorithm (8).

Example 2 (Entropic regularization). Another important in-

stance of the OMD method is when the problem’s feasible

region X is the unit simplex of �d and the regularizer is the

(negative) Gibbs–Shannon entropy h(x) =
∑d

j=1 x j log x j. This

yields the EW algorithm (6) for MABs with full information

(of the gradient vt). Remarkably, despite their very different

origins, exponential weights and gradient descent are simply

different sides of mirror descent.

Moreover, the similarity of the feasible allocation vectors

with the probability simplex (d ≡ S ) can be efficiently

exploited to propose a tailored entropic regularizer yielding

the online exponential learning (OXL) algorithm in [20] and

enjoying RT = O(
√

log S · T ).

Theorem 2 (Worst-case regret of OMD [15, 24, 25]). Against

L-Lipschitz convex losses, the OMD algorithm based on a C-

strongly convex regularizer h enjoys the regret bound

RT ≤ 2L

√

max h −min h

2K
T , (14)

achieved by the step-size γ = L−1
√

2C(max h −min h)/T.

The main take-away from this main result is that OMD

enjoys the same O(
√

T ) rate as OGD, but the multiplicative

constants are optimized relative to the dimension and geometry

of the problem. This logarithmic reduction is of immense value

to real-world Big Data problems that suffer from the curse of

dimensionality. As a result, the systematic design of tailor-

made OMD algorithms for arbitrary problem geometries has

attracted considerable interest in the literature and remains a

vigorously researched question.
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Fig. 3. Comparison between our MXL and iterative and simultaneous water-
filling (IWF and SWF) in a static uplink setting with multiple rate-driven users
[9]. IWF converges slowly because only one user updates its input covariance
per iteration; SWF is faster but does not always converge due to cycles in the
update process. On the contrary, MXL converges within a few iterations.

C. Extensions to multi-user MIMO systems

Consider a dynamic MIMO wireless network [9, 26, 27]

composed of multiple autonomous devices equipped with

multiple antennas. Each user seeks to maximize the Shannon

rate or the incurred loss ℓt(Qt) = − log det(I+ H̃QtH̃
†) against

any possible sequence of dynamically varying effective channel

matrices H̃t. Energy efficiency maximization [1] and cognitive

medium access [4, 28] are other important applications in

MIMO systems that can be formulated as online optimization

problems.

In such settings, the control variable is the transmit signal

covariance matrix Q ≡ X, and the problem’s feasible region

can often be casted into a spectrahedron of the form X =

{X ∈ �d×d : X ≽ 0, tr X ≤ 1}, where d is the number of

transmit antennas. A tailor-made regularizer for this type of

constraints is given by the (negative) von Neumann entropy:

h(X) = tr[X log X] + (1 − tr X) log(1 − tr X). As was shown

in [9, 27], this choice yields the matrix exponential learning

(MXL) algorithm

Yt+1 = Yt + γVt

Xt+1 =
exp(Yt+1)

1 + tr[exp(Yt+1)]

(15)

where Vt = −∇Xt
ℓt(Xt) is the matrix gradient of the t-th round

loss function.3 A very appealing property of the exponential

update in (15) is that it ensures positive-definiteness in an

elegant and lightweight manner compared to the Euclidean

projection on the positive-definite cone (which requires solving

a convex optimization problem at each stage).

For an illustration of MXL performance, see Fig. 3, which

highlights the interest of online optimization tools, especially

for their theoretical guarantees and convergence properties4.

Indeed, providing convergence guarantees for water-filling

algorithms [9, 27] may be very challenging. For instance, the

3Since ℓt is a real function of a Hermitian matrix, its gradient is also a
Hermitian matrix, so exp(Yt) is positive-definite.

4Note that the water-filling methods require the exact same amount of
feedback as our MXL.
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Fig. 4. Rate achieved by MXL in a dynamic MIMO system with mobile users
(average velocity 15 km/h) [4]. The adaptive online policy induced by MXL
allows users to track their instantaneous optimal rates remarkably well.

sufficient conditions in [8] roughly require all interfering links

to be dominated by the direct ones, which is quite restrictive

and even impossible in multiple access networks. In dynamic

MIMO systems where water-filling algorithms are brought to

a halt (in the absence of non-causal feedback), MXL performs

remarkably close to the optimal instantaneous policy in (1) as

illustrated in Fig. 4.

V. Reducing the feedback information

So far, the underlying assumption has been that a perfect

gradient feedback vt = −∇ℓt(xt) is made available to the

optimizer at each stage. In this section, we focus on reducing

the quality and the amount of feedback information. In the

above MIMO systems, the gradient is a (potentially large)

matrix and its feedback to the transmitter at each stage can

lead to prohibitive overhead [29]; hence, reducing the feedback

is crucial in such applications.

Imperfect gradient feedback: Let’s start by considering

imperfections in the optimizer’s feedback where only a noisy

estimate: v̂t of the true gradient is available at each stage.

Remarkably, under quite standard statistical assumptions:

�[v̂t | Ft−1] = vt unbiased estimator, and �[∥v̂t∥2 | Ft−1] ≤ V2

bounded mean square (Ft denotes the history of play up to

stage t), the first-order algorithms are able to retain similar

performance as in the perfect gradient case. More precisely, the

mean regret upper bounds remain the same by simply replacing

the maximum gradient norm L with the second moment factor

V [15, 25].

A. Zeroth-order feedback

The noisy feedback case can be seen as the precursor to

the more challenging question: can the optimizer attain a

no-regret state without gradient feedback? This question

is sometimes referred to as “bandit online optimization” (in

reference to MABs in which only the reward of the chosen

arm is known as opposed to the full information case) or

“online optimization with zeroth-order feedback” since the

only available feedback is the actual incurred loss.

One-point stochastic gradient approximation: In adver-

sarial MABs, this is achieved by means of the importance

sampling technique [19, 24]. In online convex optimization

problems, the key idea is to exploit the scalar value of a

function to build an estimator of its gradient; this is precisely

achieved by Spall in [30] by sampling the function not at the

point of interest, but at a nearby, randomly chosen point.

To illustrate the idea, consider the one-dimensional case,

in which we seek to estimate the derivative of a function

f : � → � at some target point x̂ using a single evaluation

thereof. By definition, the derivative can be approximated by

f ′(x̂) ≈ f (x̂+δ)− f (x̂−δ)
2δ

, for sufficiently small δ. Of course, this

estimate requires two function evaluations, but it also suggests

the following approach: simply make a (uniform) random draw

of z ∈ {±1} and sample f at x̂ + δz, yielding the one-point

estimator: v̂ = δ−1 f (x̂ + δz) z such that

f (x̂ + δ) − f (x̂ − δ)
2δ

=
1

δ
�[ f (x̂ + δz) z]. (16)

This can be extended to multi-dimensional problems by taking

z to be a uniformly random vector drawn from the unit d-

dimensional sphere [19, 20].

Although first-order algorithms (OGD, OMD) exploiting

this estimator are able to retain the no-regret property, two

major remarks are in order. First, if the pivot point x̂t lies too

close to the boundary of X , the chosen action xt = x̂t+δzt may

lie outside the feasible set, which is extremely problematic in

practice (e.g., in the power allocation problem in Section IV).

To account for this feasibility issue, one can keep the method’s

pivots away from the boundary of X by re-projecting them

onto a “δ-shrunk” sub-region of X , as in [20, 29]. Second, the

one-point estimator has an extremely poor bias vs. variance

trade-off: the bias scales as O(δ), while the variance scales as

O(1/δ) and, hence, δ has to be optimally tuned.

The above leads to the non-trivial compromise when reduc-

ing the feedback to one scalar resulting in a much poorer regret

decay rate: R̄T = O(poly(d) T 3/4) (compared to the optimal

O(
√

T )), which also scales polynomially with the problem

dimension. This is precisely illustrated in Fig. 5, in which the

OXL algorithm (see also Section IV) with gradient feedback

is compared to its zeroth-order counterpart [20] for d ≡ S = 4.

When the problem dimension increases, this performance drop

becomes problematic even in static settings [29].

Improved stochastic gradient approximation: Motivated

by the fact that EW with importance sampling is capable to

retrieve the optimal regret rate O(
√

T ) in adversarial MABs

[24], a new and improved stochastic gradient approximation

was introduced in [29] for static convex optimization problems

in multi-user MIMO systems.

By exploiting the current sample of the loss function jointly

with that of the previous stage (the so-called callback mech-

anism), a two-point stochastic gradient estimator can be built

such that v̂t = δ
−1[ f (x̂t + δzt)− f (x̂t−1 + δzt−1)] zt, which has the

same bias but a bounded variance compared to the one-point

estimator. The resulting zeroth-order MXL algorithm is shown

to convergence at an optimal rate O(poly(d)
√

T ). Although

this methodology can be easily transposed to other static
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Fig. 5. Impact of reducing the amount of feedback for K users and S = 4
subcarriers [20]. Although zeroth-order OXL retains no regret, its average
regret exhibits a much slower decay compared with gradient-based OXL.

convex problems, in the general online convex optimization

framework, this remains an open and not trivial issue.

B. One bit of feedback

Let’s push to the extreme the reduction of the feedback and

ask: what can be achieved with a single bit of feedback?

Of course, building a relevant one-bit gradient estimator to

exploit first-order algorithms does not seem realistic. Instead,

we simplify the problem formulation by quantizing the feasible

set and then exploiting MABs in Section III at the cost of an

optimality loss.

One-bit feedback MAB-based adaptive policies: The

beam-alignment problem in mmWave MIMO networks has

been investigated in [31] via MABs with one bit of feedback.

At each stage, the bit of information is of ACK/NACK-type

and conveys whether a certain quality of service has been met

at the receiver (e.g, in terms of minimum rate), as a result

of the chosen arm. The discrete arms represent the possible

beam-directions from a predefined and optimized codebook.

The unknown expectations of the arm rewards coincide with

the opposite of their outage probabilities.

The performance of the resulting online policies (EW or

UCB-based) is quite surprising. As recently shown in [32],

one-bit feedback MABs remain competitive even with deep

learning neural networks that have been trained offline. And

this, in spite of: their quantization loss; their lack of any a

priori knowledge, but learning on-the-fly; their single bit of

strictly causal information; and their lower computational load

(compared only to the running phase of the neural networks,

excluding the training).

In [33, 34], by exploiting similar one-bit feedback MABs,

the authors show that non-orthogonal multiple access (NOMA)

can be performed efficiently and outperform its OMA coun-

terpart without any prior channel state nor distribution infor-

mation, as commonly assumed in the relevant literature.

VI. Applications beyond wireless

Spurred by the enthusiasm surrounding the Big Data

paradigm, online optimization has found vast applications in

problems where the trade-off between data exploration and

exploitation is crucial. In signal processing, examples include

sparse coding and dictionary learning [35], data classification

Users
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MXL in the Wine dataset. MXL provides the best linear transformation, which
successfully separates the images into the three classes.

and filtering [36], matrix completion and prediction [37], Pois-

son inverse problems in tomography [38], etc. As a concrete

application, we consider here the supervised metric learning

for image similarity search and classification [10, 39] illus-

trated in Fig. 6. The aim is to learn a positive-definite matrix X

shaping the Mahalanobis distance: dX(p,q) = (p−q)⊤X(p−q)

that best captures the similarity of two images p and q, based

upon existing annotations or examples (supervised learning).

An example in the dataset is a triplet (p, q, y) where p, q are

two images and y represents their similarity score (e.g., y = +1

if the images are similar and y = −1 otherwise). Intuitively, the

Malahanobis distance performs a linear transformation of the

data and computes the distance dX(p,q) = ∥X1/2p−X1/2q∥2 in

the transformed space. The idea is to learn the best transfor-

mation that brings closer the similar images and separates the

dissimilar ones.

This application enables us to highlight the range of the

MXL algorithm, which can be exploited here directly. Specifi-

cally, we have compared the Euclidean metric with the online

metric that was learned by the MXL algorithm, and a different

online metric based on the mirror descent for metric learning

(MDML) algorithm of [5], which exploits the Frobenius norm

regularization. Our MXL algorithm performs best in terms of

classification test errors on three well-known datasets: Iris,

Wine and MNIST. Both online metrics always outperform

the Euclidean one and MXL provides the best online learned

metric. In Fig. 7, we plot the principal components in the
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Euclidean and the transformed space via MXL in the Wine

dataset, in which the Euclidean representation is quite ill-

suited for classification. For the complete experimental setup

and results, we refer the reader to the online report [40].

VII. Conclusions

This paper provides an introduction to online convex opti-

mization, to its online policies along with their neat theoretical

guarantees, and to its links with other classic frameworks.

Application-wise, future wireless networks provide a partic-

ularly suitable playground; the derived online policies are:

distributed and reinforcing, come with theoretical guarantees,

and, most remarkably, are able to adapt on-the-fly to arbitrarily

and unpredictable changes in the wireless environment, relying

on strictly causal and limited feedback.

References

[1] P. Mertikopoulos and E. V. Belmega, “Learning to be green: Robust
energy efficiency maximization in dynamic MIMO-OFDM systems,”
IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 743 – 757, April 2016.

[2] A. Anandkumar, N. Michael, A. K. Tang, and A. Swami, “Distributed
algorithms for learning and cognitive medium access with logarithmic
regret,” IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 731–745, April
2011.

[3] T. Chen, S. Barbarossa, X. Wang, G. B. Giannakis, and Z.-L. Zhang,
“Learning and management for internet of things: Accounting for
adaptivity and scalability,” Proc. of the IEEE, vol. 107, no. 4, 2019.

[4] P. Mertikopoulos and E. V. Belmega, “Transmit without regrets: online
optimization in MIMO–OFDM cognitive radio systems,” IEEE J. Sel.

Areas Commun., vol. 32, no. 11, pp. 1987–1999, November 2014.

[5] G. Kunapuli and J. Shavlik, “Mirror descent for metric learning: A
unified approach,” in Joint European Conference on Machine Learning

and Knowledge Discovery in Databases. Springer, 2012, pp. 859–874.

[6] J. Hannan, “Approximation to Bayes risk in repeated play,” in Contri-

butions to the Theory of Games, Volume III, ser. Annals of Mathematics
Studies, M. Dresher, A. W. Tucker, and P. Wolfe, Eds. Princeton, NJ:
Princeton University Press, 1957, vol. 39, pp. 97–139.

[7] Y. Nesterov, “Primal-dual subgradient methods for convex problems,”
Mathematical Programming, vol. 120, no. 1, pp. 221–259, 2009.

[8] G. Scutari, D. P. Palomar, and S. Barbarossa, “The MIMO iterative
waterfilling algorithm,” IEEE Trans. Signal Process., vol. 57, no. 5, pp.
1917–1935, May 2009.

[9] P. Mertikopoulos and A. L. Moustakas, “Learning in an uncertain world:
MIMO covariance matrix optimization with imperfect feedback,” IEEE

Trans. Signal Process., vol. 64, no. 1, pp. 5–18, January 2016.

[10] A. Bellet, A. Habrard, and M. Sebban, “A survey on metric learning for
feature vectors and structured data,” arXiv:1306.6709, 2013.

[11] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3/4, pp. 285–294, December 1933.

[12] H. Robbins, “Some aspects of the sequential design of experiments,”
Bull. Amer. Math. Soc., vol. 58, no. 5, pp. 527–535, 1952.

[13] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, pp. 4–22, 1985.

[14] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, 2002.

[15] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends

in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[16] T. M. Cover, “Behavior of sequential predictors of binary sequences,”
in Trans. of the 4th Prague Conf. on Inf. Theory, Statistical Decision

Functions, and Random Processes, 1965, pp. 263–272.

[17] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 48–77, 2002.

[18] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire,
and M. K. Warmuth, “How to use expert advice,” Journal of the ACM,
vol. 44, no. 3, pp. 427–485, 1997.

[19] E. V. Belmega, P. Mertikopoulos, R. Negrel, and L. Sanguinetti, “Online
convex optimization and no-regret learning: Algorithms, guarantees and
applications,” arXiv:1804.04529, 2018.

[20] A. Marcastel, E. V. Belmega, P. Mertikopoulos, and I. Fijalkow, “Online
power optimization in feedback-limited, dynamic and unpredictable IoT
networks,” IEEE Trans. Signal Process., vol. 67, no. 11, pp. 2987–3000,
2019.

[21] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in ICML ’03: Proceedings of the 20th International

Conference on Machine Learning, 2003, pp. 928–936.

[22] S. Shalev-Shwartz, “Online learning: Theory, algorithms, and applica-
tions,” Ph.D. dissertation, Hebrew University of Jerusalem, 2007.

[23] A. S. Nemirovski and D. B. Yudin, Problem Complexity and Method

Efficiency in Optimization. New York, NY: Wiley, 1983.

[24] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107–
194, 2011.

[25] J. Kwon and P. Mertikopoulos, “A continuous-time approach to online
optimization,” Journal of Dynamics and Games, vol. 4, no. 2, pp. 125–
148, April 2017.

[26] G. Scutari, D. P. Palomar, F. Facchinei, and J.-S. Pang, “Convex
optimization, game theory, and variational inequality theory in multiuser
communication systems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp.
35–49, May 2010.

[27] P. Mertikopoulos, E. V. Belmega, R. Negrel, and L. Sanguinetti, “Dis-
tributed stochastic optimization via matrix exponential learning,” IEEE

Trans. Signal Process., vol. 65, no. 9, pp. 2277–2290, May 2017.

[28] G. Scutari and D. P. Palomar, “MIMO cognitive radio: A game theoreti-
cal approach,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 761–780,
Feb. 2010.

[29] O. Bilenne, P. Mertikopoulos, and E. V. Belmega, “Fast optimization
with zeroth-order feedback in distributed, multi-user MIMO systems,”
IEEE Trans. Signal Process., vol. 68, pp. 6085–6100, 2020.

[30] J. C. Spall, “A one-measurement form of simultaneous perturbation
stochastic approximation,” Automatica, vol. 33, no. 1, pp. 109–112, 1997.

[31] I. Chafaa, E. V. Belmega, and M. Debbah, “One-bit feedback exponential
learning for beam alignment in mobile mmWave,” IEEE Access, vol. 8,
pp. 194 575–194 589, 2020.

[32] I. Chafaa, R. Negrel, E. V. Belmega, and M. Debbah, “Self-supervised
deep learning for mmWave beam steering exploiting Sub-6 GHz chan-
nels,” IEEE Trans. Wireless Commun., 2022.

[33] H. El Hassani, A. Savard, and E. V. Belmega, “Adaptive NOMA in
time-varying wireless networks with no CSIT/CDIT relying on a 1-bit
feedback,” IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 750–754,
2020.

[34] ——, “Energy-efficient 1-bit feedback NOMA in wireless networks with
no CSIT/CDIT,” in IEEE Statistical Signal Processing Workshop, 2021.

[35] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” Journal of Machine Learning Research,
vol. 11, pp. 19–60, March 2010.

[36] D. Garber and E. Hazan, “Adaptive universal linear filtering,” IEEE

Trans. Signal Process., vol. 61, no. 7, pp. 1595–1604, April 2013.

[37] O. Shamir and S. Shalev-Shwartz, “Matrix completion with the trace
norm: Learning, bounding, and transducing,” Journal of Machine Learn-

ing Research, vol. 15, pp. 3401–3423, October 2014.

[38] K. Antonakopoulos, E. V. Belmega, and P. Mertikopoulos, “Online
and stochastic optimization beyond lipschitz continuity: A riemannian
approach,” in Intl. Conf. on Learning Representations (ICLR), 2019.

[39] R. Negrel, D. Picard, and P.-H. Gosselin, “Web-scale image retrieval
using compact tensor aggregation of visual descriptors,” IEEE Magazine

on MultiMedia, vol. 20, no. 3, pp. 24–33, 2013.

[40] E. V. Belmega, P. Mertikopoulos, R. Negrel, and L. Sanguinetti,
“Matrix exponential learning in multimedia classification problems:
Experimental setup and results,” Tech. Rep., Mar. 2018. [Online].
Available: https://perso.esiee.fr/~negrelr/conf/MLX2018_ML_setup.pdf

305


