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Abstract—In cell-free wireless networks, multiple connectiv-
ity options and technologies are available to serve each user.
Traditionally, such options are ranked and selected solely based
on the network performance they yield; however, additional
information such as electromagnetic field (EMF) exposure could
be considered. In this work, we explore the trade-offs between
network performance and EMF exposure in a typical indoor
scenario, finding that it is possible to significantly reduce the
latter with a minor impact on the former. We further find that
surrogate models represent an efficient and effective tool to model
the network behavior.

Index Terms—cell-free networks; electromagnetic field expo-
sure.

I. INTRODUCTION AND RELATED WORK

Next Generation (Next-G) mobile networks will include a
vast number of points of access (PoAs) capable of serving their
users. PoAs using different technologies, e.g., Wi-Fi access
points and cellular base stations, will coexist in the same
network, while being controlled in a centralized manner. In
this scenario, each user can be served by multiple PoAs, with
different performance and quality-of-service; it follows that the
location of a user is not anymore the main factor determining
which PoA serves it. Indeed, the very notion of cell as an area
covered by a single PoA is fading, leading to what are termed
cell-free mobile networks [1], [2].

A major feature of cell-free networks is the great flexibility
in deciding how, i.e., through which PoA, each user should
be served. Effectively making such decisions requires (i)
that network architectures include suitable decision-making
entities, and (ii) that those entities have access to the necessary
information. Both issues are addressed by the very active
research field of virtualized radio access networks (vRAN),
where softwareized controllers running on general-purpose
hardware make user and resource management decisions,
leveraging status reports and logs coming from different parts
of the network infrastructure [3]–[5]. Timing is always an
important consideration in vRAN scenarios; as an example,
the very popular open RAN (O-RAN) paradigm includes three
classes of controllers for real-time (latency below 1 ms), near-
real-time (around 10 ms), and non-real-time (around 1 s)
decisions [4], [6].

A related issue is which data to consider when making net-
work management decisions, and the objective to pursue when
making them. The traditional approach [3], [5], [7] has long
been to maximize a network performance metric, e.g., average

throughput or end-to-end service latency, using data on, e.g.,
interference conditions and user location. However, beyond
being fast, Next-G networks are expected to be sustainable and
human-centric; to achieve these goals, additional information
must be collected and accounted for when making network
management decisions.

Making any technology – specifically, mobile networks –
human-centric does not only imply accounting for the needs
and preferences of individual users, but also to evaluate the
impact of communication networks on human health. The
interactions between electromagnetic fields (EMF) and bio-
logical tissues are indeed related to a wide range of biological
effects, depending both on the frequency content and EMF
amplitude. Concerning radiofrequency EMF (RF-EMF), the
only scientifically recognized and proven effect of exposure is
heating of biological tissues. The International Commission
on Non-Ionizing Radiation Protection (ICNIRP) guidelines
have defined the limits of exposure to RF-EMF as thresholds
below which RF-EMF exposure is safe according to scientific
knowledge [8]. Nonetheless, the development of new technolo-
gies requires an evaluation of the levels of exposure, as one
fundamental step for proper health risk assessment process.
The health risk management aspects, as well as the current
public concern on possible long-term health effects caused by
exposure to new RF-EMF emitting sources [9], even if at levels
below guidelines, make the EMF exposure evaluation playing
an important role in new generation technologies.

In spite of the vast research efforts towards Next-G net-
works [10], [11], as well as on EMF exposure assessment on
human health [12], research about EMF-aware network man-
agement is surprisingly scarce. Indeed, most existing works
focus on the network planning stage, e.g., placing the PoAs
in such a way that EMF exposure targets (or limits) are not
exceeded [9], [13]. These approaches, however, fail to exploit
the capability of modern virtualized, software-defined, cell-
free networks.

In this work, and unlike prior art, we account for an EMF
exposure at network management time, and envision making
decisions to constantly adapt the network configuration to
the external conditions and user demand, thereby ensuring
adequate performance while keeping EMF exposure low. Our
work is thus a contribution towards the higher-level goal of
making the network as a whole more human-centric, hence
sustainable.
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Fig. 1. Our reference topology, with red stars representing gNBs and the
number of each room indicated therein. Coordinates are in meters.

To this end, a first, concrete goal is to characterize the trade-
offs existing between performance and EMF exposure levels,
hence, to obtain a preliminary understanding on whether it is
feasible to significantly reduce the latter without jeopardizing
the former. Network performance is assessed through simula-
tion, considering a typical office layout, mmWave technology,
and the experiment-based model presented in [14]. As for the
EMF exposure assessment, we apply a stochastic approach,
based on the use of surrogate models accounting for the
uncertainty coming from users’ positions. Thanks to their
relative simplicity, surrogate models based on polynomial
basis [12] can be a building block of lightweight solution
strategies, appropriate for decisions to make under tight time
constraints and over hardware with limited capabilities.

The remainder of this paper is organized as follows. We
begin, in Sec. II, by presenting the reference scenario we
consider for this work. We then detail the methodology we use
in Sec. III, before presenting our numerical results in Sec. IV.
We discuss the main take-away messages in Sec. V, along
with open directions for future research. Finally, we conclude
the paper in Sec. VI.

II. REFERENCE SCENARIO

We focus on a typical indoor scenario, specifically, the office
layout depicted in Figure 1, similar to the one used in many
works on indoors EMF exposure [15].

The office contains a total of six PoAs, namely, mmWave
gNBs, called g1 . . . g6, and represented by red stars in Figure 1.
As in [14], gNBs operate at a frequency of 28 GHz, and their
transmission power is set to 23.9 dBm (245 mW). gNBs emit
beams whose width is 15◦, and the path loss incurred is given
by [14]:

PLdB(f, d) = 20 log10

(
4πd0f

c

)
+ 10n log10

(
d

d0

)
. (1)

In (1), d is the distance between transmitter and receiver,
d0=1 m is the reference distance, f=28 GHz is the frequency,
and c is the speed of light. n is the path-loss exponent, which
also accounts for whether there are obstacles, e.g., walls,
between transmitter and receiver (if there are no obstacles, we
are in line-of-sight (LoS) conditions). In our case, following
the experiments reported in [14], we set n = 1.7 for LoS
conditions, and n = 4.6 for non-LoS conditions.

A total of ten users are randomly placed across the topology.
In pure cell-free fashion, any gNB could serve any of the
rooms; in the following, we will refer to a gNB-to-room
assignment as a strategy. We will compare a total of 32
such strategies over 1,000 different user placements, and
study the average and distribution of the network performance
(expressed as the achievable data rate) and EMF exposure
(expressed as power density, consistently with the reference
levels provided by the ICNIRP guidelines [8]). Importantly,
network performance is evaluated at the users’ locations, while
EMF exposure is evaluated across the whole topology.

III. METHODOLOGY

Our methodology includes five main steps, as summarized
in Figure 2.

The first step, (1) in Figure 2, is to generate user positions
and network management strategies. Concerning the former,
we generate a total of 1,000 scenarios, all using the office
layout in Figure 1 and each including 10 users. Each room
contains a user, except rooms 4 and 8 which contain two each;
in each scenario, users are randomly placed within their rooms.
The distribution of the coordinates describing the positions
of the users in each room is assumed to be uniform, and
scenarios were obtained through the Latin hypercube sampling
strategy [16].

As for network management strategies, we assume that each
gNB is pointed towards a room, and identify a strategy as a
gNB-to-room association. As an example, Figure 3 depicts a
strategy where gNBs g1–g6 are pointed, respectively, towards
rooms 1, 8, 8, 4, 8, and 5. Notice that where a gNB – more
precisely, its beam – is pointed does not limit the users it
can serve: in the example in Figure 3, gNB g1 points towards
room 1, but it also serves room 7. Similarly, nothing prevents
multiple gNBs from pointing their beams towards the same
room.
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(1) generate
user locations
and strategies

(2) for each user
and strategy:
compute rate

(3) for each strategy:
compute

power density
over all rooms

(4) generate 
surrogate models for 

EMF exposure
(5) analyze results

Fig. 2. The main steps of our methodology.
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Fig. 3. An example network configuration: beam directions (left) and resulting
data rate (right).

In step (2), we leverage the model and results from [14]
to assess the network performance and behavior. Specifically,
we apply (1) to determine the signal-to-noise-and-interference-
ratio (SINR) experienced by each user, and then computing
the achievable rate via Shannon’s formula rate = B log2(1 +
SINR), where B = 500 MHz is the available bandwidth.
In the example of Figure 3, it is possible to notice how
longer distances and/or obstacles (hence, non-LoS conditions)
between the gNB and the user result in lower rates.

In step (3), we move to EMF exposure. Unlike data rate,
we are interested in the exposure over the whole topology, as
there may be other people in it (e.g., visitors) which are not
users of the network. Therefore, we superimpose to the office
layout a regular grid made of 100×200 points, spaced 20 cm
apart from each other. For each point of the grid, we use (1)
to compute the total received power (from all gNBs). Then,
we normalize such power to the actual area of the receiver
to obtain the power density. The 95th percentile (S95) and the
mean value (Smean) of the power density values obtained in
each scenario and for each network management strategies
were considered as EMF exposure metrics.

In step (4), we build surrogate models for EMF exposure,
based on Low Rank Tensor Approximations (LRA) [17]. In
general, EMF exposure could be expressed as Y = M(X)
were Y represents the exposure metrics (in this study, S95 and

Smean) and X represents the variables known to influence the
exposure scenarios (i.e., the positions of the users in our case).
Such quantities are linked by an unknown, and potentially very
complex, model M , i.e.,

Y =M(X) .

Then, a surrogate model M̃ is an approximation of the original
model, showing similar statistical properties but significantly
lower mathematical complexity, allowing us to write:

Y ≈ M̃(X) .

Building a surrogate model requires a finite set of obser-
vations of the original model, called experimental design;
in this study, the experimental design is the set of 1,000
scenarios with different users locations. Different methods can
be used to build surrogate models; LRA belongs to the class
of non-intrusive methods, as it does not require any additional
information on the phenomenon being studied, which is treated
as a “black box”. It aims at developing surrogate models
containing polynomial functions in high dimensional spaces
based on canonical decomposition. A representation of the
surrogate model as a finite sum of rank-one functions reads
as:

YLRA =

R∑
l=1

blwl =

R∑
l=1

bl

M∏
i=1

v
(i)
l Xi , (2)

where wl is the l-th rank-one function obtained as product of
univariate functions of the components of Xi, v

(i)
l denotes

a univariate function of the components of Xi in the l-th
rank-one component, M is the number of input variables,
bl, (l = 1, . . . , R) are scalars that can be viewed as normaliz-
ing constants, and r is the rank of the decomposition.

By exploiting the tensor-product structure of the multivariate
polynomial basis, as suggested by [17], and expanding v

(i)
l

into a polynomial basis that is orthonormal with respect to the
marginal distribution of the input parameters Xi, (2) can be
transformed into:

YLRA =

R∑
l=1

bl

M∏
i=1

pi∑
k=0

z
(i)
k,lP

(i)
k (Xi) , (3)

where P (i)
k denotes the k-th degree univariate polynomial in

the i-th input variable, pi is the maximum degree of P (i)
k and

z
(i)
k,l is the coefficient of P (i)

k in the l-th rank-one component.
The choice of the proper polynomial basis P (i)

k that would
be used to build up the LRA model is based on the criteria
of orthonormality to the marginal distributions of the input
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parameters Xi: as the input parameters Xi were supposed to be
uniformly distributed, in this study the Legendre polynomials
have been used. In order to estimate the unknown parameters,
i.e., the polynomial coefficients z

(i)
k,l and the normalizing

coefficients bl, (l = 1, . . . , R) of the surrogate model, we have
adopted a greedy algorithm [17], [18], based on Alternated
Least-Squares (ALS) minimization. ALS is predicated on se-
quentially updating the coefficients along separate dimensions,
and progressively increasing their rank by successively adding
rank-one components. The employed algorithm involves al-
ternating correction steps and updating steps. In the r-th
correction step, the rank-one tensor wr is built, while in the r-
th updating step the set of normalizing coefficients b1, . . . , br is
determined. In order to obtain sparse low rank approximations,
the approach described by [17] has been integrated by solving
all the minimization problems using the hybrid least angle
regression method [16], [19]. This proposed approach permits
to obtain sparsity both for each rank-one tensor wr, discarding
non-significant polynomials, and for the complete YLRA model,
discarding non-significant rank-one tensors (for more details,
the interested reader is referred to [20]).

To select the best rank r for the LRA model, we have
applied the method proposed in [18], based on a 3-fold
cross validation. The experimental design was divided into
three subsets and, iteratively, three LRA models were built
considering two among the three subsets as training set. For
each model, the root mean square error between the values
estimated with the LRA model and those of the respective
testing set was estimated. The rank r yielding the smallest
average root mean square error over the three LRA models
was identified as optimal. Then, a new LRA model of rank r
was built using the full experimental design. The 3-fold error,
obtained averaging the mean square errors calculated on each
training set and normalized on the empirical variance of the set
provided a fair approximation of the generalized error of the
surrogate models. Once obtained reliable surrogate models of
the exposure, we used them to estimate the probability density
functions of S95 and Smean for each considered strategy.

Finally, step (5) of our methodology consists of analyzing
the resulting data, presented in Sec. IV next.

IV. NUMERICAL RESULTS

A first issue we seek to investigate concerns how effective
the surrogate models are, i.e., how well they can represent the
real behavior of the network. To this end, Figure 4 shows the
3-fold cross validation error describing the accuracy of LRA
surrogate models in estimating S95 and Smean for a specific
network management strategy (namely, strategy no. 9), as size
of the experimental design (i.e., the number of considered
exposure scenarios) grows. As expected, when increasing the
size of the experimental design, the 3-fold cross validation
error decreases. For this particular strategy, an experimental
design larger than 500 was enough to obtain errors lower
than 0.1 for LRA estimation of both S95 and Smean. Across
the different strategies, we chose sizes of the experimental
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Fig. 4. 3-fold cross validation error obtained in building LRA based surrogate
models for S95 and Smean for increasing sizes of experimental design (network
management strategy no. 9).
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Fig. 5. Histograms of Smean obtained for 10,000 exposure scenarios when
considering network management strategy no. 9.

design large enough to built surrogate models with 3-fold cross
validation error lower than 0.1, for both S95 and Smean.

Once we have the LRA surrogate models, we generate a
set of 10,000 exposure scenarios, and compute S95 and Smean
through the surrogate models. As an example, Figure 5 shows
the histogram of the Smean values obtained for one network
management strategy (namely, no. 9). The data follows a log-
normal distribution, with mean value equal to 6.97 µW/m2

and slightly positive skewness, equal to 0.29. This highlights
that, for most scenarios, Smean values are lower than the mean
value of the distribution.

Next, we seek to assess how much EMF exposure varies
across strategies; intuitively, this is linked to whether or
not it makes sense to even seek for low-exposure strategies.
To this end, Figure 6 shows the mean values of S95 and
Smean estimated by LRA surrogate models for each considered
strategy. It is possible to observe a very significant variability
in terms of S95: strategies from no. 1 to 6 show S95 equal
to about 60µW/m2, strategies no. 7 and 8 show S95 equal to
about 40µW/m2, while strategies from no. 9 to 14 show the
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Fig. 6. Mean values of S95 and Smean across network management strategies.
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Fig. 7. Network performance and EMF exposure under different strategies.
Each marker corresponds to one strategy, and its positions over the x- and y-
axes correspond, respectively, to the average data rate and the power density.

lowest S95 values, equal to about 25µW/m2. All the remaining
strategies show S95 values higher than 60µW/m2, with the
highest values observed for strategies from no. 17 to 22. As
for the Smean values, even if a dependence from the network
management strategies can be observed, the obtained values
are all in the range 7-14µW/m2. Importantly, all such values
are well below the reference level indicated by the ICNIRP
guidelines [8].

Last, we characterize the possible trade-offs between EMF
exposure and network performance, summarized in Figure 7.
In the plot, each marker corresponds to a different strategy;
the location of the marker along the x- and y-axes corresponds
to, respectively, the network performance (expressed as the
average data rate) and EMF exposure (expressed through the
power density, computed in step 3 as per Sec. III).

Focusing on the rightmost part of the plot, we can observe
that there are multiple strategies resulting in very good network
performance, very likely exceeding the requirements of the
users. Even more importantly, such strategies result in very

different levels of EMF exposure, consistently with Figure 6.
In other words, it is possible to substantially reduce EMF
exposure – by over 30% – without any noticeable change to
the network performance. Whether or not this is necessary
or advisable depends upon the concrete scenario at hand;
however, the results in Figure 7 confirm our intuition that
non-trivial trade-offs between EMF exposure and network
performance do exist and are worth exploring and exploiting.

V. DISCUSSION AND OPEN ISSUES

The numerical results presented in Sec. IV show that
interesting, high-quality trade-offs between network perfor-
mance and EMF exposure do exist and are worth exploring.
Furthermore, LRA based surrogate models are a viable tool
to model and predict the behavior of cell-free networks with
a low complexity. Building upon such take-away messages, it
is possible to identify several promising research directions to
explore.

A first one concerns energy efficiency, which is tightly
related to the issue of sustainability. As Figure 7 suggests,
it is possible to obtain network configurations that have a
high performance and a low EMF exposure. Interestingly,
such solutions tend to also be more energy-efficient: in-
deed, interference among gNBs is the main factor degrading
network performance, and gNBs needlessly emitting power
also increase EMF exposure. It follows that including gNB
transmission power among the decisions to make, and energy
efficiency among the metrics to account for, can yield further
performance gains for the network, whilst also furthering the
objectives of sustainable, human-centric networking.

A second major research avenue concerns how to make
network management decisions. In our simulations we com-
pared a set of pre-existing possible strategies; however, in
real-world conditions strategies must be built on the fly, and
updated according to quickly-changing external conditions.
This requires decision-making approaches that are both effec-
tive (i.e., they yield good-quality decisions) and efficient (i.e.,
they reach such decisions swiftly). These two requirements
tend to contradict one another, hence, a trade-off between the
two must be sought. In this context, accounting for additional
aspects, such as EMF exposure and energy efficiency, increases
the quality of decisions, at the cost of – potentially – rendering
them complex to make.

Regardless of how decisions are made, we will always need
a way to estimate the effect of the network configuration
on the performance and behavior of the network. To this
end, the surrogate model approach we have demonstrated
represents a viable alternative to more popular machine learn-
ing approaches like deep neural networks (DNNs) [3], [5],
[7]. Compared to DNNs, surrogate models have two main
advantages, namely:

• determining the model coefficients (i.e., training the ma-
chine learning models) requires less data (as per Figure 4)
and is less computationally intensive;
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• using the model (i.e., the inference phase) simply requires
computing a polynomial (3), which is more resource-
efficient than running through a DNN.

This is especially important in virtualized scenarios [3], [7],
where learning has to take place within the network nodes
itself, hence, with limited resources.

Finally, the sustainability of machine learning itself is a
hotly debated issue [21]. Techniques allowing to complement
– or, in some cases, even dispense with – DNNs can there-
fore have a significant impact, even beyond applications to
networking.

VI. CONCLUSION

We have considered the scenario of cell-free networks,
where multiple possible network management strategies exist,
leveraging different PoAs to serve the users. As a part of the
overarching general push towards human-centric networking,
we have envisioned including EMF exposure in the network
management process, seeking for management strategies com-
bining high performance and low EMF exposure levels.

To validate our intuition, we have considered a typical office
layout with six gNBs operating at 28 GHz, and used surrogate
models based on LRA to model EMF exposure through the
mean and 95th percentile of the power density. We have found
that multiple, high-quality trade-offs between network perfor-
mance and EMF exposure can be explored, hence, it is worth
including exposure considerations in the network management
process. Furthermore, LRA surrogate models were remarkably
effective in estimating EMF exposure, which makes them a
promising, lightweight tool to leverage for decision making
in scenarios with tight deadlines and/or limited hardware
capabilities.

Future research directions include defining decision-making
algorithms, combining EMF exposure with energy efficiency,
and exploring the extent to which surrogate models can
complement DNNs.
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