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Abstract—The Citizens Broadband Radio Service (CBRS) is
a spectrum sharing framework on the 3.5 GHz tier with three
priority tiers: the incumbents, priority commercial users (PAL),
and general commercial users (GAA). Thus, commercial users
compete for resources within the second and third priority tiers.
The interaction between commercial providers and customers
is complicated by the presence of the incumbents, who impact
the availability of spectrum but bypass the market entirely. In
particular, PAL customers are themselves subject to preemption
even with the priority purchase. In this paper, we propose a game-
theoretic framework to shed light into the equilibrium outcomes
and the impact of the incumbents into these. We determine
that there exist several possible equilibrium regions, including
one with a unique mixed equilibrium which is stable in the
evolutionary stable strategy sense, and others featuring unstable
mixed equilibria and stable pure equilibria. We show that for
fixed parameters, the maximum possible revenue a provider
can obtain is associated with a stable equilibrium and is thus
guaranteed. However, changes in incumbent behavior can result
in phase changes which have a sizable impact on the maximum
potential revenue.

Index Terms—Shared spectrum, network economics, game
theory, queuing theory.

I. INTRODUCTION

Increased spectrum demand to facilitate the roll out of

new wireless technologies has spurred the development of

spectrum sharing to leverage the fact that while in practice,

many previously allocated bands have sparse geographic and

temporal use. One such framework is the Citizens Broadband

Radio Service (CBRS) on the 3.5GHz band. CBRS defines

three priority tiers of users [1], [2]:

1) Incumbents: granted by default to defense related users

(typically the United States Navy);

2) Priority Access: determined by allocation of Priority

Access Licences (PALs);

3) General Authorized Access (GAA): licensed by rule.

The CBRS also defines a Spectrum Access System (SAS) to

coordinate spectrum availability. In particular, ensuring that

lower priority users do not interfere with higher priority users.

There is clearly robust demand for the available spectrum,

with telecommunications and utility providers spending a

collective 4.5 Billion US$ to secure PALs in the 2020 FCC

Auction 105 [3]. Potential customers who want to make use

of the spectrum must decide whether to do so under the

GAA provision, or make use of resources offered by a PAL

holder. The decision is driven by whether the benefits of

minimizing the costs of service preemption is greater than

the costs of access to the PAL holder licensed spectrum.

However, the presence and nature of the incumbents means

that service preemption cannot be avoided entirely even with

priority access, impacting how much the PAL holder may

charge others to lease their spectrum.

As discussed in Section II, while there is prior work

analyzing strategic interactions in CBRS, the impact of the

incumbents’ presence on the decision-making process of cus-

tomers has not yet been studied, to our knowledge. Within the

CBRS framework, we aim to address the following:

• How does the cost of preemption impact the customer

decision between which priority tier to utilize?

• Can a PAL holder be guaranteed their maximum possible

revenue in a meaningful sense?

• How do changes in incumbent behavior impact the com-

mercial market?

Our contributions are as follows. First, we formalize the

customer tier decision and provider price decision within

a queuing game framework [4], considering incumbent and

customer users as continuous streams arriving to the system.

Our model explicitly accounts for the preemption costs and

the traffic load of incumbents. Second, we determine that there

exist several possible equilibrium regions, including some with

mixed equilibria which are stable in the Evolutionary Stable
Strategy sense, and others featuring multiple unstable mixed

equilibria. Third, we determine that despite the possibility

of regions with unstable equilibria, the maximal provider

revenue for fixed parameters is always associated with a stable

equilibrium state. Fourth, we demonstrate that alterations in

the behavior of the incumbents alone can force a phase change

between equilibrium regions, which can potentially have a

significant impact on provider revenues.

The remainder of the paper is organized as follows. In

Section II we provide an overview of related works. In Section

III we detail our system model and the associated game. In

Section IV we analyze the resulting possible equilibria states,

which we leverage in Section V to evaluate how this impacts

the PAL holder’s behavior. Due to space constraints, some of

the proofs are omitted.
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II. RELATED WORK

CBRS is a topic of interest for research in light of the

ongoing PAL allocations and resulting deployments. However,

while there is existing literature regarding analyzing inter-

actions on the CBRS band, these predominately focus on

provider-level decision making which does not directly ac-

count for incumbent behavior. Examples include the decision

on which tier to operate [5]; impact of small-cell resource

allocation on deployment decisions by multiple providers [6];

the problem of sub-leasing PAL access to other providers

[7]; competitions among providers for users given access to

varying tiers [8]; the impact of resource sharing on the decision

of which base stations to keep active during low traffic periods

[9]; and minimizing the impact of free-riders within a shared

spectrum scenario [10]. None of these works focus on the

decision-making process of the customers of whether to utilize

service backed by the PAL or GAA tier given the presence
of higher priority incumbent tier traffic. Furthermore, our

economic analysis captures the stochastic nature of traffic.

Notably, our work shows that the variance of the service time

has a significant impact on the equilibrium outcomes.

The use of queuing games to analyze priority purchasing de-

cisions in the face of potential delays is a recurring topic in the

literature [11]–[13]. Models with Poisson distributed arrivals

and general service distribution in particular are commonly

used in modeling cognitive radio as noted in prior surveys [14].

The question of a customer priority purchasing decision under

general service distribution has been previously considered

under a two-class scenario [15], [16]. In our paper, we consider

how the presence of the incumbent class, which is not subject

to purchasing decisions, impacts the customers. We further

evaluate how customers’ sensitivity to preemption impacts

their decision making process. This is especially important as

the customers cannot escape preemption altogether due to the

incumbents. We also introduce a dynamic game played over

multiple time intervals, and show how changes in incumbent

behavior impacts provider revenues.

III. MODEL AND PROBLEM STATEMENT

We now formally define our CBRS system model, and

the associated priority purchasing game. The game features

a single provider and three tiers of users: the incumbent users

who automatically have highest priority; and the customers

who are further subdivided into the priority users paying a

provider to utilize PAL tier resources, and general users who

opt for service under on the GAA tier.

A. System Model

Based on the CBRS specification, we consider a scenario

where a single 10 Mhz channel on the 3.5 Ghz band is

available. A provider holding a PAL for this channel is present,

as well as a Spectrum Access System (SAS) in the background

managing spectrum availability and communicating with the

users [1]. From highest to lowest priority, the tiers of user

present are the incumbents in, priority customers pc, and

general customers gc. Incumbents are predesignated, and may

Incumbents (Highest Priority)

λin

PAL

GAAλ

Customers

Pay C

Yes

No

μin (Inc.)

μ (PAL/GAA)

Fig. 1: CBRS expressed as a queuing model. Incumbents

are predefined as such, and immediately join the highest

priority queue upon arrival. Customers choose between paying

a priority access fee C to the 2nd priority PAL tier queue,

or forgo the payment and default to the 3rd priority GAA

tier queue. Users enter service based on priority; First Come,

First Serve is in effect for users within each priority tier. Users

depart after completion of service.

utilize the spectrum at any time. Otherwise, customers decide

whether to pay a fee C to lease capacity from the PAL holder

on a short term basis in exchange for being granted priority

customer status. The concept of short term leasing of shared

resources exists within the cloud computing space today [17];

further, the ability to sub-lease PAL spectrum, including lim-

ited overlap, has been considered in a slightly different context

in prior work, specifically hinging on geographic subdivision

[7]. If the customer chooses to do so, they may utilize the

spectrum so long as no incumbents are present. If a customer

does not pay C, then they become a general customer under

GAA tier provisions, and may utilize spectrum only if no

higher priority users are present.

The incumbents and customers form continuous streams

of users arriving to the system. Users are served in priority

order, with the SAS indicating when users may transmit or

must yield to higher priority traffic. As a result, we apply a

queuing model, as illustrated in Figure 1. That is, we assume

that arrivals follow a Poisson process, service times follow

a general distribution, and that there is a single server for

all arrivals. The assumption of Poisson arrivals is justified by

prior measurement studies; these same studies suggest that

the common assumption of exponentially distributed service

is not reasonable in practice, hence our adoption of general

service distribution [18]. Because the SAS is indicating when

users may transmit or must yield, we assume that the queue

is preemptive in nature. As there are existing spectrum hand

off procedures which hold lower priority transmissions until

they can be resumed [19], we assume that this system is

specifically as a multi-class preemptive-resume priority queu-

ing system [20]. That is, a system where customers resume

from the point of interruption once the SAS indicates the

channel is free following preempted service.

As arrivals are continuous, the number of users of each

type is not fixed a priori. Further, there is no physical queue

for users to arrive to, rather the queue is determined by

the requests made to the SAS for spectrum availability. As

a result, users will not have precise information about the
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Parameter Definition
λ, λin Arrival rate of customers and incumbents, respectively.
μ, μin Service rate of customers and incumbents, respectively (equal to 1 over mean service length).
ρ, ρin Traffic load of customers and incumbents, respectively (equal to arrival rate over service rate).
K, Kin Service variance parameter, such that the second moment of service equals K/μ2 Kin/μ

2
in for customers and incumbents, respectively.

Vd The value placed on the cost of waiting for completion of service, per time unit.
Vp The value placed on the cost of preemption by a higher class user.

α, β, γ Substitutions for the repeating expressions 1− ρin, 1− (ρin + φρ), and 1− (ρin + ρ), respectively
Dpc, Dgc Random variable representing the total system delay for primary customers and general customers, respectively.

φ Fraction of customers who are priority customers.
C Cost of joining the PAL tier and becoming a priority customer.
R Average provider revenue per time unit.

TABLE I: Definition of parameters and variables related to the queuing game model for CBRS. The first six are input parameters

which are traffic parameters and costs based on the customers’ own valuation of service. The next three are derived from the

analysis. The cost C (and by extension the average revenue R) is the parameter which the provider seeks to optimize.

number of users currently present in the system. As a result,

we have an unobservable queue where customers make their

priority purchasing decision based on knowledge of derived

queuing statistics [12]. We also employ other standard queuing

assumptions: specifically that users’ service distributions are

independent and identically distributed (IID) and that the

system is stable, that is new users do not arrive faster than the

current users can be serviced [11], [12].We assume that the in-

cumbents and customers have differing statistical parameters,

but that users within each stream are homogeneous.

The parameters and variables of interest to the purchasing

decision are defined in Table I. In particular, we note that the

arrival rates λ and λin, service rates μ and μin, PAL tier fee C,

and the value placed on waiting for service Vd are all positive.

Per the assumption of stability of the system, the overall traffic

load ρ+ρin must be less than 1; by extension this implies that

ρ and ρin are individually strictly between 0 and 1. Finally,

the parameters K and Kin arise from the fact that while we

assume general service, as shown in the sequel knowledge of

the second moment of service is necessary in order to make

the purchasing decision. Thus, K and Kin are defined in terms

of the second moment and therefore K,Kin ≥ 1 follows. Of

note, K = 1 corresponds to a deterministic distribution, and

a value of 2 corresponds to an exponential one.

B. Priority Purchasing Game

With the model established, we may now formalize the

game that results from the competition for resources. Our

analysis aims to address the following: (i) how the customers

make the priority purchasing decision, (ii) what is the cost the

provider needs to set to maximize its revenue, and (iii) what

are the impacts of incumbent behavior and the cost of preemp-

tion on these decision making processes. To do so, we formally

define the action spaces for the provider and customer and the

impacts of the players’ decisions on their net benefit.

For the provider, their action space is the level at which

to set the PAL tier access fee C. We assume that this price

does not fluctuate from moment to moment based on the exact

number of users present. Rather, the provider sets C based

on their knowledge of the current queuing statistics and only

updates if changes to these statistics are detected.

Aside from the fee C paid if joining the priority class,

the other costs to the customers are self-imposed: the cost

of waiting for the completion of service, and the cost of

preemption. If E[Dpc] and E[Dgc] are the expected total

system delay for priority and general customers, then the

expected costs of waiting in each class will be these quantities

multiplied by Vd, the per-time unit value on waiting for

completion of service. Similarly, the cost of preemption is the

value placed on preemption Vp multiplied by the number of

preemptions. However, the expected number of preemptions

is equal to the traffic rate of any higher class users.

The possible system states which may arise depend on the

fraction φ ∈ [0, 1] of customers opting for priority over general

status. As a result, φ represents the customers’ collective

strategy. We are particularly interested in which states φ result

in (Nash) equilibrium states under steady state conditions. φ is

equilibrium strategy if customers are indifferent between their

options, which occurs whenever the following holds:

VdE[Dpc] + Vpρin + C = VdE[Dgc] + Vp(ρin + ρφ). (1)

WLOG, we let Vd = 1, so that costs are normalized in terms

of the cost of the system delay. As we assume steady state

conditions, we may apply our parameters to well defined

expressions for the system delay in multi-class preemptive-

resume priority queues [20, p. 175]:

E[Dpc] =
1

μα
+

Kinρin/μin +Kρφ/μ

2αβ
;

E[Dgc] =
1

μβ
+

Kinρin/μin +Kρ/μ

2βγ
.

(2)

Solving Equation (1) for C and applying the definitions in

Equation (2), we may define a best response function C(φ):

C(φ) =
ρ
(
Kinμρin + 2μinφγ +Kμin(α− φγ)

)
2μμinαβγ

+ Vpρφ.

(3)

As seen in the next section, the possible equilibria associated

with a PAL tier access fee C will depend on the relation

between C and the function C(φ). Analyzing the function will

in turn enables us to address the questions which were raised

at the beginning of this subsection.
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(a) Low variance K = 1.3, Vp = 1.15 (b) High variance K = 3.9, Vp = 1.15 (c) High variance K = 3.9, Vp = 1.25

Fig. 2: Example plots of C(φ), labeled with the ranges of C for which specific equilibrium regimes are possible, as defined in

Theorem 1. These examples feature incumbent queuing parameters of ρin = 0.05, μin = 0.033 and Kin = 1.855; a customer

traffic rate of ρ = 0.1 and service rate of μ = 0.628. We vary K and Vp to demonstrate different possible regions. Regimes

(I) and (II) are always possible if C is set low or high enough. In the low variance (K = 1.3) case, the monotone increasing

nature of C(φ) results in Regime (V) being the only other possibility. In the high variance (K = 3.9) case, the unimodal nature

of C(φ) results in a region where regime (IV) predominates, alongside either (III) or (V) depending on which of C0 or C1 is

the minimum value of the function; this will be determined by Vp in conjunction with the other parameters.

IV. EQUILIBRIA ANALYSIS

We now turn to the question which equilibrium states are

possible for a given cost C. As the customer priority purchas-

ing decision is a reaction to C and the current queue statistics,

a revenue maximizing provider may use their knowledge of

the possible equilibrium states to set the cost accordingly. We

analyze the function C(φ) to determine both the existence and

stability of equilibria.

A. Equilibrium Existence

In determining the existence of equilibria states for a given

cost C, we note the customers’ action space is the binary

decision of which class to join. As a consequence, there are

three possible equilibrium types:

1) All upgrade: φ = 1, i.e. all customers are priority;

2) None upgrade: φ = 0, i.e. all customers are general;

3) Some upgrade: φ ∈ (0, 1) of customers are priority, the

rest are general. Such values of φ are found through

Equation (1) for fixed queuing parameters.

And based on the relationship between C and C(φ), we may

make high level assertions of the possible equilibria types:

Lemma 1: Let C(φ) be as defined as in Equation (3) for

fixed incumbent and customer queuing parameters, and further

define C0 = C(0) and C1 = C(1). The following equilibria

states are possible based on the value of C relative to the

values of C(φ):
1) If min C(φ) < C < max C(φ), at least one some upgrade

equilibrium is possible.

2) If C < C1, a all upgrade equilibrium is possible.

3) If C < min C(φ), an all upgrade is the unique equilib-

rium state.

4) If C > C0, a none upgrade equilibrium is possible.

5) If C > max C(φ), a none upgrade is the unique equilib-

rium state.

From the results of Lemma 1, we may derive the exact

conditions for regions in which specific combinations of

equilibria types exist from an analysis of C(φ) as it was

defined in Equation (3), given fixed parameters. We begin by

defining the following quantities which determine the possible

equilibrium regions. Specifically, these are boundary values on

the value of preemption V
(L)
p ,V

(M)
p , V

(H)
p , and a threshold ρT

for the customer traffic load:

V(L)
p =

μinα(K(γ − ρ)− 2γ)−Kinμρρin
2μμinα3γ

, (4)

V(M)
p =

μinα(K(γ − ρ)− 2γ)−Kinμρρin
2μμinα2γ2

, (5)

V(H)
p =

μinα(K(γ − ρ)− 2γ)−Kinμρρin
2μμinαγ3

, (6)

ρT =
(K − 2)μinα

2

2(K − 1)μinα+Kinμρin
. (7)

Theorem 1: Let C(φ) be as defined in Equation (3); V
(L)
p ,

V
(M)
p , and V

(H)
p as defined in Equations (4), (5), and (6);

and ρT as defined in Equation (7). There are five possible

equilibrium regimes which may occur, conditioned on the

value of C set by the provider and the queuing parameters

for each class as follows:

(I) If C < min C(φ), all upgrade is the sole equilibrium.

(II) If C > max C(φ), none upgrade is the sole equilibrium.

(III) If K > 2, ρ < ρT AND

a) min C(φ) < C < max C(φ) and Vp < V
(L)
p , OR

b) min C(φ) < C < C0 and V
(L)
p < Vp < V

(M)
p ,

a some upgrade is the sole equilibrium.

(IV) If K > 2, ρ < ρT , AND

a) C0 < C < max C(φ) and V
(L)
p < Vp < V

(M)
p , OR

b) C1 < C < max C(φ) and V
(M)
p < Vp < V

(H)
p ,

there are three equilibria: two some upgrade and one none
upgrade
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(V) Otherwise, there are three possible equilibria states: an

all upgrade, a none upgrade, and a single some upgrade.

Proof: The existence of regimes (I) and (II) follow

directly from Lemma 1. Therefore, assume min C(φ) < C <
max C(φ). We further note that the function C(φ) will be

continuous on the domain φ ∈ [0, 1]. To determine the

behavior of the function, we may analyze the derivative C′(φ):

C′(φ) =
ρ
(
Kinμρinρ+ μinα(2γ −K(γ − ρ))

)
2μinμαβ2γ

+ Vpρ. (8)

Evaluating the sign of the derivative, we determine that there

are three possible behaviors for the function:

1) Monotone decreasing if K > 2, ρ < ρT , and Vp < V
(L)
p .

2) Unimodal with unique maximum if K > 2, ρ < ρT , and

V
(L)
p < Vp < V

(H)
p .

3) Monotone increasing otherwise.

Applying Lemma 1 again, we note that in the monotone

decreasing case, min C(φ) = C1 and max C(φ) = C0, and

there will be exactly one solution to C(φ) = C. Therefore,

it follows from Lemma 1 that there is a single equilibrium

possible, which will be a some upgrade type, i.e. regime (III).

We can make a similar argument to show that one equilibrium

of each type must be possible in the monotone increasing

function case, satisfying regime (V).

However, if the function is unimodal, it transitions from

increasing to decreasing at some φmax ∈ (0, 1). Thus, there

are values of C for which multiple solutions to C(φ) = C
exist. The intervals for which this is true, and what other

equilibria will be possible, will depend on whether min C(φ) is

equal to C0 or C1. For min C(φ) < C < max{C0, C1} only

one solution to C(φ) = C exists in the domain φ ∈ [0, 1],
thus exactly one some upgrade equilibrium will be possible.

If min C(φ) = C1, then C1 < C < C0 implies neither pure

equilibrium is possible, thus we have regime (III) where the

some upgrade will be the only one possible; this is the case if

V
(L)
p < Vp < V

(M)
p . If on the other hand min C(φ) = C0, then

C0 < C < C1 implies one equilibrium of each type is possible

(i.e. regime (V)), and this is the case if V
(M)
p < Vp < V

(H)
p .

If on the other hand max{C0, C1} < C < max C(φ), then

the unimodal nature of the function results in two solutions

existing to C(φ) = C, thus two some upgrade equilibria are

possible. However, because C > C0 also holds in this case,

the none upgrade equilibrium is also possible per Lemma 1,

and these conditions therefore satisfy regime (IV).

In Figure 2, we provide visual demonstration of how the

choices of parameters impact the behavior of C(φ) and thus

influence which mixed equilibrium regimes are possible; in

contrast to regimes (I) and (II) which are always possible if

C is set, respectfully, sufficiently low or high. The incumbent

parameters are kept the same in all three cases, with the values

used derived from measurement students of naval radars of the

type that typically operate on the CBRS band [21].

Similarly, the choices of the parameters for the customers

are derived from measurements of traffic in commercial

V L
p

V M
p

V H
p

Fig. 3: Plot of the boundaries between possible equilibrium

regimes when min C(φ) < C < max C(φ), as the incumbent

traffic load ρin and value on preemption Vp vary, with the

remaining parameters as in Figures 2(b) and 2(c). We find

that depending on the values of the parameters, we could

have a equilibrium regime (III), (IV), or (V) occur. For any

regime other than (V) to be possible however, we require the

customers to have relatively low sensitivity to preemption (i.e.

Vp < 1.44), or incumbent traffic load ρin < 0.207. Further,

(IV) will never occur on its own, but is a possibility alongside

either (III) or (V), depending on the value of C.

cognitive radios [22], [23], and measurements of users in

cellular networks on short time scales [24]. However, said

measurements suggest a distribution such that K = 1.3. As

K > 2 is a requirement for equilibrium regimes (III) or (IV)

to also be possible, we consider cases where K = 3.9; by

extension, we consider a customer traffic rate of ρ = 0.1 to

satisfy the condition that ρ be below the resulting threshold

for our parameters ρT = 0.236.

In the low variance K = 1.3 case, C(φ) will always be

monotone increasing. As seen in Figure 2(a), when C0 < C <
C1, there is clearly exactly one solution to C(φ) = C, yielding

the single some upgrade equilibrium. Thus, the only possible

regime featuring a mixed equilibrium is a regime (V) - that

the pure equilibria are also possible equilibria in this range

follows directly from the earlier Lemma 1.

In the high variance K = 3.9 case, there are other possible

equilibrium regions; which ones are possible will depend on

the value of preemption Vp. As our choices of parameters yield

V
(L)
p = 1.078, V

(M)
p = 1.204, and V

(H)
p = 1.34, we consider

scenarios where Vp = 1.15 and Vp = 1.25. The first of these

are plotted in Figure 2(b). In this case, if C1 < C < C0

the function is locally monotone decreasing, leading to an

equilibrium regime (III). If however C0 < C < max C(φ)
there are two solutions and therefore two some upgrade
equilibria possible. But again per Lemma 1, C > C0 results

in a none upgrade equilibrium also being possible, solidifying

that this is a region where regime (IV) is in effect.

When Vp = 1.25, as is the case in Figure 2(c), the function

is again unimodal but now with C0 < C1. Therefore, we have

a similar situation to the previous figure, but instead of a region

where regime (III) is in effect, we have a region where regime

(V) is in effect when C0 < C < C1.

While we have examples where equilibrium regimes (III)
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and (IV) are possible, for this to be the case in general,

the customers must not be highly sensitive to preemption, as

represented by Vp in addition to the conditions on traffic load

and service variance. As seen in the definitions in Equations

(4)-(7), the thresholds on the value of preemption and the

traffic load depend on the behavior of the incumbents. There-

fore, the bounds are relative. In Figure 3, we consider how

varying the incumbent traffic load ρin impacts the values of

the boundaries between possible equilibria regions (assuming

min C(φ) < C < max C(φ)) The remaining parameters are as

in the high customer variance case from the previous example.

We find that in general, regime (V) is most likely to prevail.

Specifically, we observe that once ρin becomes larger than

0.207, the threshold ρT falls below 0.1. Thus, even when the

combined traffic load is approximately 30% of total capacity,

regime (V) is the most likely equilibrium outcome. Similarly,

whenever Vp > 1.44, regime (V) always prevails regardless

of the current value of the incumbent traffic load. Recalling

that the per-time-unit cost of delay Vd is normalized, a Vp

value of 1.44 represents a cost which is 44 percent greater

than that of the delay. However, while for practical purposes it

appears unlikely to have a regime (III) or (IV) outcome, these

possibilities must still be taken into account by the provider

due to concerns over equilibrium stability as discussed below.

B. Equilibrium Stability

As noted in the introduction of this section, providers are

interested in the stability of equilibria as well as their exis-

tence, as stable equilibria correspond to guaranteed revenue

streams. Indeed, Theorem 1 states that there are conditions

where three equilibria are possible for a given cost C. Thus,

an equilibrium strategy need not be a unique best response

to C. We adopt the definition of stability in the Evolutionary

Stable Strategy (ESS) sense to capture stability behavior over

time as customers enter a system with fixed parameters [25]:

Definition 1: An equilibrium strategy x is stable in the

Evolutionary Stable Strategy (ESS) sense if no alternate equi-

librium strategy x′ is a better response against itself than x.

This definition is particularly relevant in a dynamic or evo-

lutionary game scenario, where the game is repeated over

multiple rounds. Even if equilibrium strategy x is the initial

strategy chosen, if some subset of players choose the alternate

best response strategy x′ in subsequent rounds, if x is not ESS

but x′ is, then the latter will eventually become the equilibrium

state adopted by the population as a whole [4, p.5]. While

the concept of ESS equilibria originated with evolutionary

biology, the concept has been widely studied in mathematics

and economics to consider dynamic systems more generally

[26]. Given Definition 1, we assert the following:

Theorem 2: Pure equilibria, i.e. all upgrade or none upgrade
are always ESS stable. Some upgrade equilibria are ESS stable

if and only if it is the sole equilibrium state.

Thus, while a situation where the all upgrade equilibrium

leads to the maximal revenues to the provider will also

correspond to those revenues being guaranteed because it is

a stable equilibrium. However, if a some upgrade equilibrium

corresponds to the maximum revenue, it is not obvious if that

equilibrium is stable. We examine this further in Section V.

V. REVENUE ANALYSIS

We turn now to the question of the provider’s decision to set

C. The provider’s goal is to maximize their revenues; while

the system is unobservable the provider also has knowledge of

the queue statistics. Therefore, the provider is able to exploit

their knowledge of the nature of C(φ) to make their decision.

If the cost is set at some C = C(φ), the expected revenue is

C multiplied by the number of customers opting to choose

PAL tier service. However, users arrive according to Poisson

processes, thus there is not a predetermined fixed number of

customers who will make the decision. Therefore, we instead

consider maximization of revenue per time unit. As the arrival

rate of priority customers is λφ, then the expected revenue per

time unit R(φ) equals λφC(φ):
ρ2φ

(
Kinμρin + 2μinφγ +Kμin(α− φγ)

)
2μinαβγ

+ Vpρλφ
2. (9)

Due to this relationship between C(φ) and R(φ), we may

both assert the cost which leads to the maximum revenue for

fixed parameters, and whether the associated equilibrium state

φ∗ is ESS per Theorems 1 and 2. If φ∗ is not ESS, there is

the possibility that the customers will divert to an alternate

equilibrium strategy, in particular the none upgrade strategy

which is always possible in the situation where some upgrade
equilibria are not ESS. However, despite the multiple possible

equilibria regimes asserted in Theorem 1, we assert that the

maximum revenue is always associated to a stable equilibrium:

Theorem 3: For any valid and fixed user traffic statistics,

there exists a stable Nash Equilibrium resulting in revenue

arbitrarily close to the maximum.
Proof: To show this, we note that the relationship between

C(φ) and R(φ) results in R(φ) being a continuous function,

therefore we may evaluate the derivative to determine the

behavior of R(φ):

R′(φ) =
ρ2

2μinαβ2γ

(
Kinμρinα+ 2μinφγ(α+ β)+

Kμin(α
2 + φ2ργ − 2φαγ)

)
+ 2Vpρλφ.

(10)

Evaluating R′(φ), we find that the function is either monotone

increasing, or unimodal with a unique maximum at some

φopt ∈ (0, 1). For this to be the case, the following must

be satisfied for any Kin ≥ 1, μin > 0, and μ > 0:

K > 4

ρin <
μin(K − 4)

Kinμ+ μin(K − 4)

ρ <
3α

2
− 1

2

√
α(5K − 2)μinα+ 4Kinμρin

(K − 2)μin

Vp ≤ Kμin(ρ
2 − 3ρα+ α2)−Kinμαρin − 2μinγ(α+ β)

4μμinαγ3

(11)
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Fig. 4: Example of a phase transition impacting the provider

revenue over the course of a dynamic game occurring over

40 time intervals. The customers have parameters K = 3.9,

ρ = 0.1, μ = 0.628, Vp = 1.15, while the incumbents have

service distributed with μin = 0.033 and Kin = 1.855, and

initial traffic load ρin = 0.1. Initially the provider charges

C = 0.883 to maximize their revenue. However, after 5 time

intervals, the incumbent traffic drops to ρin = 0.05. The

cost C is now larger than customers are willing to pay, thus

customers progressively opt to remain in the GAA tier and

revenues decrease. After another 15 time intervals, the provider

reacts by readjusting the cost to the new revenue maximizing

value of C = 0.564, which happens to the minimum value of

the corresponding C(φ) in this case. The provider eventually

sees their revenues rebound, however the total collected in the

maximizing case is lower than what was possible initially.

Comparing the conditions from Equation (11) to those for a

lone some upgrade equilibrium being possible per Theorem 1,

we find that φopt will indeed be the sole equilibrium possible

whenever the conditions are satisfied. This equilibrium is

stable per Theorem 2 and therefore the revenue is guaranteed.

If on the other hand R(φ) is monotone increasing, then

revenues are maximized when C = C1. As this is a bound-

ary case between equilibrium regions, in practical terms we

assume the cost is instead set to C = C1 − ε for some

arbitrary epsilon. Per Theorem 1, depending on the value of the

queuing parameters either then the all upgrade equilibrium is

the only one possible, or there is a some upgrade φ∗ associated

with this C. φ∗ will be an unstable equilibrium, but as it is

arbitrarily close to the all upgrade equilibrium, customers will

have greater incentive to switch to the all upgrade strategy

than the alternative none upgrade one. And as the all upgrade
strategy is ESS, the revenue is guaranteed less some ε.

This guarantee assumes that the traffic statistics are known

exactly by the provider. The results potentially differ if the

provider is still learning the statistics, or otherwise has some

estimation error. These considerations could be investigated in

future work.

A. Phase Transition Behavior

Thus, as shown above the provider is guaranteed their max-

imum revenue if they set C accordingly. However, this applies

provided the queuing parameters remain constant. Clearly if

the parameters do change, a change in strategy on the part of

the provider will be necessary. And this includes a situation

where the incumbent parameters change but the customer ones

do not. However, a change in incumbent behavior can in fact

prompt a phase change between equilibrium regions.

Consider a game that evolves over multiple epochs. The

customers have queue parameters of K = 3.9, ρ = 0.1,

μ = 0.628, with a cost of preemption Vp = 1.15. The

incumbents initially have a traffic load of ρin = 0.1, with

service distributed such that μin = 0.033 and Kin = 1.855
as in the earlier examples. The resulting C(φ) is monotone

increasing, thus the revenue is maximized when all customers

pay the maximum amount possible, C1 = 0.883. Suppose

however that after 5 time intervals the incumbent traffic load

drops to ρin = 0.05; this is now the example from Figure

2(b). Thus, the resulting C(φ) is now unimodal. The revenue

is still maximized when the cost equals C1 = 0.564, however

this is now the minimum value of the function. Moreover, the

original cost is now in a region where regime (II) applies and

none upgrade is the only possible equilibrium; as opposed to

C1 being a boundary between regions where regimes (I) and

(III) prevail, and thus there is only a single stable equilibrium.

Suppose that 5% of customers re-evaluate their strategy

each time interval. We plot the resulting revenue in Figure 4.

Once the incumbent behavior changes, the revenue steadily

decreases as customers realize they are now in a none upgrade
region and thus opt out of upgrading from GAA to PAL

tier service. Eventually, after a further 15 time intervals, the

provider realizes what is happening and adjusts C to the new

C1 = 0.564 value. Customers begin rejoining the PAL tier

as they now realize that they are better off when they all

join the PAL tier in this situation, with the revenue eventually

stabilizing, albeit at a lower level than was possible previously.

Thus, in order to ensure their revenue streams are unim-

peded by all customers opting out of the PAL tier, providers

must be alert to the traffic patterns of incumbents and cus-

tomers and adjust accordingly. This is particularly true for

incumbents since as just described, changes in the incumbent

behavior can force phase transitions. Such changes could be

due to natural variation of incumbent use or due to Primary

User Emulation Attacks, wherein hostile users manage to

impersonate the incumbents to gain control of the band while

bypassing the provider entirely. From the provider’s perspec-

tive, it is thus necessary to be constantly monitoring usage

patterns in order to be resilient against such changes, alongside

implementing a form of dynamic pricing so that C may be

updated on short notice in the event of a sudden change.

VI. CONCLUSIONS

In this work, we developed a joint queuing-theoretic and

game-theoretic model governing the interactions between the

priority tiers of users and providers operating on the CBRS. In

particular, we analyzed the impact of the cost of preemption Vp

and the level of incumbent tier traffic ρin on the customer

priority purchasing decision. We found that there are five

possible equilibrium regimes that can arise based on the

customer’s sensitivity to preemption and the traffic load and
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service distribution of each user class. In particular, should Vp

and ρin be sufficiently low, then it is possible to encounter

equilibrium regimes where there are stable mixed equilibria,

and others where multiple mixed equilibria are possible.

For most practical queue parameters, the equilibrium regime

which prevails will be one where there are three possible

equilibria states: a stable equilibrium where all customers join

the PAL tier, a stable equilibrium where all customers join the

GAA tier, and an unstable mixed equilibrium. Indeed, even

if the combined traffic of all users is roughly 30% of total

capacity, this is the regime that prevails regardless of how

sensitive the customers are to preemption. The same holds

true if the cost of preemption is 44% higher than the per-unit

cost of the delay of service.

Regardless of which regime prevails however, the provider’s

maximum possible revenue will be guaranteed for fixed pa-

rameters, as we show that regardless of the values of the pa-

rameters, this quantity will always be associated with a stable

equilibrium state. Should the incumbent behavior change, the

provider is still assured of the maximum possible revenue so

long as they react accordingly to adjust the fee to upgrade

to the PAL tier. However, the incumbent behavior can induce

a phase change between equilibrium regions, resulting in a

drastic reduction in revenue compared to what was achievable

before the behavior change.

Future work includes modeling how deadlines for service

completion impact the notion of the cost of preemption. In

addition, one could consider a PAL provider with access to

multiple channels and the impact of this extra capacity on the

customers’ willingness to pay access to the PAL tier.
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