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Abstract. Power Analysis has been intensively studied since the first
publications in 1996 and many related attacks on naive implementations
have been proposed. Nowadays algorithms in tamper resistant devices
are protected by different countermeasures most often based on data
randomization such as the BRIP algorithm on ECC and its RSA deriva-
tive. However not all of them are really secure or in the best case proven
to be secure. In 2005, Yen, Lien, Moon and Ha introduced theoretical
power attacks on some classical and BRIP exponentiation implementa-
tions, characterized by the use of a chosen input message value ±1. The
first part of our article presents an optimized implementation for BRIP
that takes advantage of the Montgomery modular arithmetic to speed
up the mask inversion operation. An extension of the Yen et al. attack,
based on collision detection through power analysis, is also presented.
Based on this analysis we give security advice on this countermeasure
implementation and determine the minimal random length to reach an
appropriate level of security.

Keywords: Power analysis, collision attacks, RSA, BRIP, modular mul-
tiplication and exponentiation.

1 Introduction

Asymmetric cryptography was introduced by Diffie and Hellman [DH76]
in 1976. The most widely used algorithms today are: RSA [RSA78]
invented in 1978 by Rivest, Shamir, and Adleman, and elliptic curve
cryptosystems (ECC) independently introduced by Koblitz [Kob87] and
Miller [Mil86].

Compared with symmetric cryptography, public key algorithms are
computationally very intensive. In practice long integer arithmetic is most
often handled by specific coprocessors designed for efficient computation
in GF (p). This is the case for embedded solutions with strict power
consumption and/or timing constraints.



Initially smart cards were considered inherently tamper resistant be-
cause any private data was embedded and thus physically inaccessi-
ble to an unauthorized user. However in 1996 timing attacks were pub-
licly introduced by Kocher in [Koc96]. Two years later he also intro-
duced power analysis attacks with Jaffe and Jun [KJJ99]. Side Chan-
nel Analysis (SCA) is a group of techniques including simple power
analysis (SPA) and differential power analysis (DPA). SCA threatens
any naive cryptographic algorithm implementation. Since these first
articles were published, power analysis has been widely investigated,
some publications have focused on countermeasures and their draw-
backs [FV03,MPO05,YLMH05] whereas others have focused on improving
the efficiency of the attacks [ABDM00,BK03,BCO04].

One such countermeasure is the Binary with Random Initial Point
(BRIP) algorithm(s) by Mamiya, Miyaji, Morimoto [MMM04] and Itoh,
Izu and Takenada [IIT04], later improved in [IIT06]. BRIP countermeasure
was originally designed for ECC and later extended to RSA cryptosystems.
Its RSA variant corresponds to the countermeasure also proposed in
[KHK+04] and is particularly interesting in terms of implementation as
neither the bit size of the prime characteristic of the field is increased nor
is the knowledge of the public exponent value needed.

Our study focuses on the exponentiation and for readibility purposes,
BRIP acronym will refer here to the BRIP RSA derivative of the counter-
measure.

The paper is organized as follows: section 2 gives an overview of
embedded asymmetric algorithms and their related side-channel potential
vulnerabilities. Section 3 describes the BRIP algorithms with the current
identified vulnerabilities and our implementation improvements. New
attacks on these algorithms and recommendations will be presented in
Section 4. We conclude our research in Section 5.

2 Power Analysis Background

Since the initial publication in [KJJ99] on Simple Power Analysis (SPA),
many improvements have been made on this subject. Electronic devices,
such as smart cards or other security products, are designed with thou-
sands of logical gates switching differently depending on the executed
operations and the data manipulated. The device power consumption of
the chip depends on these operations which can be easily monitored and
analysed on an oscilloscope. For instance, if the square operation has a
different pattern on the power curve than the one for multiplication, it is
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obvious that the attacker can easily recover the secret exponent in a naive
RSA implementation. Many other differences visible in the power curve
can lead to the same kind of leakage on the private key(s). Developers
must take into account all the potential vulnerabilities.

One of the first Collision Power Analysis attack is the Doubling Attack
by Fouque and Valette [FV03]. It was applied on a scalar multiplication
operation in ECC. They also explained how it could be extended to RSA
implementations.

Differential Power Analysis (DPA) and its improvements represent
the other main class of side channel attacks. The most well known is the
Correlation Power Analysis (CPA) by Brier, Clavier and Olivier [BCO04].
It was later applied by Amiel, Feix and Villegas [AFV07] on most
asymmetric algorithms. The first DPA attack on RSA was done in 1999
by Messerges, Dabbish and Sloan [MDS99]. Enhanced DPA attacks, such
as the Zero Value Point Attack published by Goubin in [Gou03], have also
been done on elliptic curve implementations. Goubin’s attack threatens
Coron’s randomization of the projective coordinates [Cor99] in the elliptic
curve scalar multiplication. The first combination between fault injection
and power analysis has also been applied to XTR in [CG04]. The BRIP
algorithms have then been proposed to counteract the Zero Value Point
Attack. Moreover, BRIP can also be applied in GF (p) for cryptosystems
based on the factorization and discrete logarithm problems, like RSA.

However Yen, Lien, Moon and Ha [YLMH05] presented a power
collision attack on the BRIP countermeasure for RSA by using ±1 values
for input messages, and on the Square and Multiply Always algorithm by
using ±m mod n messages as an input for RSA.

3 Modular Exponentiations for BRIP Algorithms

Firstly we present the BRIP algorithm variant for RSA, we also introduce
some improvements and optimizations for this countermeasure when
combined with Montgomery modular multiplication.

3.1 Modular Multiplication and Exponentiation

We summarize the principles used later in this paper: modular multiplica-
tion and exponentiation, in particular the ones designed by Montgomery,
which are particularly suitable for embedded implementations and the
RSA public key cryptosystem.
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3.2 Modular Multiplication

To compute modular multiplications x × y mod n on long integers x, y
and n Montgomery proposed the following efficient algorithm in [Mon85].

Montgomery modular multiplication
Given a modulus n and two integers x and y, of size v in base b, with
gcd(n, b) = 1 and r = bdlogb(n)e, MontMul algorithm computes:

MontMul(x, y, n) = x× y × r−1 mod n

We suggest the reader to refer to Appendix A.1 and papers [Mon85] and
[KAK96] if more detail on this operation is wished.

We can then use this operation to process efficiently Montgomery
modular exponentiation (MontExp) as detailed in [Dhe98]. Compared to
a classical Square and Multiply algorithm it consists of multiplying the
message operand and the accumulator by r mod n before the exponenti-
ation loop. In this case any intermediate result during the exponentiation
is equal to mk.r mod n. At the end the r value is removed by doing a
modular montgomery multiplication by 1. Refer to Appendix A.2 for the
detailed algorithm.

Classical BRIP Implementation for RSA
Alg. 3.1 describes the classical BRIP implementation introduced in
[KHK+04] with a random v generated from a h-bit random seed u. It
means v = f(u). Value v must be as long as the modulus to prevent the
implementation of a chosen message SPA. The security of the random
value v is the same as the seed random u, this implies there are only 2h

possible values. For instance v = (u|u . . . |u).

The major drawback is the time needed to compute the modulo inverse
v−1 mod n. The next implementation avoids this if Montgomery modu-
lar multiplication hardware is available.

Second BRIP Implementation with MontMul
The inversion of random v mod n is a penalty for the BRIP algorithm
performance. A solution consists in using the following property of the
Montgomery multiplication: MontMul(1, 1, n) = r−1 mod n. This gives
an efficient way to compute an exponentiation with both a fixed base
value (r) and a negative exponent. The idea was introduced by one of the
authors in [CF05] and can also be applied to BRIP.
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Algorithm 3.1 BRIP Exponentiation from left to right
Input: integers m and n such that m < n, k-bit exponent d =
(dk−1dk−2 . . . d1d0)2
Output: BRIP Exp(m,d,n)= md mod n

Step 1. If m = 1 Return(1)

Step 2. If m = n− 1 Return((−1)d0 mod n)

Step 3. Choose a random value v and compute v−1 mod n

Step 4. a = v, m0 = v−1 mod n, m1 = v−1.m mod n

Step 5. for i from k − 1 to 0 do
a = a× a mod n
a = a×mdi mod n

Step 6. a = a×m0

Step 7. Return(a)

The v−1 mod n computation can be replaced by r−v mod n imple-
mented as an exponentiation with a relatively short exponent (typically
|v| << |d|). This trick saves a lot of time compared to a modular inverse
calculation.

Thus we obtained the Algorithm Alg. 3.2.

Step 5. of Alg. 3.2 replaces the costly inversion operation of random v
in Alg. 3.1. However both previous algorithms Alg. 3.1 and Alg. 3.2 have
a complexity of 2 which is the same as the well known Square and Multiply
Always algorithm. Improvements can however be envisaged by using k-ary
and sliding window methods [ÇKK]. In [MMM04] the authors also pre-
sented optimized versions of BRIP, one version is using the k-ary method.

Algorithm Alg. 3.3 we present here, corresponds to WBRIP for RSA
with MontMul. It corresponds to a 2-ary exponentiation with the BRIP
countermeasure and the improvement we proposed with the Montgomery
multiplication. There is no costly inversion operation and the algorithm
complexity is 1.5, but more memory space is required for the pre-
computations storage compared to both the previous versions.

In this case the mask value for computation is no longer r−v but r−3v

as we manipulate scalar bits by 2-bit windows.
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Algorithm 3.2 MontExp-BRIP from left to right
Input: integers m and n such that m < n, k-bit exponent d =
(dk−1dk−2 . . . d1d0)2
Output: MontExp(m,d,n)= md mod n

Step 1. If m = 1 Return(1)

Step 2. If m = n− 1 Return((−1)d0 mod n)

Step 3. Choose a h-bit random value v

Step 4. Compute V = rv mod n = MontExp(r,v,n)

Step 5. Compute V1= MontMul(1, 1, n) and U = r−v mod n = MontExp(V1,v,n)

Step 6. a = V.r mod n, m1 = m.U.r mod n, m0 = U.r mod n

Step 7. for i from k − 1 to 0 do
a = MontMul(a, a, n)
a = MontMul(a, mdi , n)

Step 8. a = MontMul(a, m0, n)

Step 9. a = MontMul(a, 1, n)

Step 10. Return(a)

Algorithm 3.3 MontExp-WBRIP from left to right
Input: integers m and n such that m < n, k-bit exponent d =
(dk−1dk−2 . . . d1d0)2
Output: MontExp(m,d,n)= md mod n

Step 1. If m = 1 Return(1)

Step 2. If m = n− 1 Return((−1)d0 mod n)

Step 3. Choose a h-bit random value v

Step 4. Compute V = rv mod n = MontExp(r,v,n)

Step 5. Compute U = r−3v mod n

Step 6. Compute a = V.r mod n, m0 = U.r mod n, m1 = m.U.r mod n

Step 7. Compute m2 = m2.U.r mod n, m3 = m3.U.r mod n

Step 8. for i from k − 1 to 0 by 2 do
a = MontMul(a, a, n)
a = MontMul(a, a, n)
a = MontMul(a, m(2.di+di−1), n)

Step 9. a = MontMul(a, m0, n)

Step 10. a = MontMul(a, 1, n)

Step 11. Return(a)
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Depending on the memory contraints, the size of the window can be
modified. For a k-bit window the algorithm complexity becomes equal to
1 + 1/k.

4 Power Analysis Attacks on BRIP like Algorithms

We present here an improvement to the power collision attack on RSA
implementations based on the previous BRIP implementations. Fouque
and Valette first [FV03] introduced power collision attacks on some of
the classical elliptic curve scalar multiplication algorithms, they also ex-
plained how to extend the technique to modular exponentiations. Later
Yen et al. [YLMH05] introduced collision power attacks based on chosen
message values ±1 mod n that allows the secret exponent value d to be
recovered from a single curve. Developpers must avoid BRIP computation
when the input message equals n− 1 and simply return value 1 or n− 1
depending on the parity of the secret exponent.
In their article, some other variants of the attacks are presented, espe-
cially on the Square and Multiply Always algorithm by using ±m mod n
messages as input, but none of them compromise a full implementation
of BRIP.

4.1 Collision Power Analysis on BRIP and MontExp-BRIP

Modular multiplication on a chip requires relatively long processing
time and relatively high power consumption compared with symmetric
algorithms, where for example, processing can be carried out in a few
clock cycles in hardware implementations of AES.

In figure 1 we analyse power traces of the MonMult operation executed
on a tamper resistant device such as a smart card.
We choose two different random messages m1 and m2 and for each mes-
sage we execute three multiplications MontMul(m1,m1, n) and Mont-
Mul(m2,m2, n). We then collect the three power curves C1,1, C1,2 and
C1,3 of the multiplication with m1 and three curves C2,1, C2,2 and C2,3 of
the multiplication with m2.

We notice, cf. figure 1, that on the selected chip, the multiplication
is a very power consuming operation. This is due to the large number of
gates which are switching together in the asymmetric coprocessor logic.
From this curves we observe that power collisions occur for similar data
manipulated by the chip. C1,1, C1,2 and C1,3 are similar and have exactly
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Fig. 1. Power consumption of a single modular multiplication for curves C1,1, C1,2,
C1,3 and C2,1, C2,2, C2,3

.

the same power traces, as do C2,1, C2,2 and C2,3. It means that Ci,j collides
with Ck,l when i = k while Ci,j is different from Ck,l when i 6= k.

Due to the important number of clock cycles in a modular multiplica-
tion in the power curve, we can assume that different input data will have
different power trace patterns. This means we can distinguish collisions
with a high probability. The tests we made on the selected chip confirm
our assumption.

We analyse if we can exploit eventual collisions on the classical BRIP
algorithm 3.1 and the MontExp-BRIP 3.2 for an h-bit random value v. For
both algorithms the analysis will be identical.
Depending on the method for generating the random value v, it is obvious
that in some cases, collisions on its values could happen when generating
it. This will depend on the quality of the random and on its length.
However for performance reasons BRIP and especially MontExp-BRIP can
not use big values h.

We observe that if a colliding value for the random mask v appears,
then by choosing as algorithm input message m for the first execution and
−m mod n for the second one, we can have multiplications with similar
operands in both executions. This could lead to distinguishable power
collisions between the power curves of both executions. We then try to
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exploit these collisions to recover the secret exponent d.

Firstly we execute BRIP a number of times with input message m.
For any execution a new random value v1 is generated by the chip. Then
we repeat this operation with the input message −m mod n, for each
execution a new random value v2 is generated.

Let d = d′′.2i+1 +di.2i +d′ where, di is the current bit handled by the
exponentiation loop, d′′ the left part of d previously processed (left-to-
right exponentiation) and d′ the right remaining part of the exponent. In
figure 2 we can observe for a step i of the BRIP execution what operands
are manipulated by the chip for modular multiplications. In the first table
we see these operand values during a real multiplication (di = 1), and in
the second table when di = 0.

Message Square Message Multiplication (di = 1) Square

m
[
md′′ .v1

]2 [
(m2.d′′).v2

1

]
×

[
m.v−1

1

] [
(m2.d′′+1).v1

]2

−m
[
(−m)d′′ .v2

]2 [
(m2.d′′).v2

2)
]
×

[
−m.v−1

2

] [
((−m)2.d′′+1).v2

]2

Collision if v1 = v2 - No No

Message Square Fake Multiplication (di = 0) Square

m
[
md′′ .v1

]2 [
(m2.d′′).v2

1

]
×

[
v−1
1

] [
(m2.d′′).v1

]2

−m
[
(−m)d′′ .v2

]2 [
(m2.d′′).v2

2)
]
×

[
v−1
2

] [
(m2.d′′).v2

]2

Collision if v1 = v2 - Yes Yes

Fig. 2. BRIP execution for di = 1 and di = 0.

We detect collisions on any Fake Multiplication (multiplication by r−v)
operation when a collision happens on v and v1 = v2. Thus collision
detection through power analysis is a real threat.
We can then observe on power traces when a collision occurs. We store
in memory the power curves Ci of the BRIP execution with message
m and C ′

i with message −m mod n. Then we search for two curves Ci

and C ′
j where power collisions appear between the two curves. Then by

subtracting C ′
j to Ci we can recover the secret exponent d.
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Algorithm 4.4 BRIP Collision Attack
Input: s = RSA-BRIP(m, d), s′ = RSA-BRIP(−m, d)
Output: Secret exponent d

Step 1. Choose a random value m in [2, n− 2].

Step 2. Collect k traces (C0, ..., Ck−1) of BRIP execution with m as input message.

Step 3. Collect k traces (C′
0, ..., C

′
k−1) of BRIP execution with−m as input message.

Step 4. Find traces Ci and C′
j such as both traces are colliding on each BRIP Fake Multiply.

Step 5. Compute S = |Ci − C′
j |.

Step 6. Each non zero difference on S identify a true multiplication, i.e. di = 1

The probability of finding at least one colliding couple from both sets
of k traces is approximated in [MOV96] (Fact 2.27) by:

pcollision ' 1− e−((k2)/|h|)

where |h| denotes the number of possible value for v so 2h.

Figure 3 gives the probability of collision for a 32-bit random v rela-
tive to the number of encryptions done.

h k collision

32 78000 0.507
32 217 ≈ 131072 0.864
32 161000 0.951
32 200000 0.990
32 218 ≈ 262144 0.999

Fig. 3. Probability of collision for h = 32

Thus in practice with 232 possible values for v (32-bit random), two
sets of k = 78000 curves are sufficient to have a probability of 1

2 for obtain-
ing a collision, where two sets of k = 200000 curves will lead to a collision
and then a successful attack in 99 percents of cases.( pcollision ' 0.99).

This collision attack is a serious threat and also appears on MontExp-
BRIP, cf. Alg. 3.2. The random value v is not used in the same way in
the algorithm but the analysis and the results of collision are similar.
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Fig. 4. Graph of probability of collision for a 32-bit value v

h k collision probability

16 29 = 512 0.864
16 210 = 1024 0.999
64 5.1× 109 0.505
64 233 0.864
64 234 0.999
96 3.3× 1014 0.497
96 248 0.864
96 249 0.999

Fig. 5. Probability of collision for other h values
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We suggest using at least 96-bit random value v (h = 96 cf. figure 5) to
prevent MontExp-BRIP and BRIP against such collision attacks. However
it is obvious that such random lengths will reduce the performance of
these implementations and then the reason for using them.

4.2 Collision Attack on MontExp-WBRIP

We analyse the impact of power collisions in the MontExp-WBRIP imple-
mentation. In the figure 6 we replace the notation MontMul by MM.
Let d = d′′.2i+1 + di.2i + di−1.2i−1 + d′ where di and di−1 are the two bits
of the 2-bit window handled for each exponentiation loop, d′′ the left part
of d previously processed and d′ the right part being process in next steps.

Message Square Square M(2di+di−1=0) MontMul

m MM(md′′ .rv1 , md′′ .rv1) MM(m2.d′′ .rv1 , m2.d′′ .rv1) MM(m4.d′′ .r4v1 , r−3v1)

−m MM((−m)d′′ .rv2 , (−m)d′′ .rv2) MM(m2.d′′ .rv2 , m2.d′′ .rv2) MM(m4.d′′ .r4v2 , r−3v2)

If v1 = v2 - Yes Yes

Message Square Square M(2di+di−1=1) MontMul

m MM(md′′ .rv1 , md′′ .rv1) MM(m2.d′′ .rv1 , m2.d′′ .rv1) MM(m4.d′′ .r4v1 , m.r−3v1)

−m MM((−m)d′′ .rv2 , (−m)d′′ .rv2) MM(m2.d′′ .rv2 , m2.d′′ .rv2) MM(m4.d′′ .r4v2 , (−m).r−3v2)

If v1 = v2 - Yes No

Message Square Square M(2di+di−1=2) MontMul

m MM(md′′ .rv1 , md′′ .rv1) MM(m2.d′′ .rv1 , m2.d′′ .rv1) MM(m4.d′′ .r4v1 , m2.r−3v1)

−m MM((−m)d′′ .rv2 , (−m)d′′ .rv2) MM(m2.d′′ .rv2 , m2.d′′ .rv2) MM(m4.d′′ .r4v2 , m2.r−3v2)

If v1 = v2 - Yes Yes

Message Square Square M(2di+di−1=3) MontMul

m MM(md′′ .rv1 , md′′ .rv1) MM(m2.d′′ .rv1 , m2.d′′ .rv1) MM(m4.d′′ .r4v1 , m3.r−3v1)

−m MM((−m)d′′ .rv2 , (−m)d′′ .rv2) MM(m2.d′′ .rv2 , m2.d′′ .rv2) MM(m4.d′′ .r4v2 , (−m)3.r−3v2)

If v1 = v2 - Yes No

Fig. 6. WBRIP execution for possible 2di + di−1 values.

We can observe in figure 6 the different possible collisions on curves when
random values v and v1 collide. But in WBRIP it does not give us as much
information as in the previous algorithms. The collisions will indicate that
the 2-bit window value is either 00 or 10 so di−1 = 0 and non collisions
will indicate the 2-bit window value is either 01 or 11 so di−1 = 1. Then
we recover here half of the bits of the secret exponent d.
Indeed, we can extend this result to any k-ary implementation of BRIP
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exponentiation as the Collision Attack gives the information on the par-
ity of i in mi.r−2k−1.v operand used during the Multiplication operation.
Therefore the number of bits recovered by a collision is equal to : |d|/k,
namely |d| for k = 1, |d|/2 for k = 2 and so on.

Thus we also suggest using at least 96-bit random value v to prevent
MontExp-WBRIP from such collision attacks.

4.3 Collision Attack of BRIP Implementations for RSA CRT

These collision attacks can be similarly applied to RSA CRT exponen-
tiations protected with MontExp-BRIP, MontExp-WBRIP or BRIP algo-
rithms.
Indeed when n = p.q, p and q being prime numbers of equivalent lengths,
choosing ±m mod n messages leads to the manipulation of ±m mod p
and ±m mod q in the CRT exponentiations once the reductions by p and
q have been done.
Then the previous collision analysis applies identically to RSA CRT using
any of the previous BRIP algorithms.

4.4 Implementing MontExp-BRIP countermeasure

We notice that both exponentiations: rv mod n = MontExp(r, v, n) and
r−v mod n = MontExp(V1, v, n) need to be carefully implemented against
the classical power analysis techniques. Indeed it is obvious that if v is
recovered, each operand value in algorithm 3.2 becomes deterministic and
then statistical attacks can be envisaged to recover the secret exponent.

The most important threat is Timing Attack (TA) for which Double
and Add Always or Side Channel Atomicity [CCJ04] are both convenient
countermeasures.
Anyway, protection against TA may not be sufficient as the operation
r−v = MontExp(V1, v, n) can be sensitive to SPA. This is due to the par-
ticular Hamming Weight of one of the Multiply operands, explicitely m in
a = MonMul(a,m, n) with m = fn(m) = r−1 ∗ r = 1.

Analysing the implementation details of MontMul gives some clues to
explaining the leakage. During the computation of MontMul(a, 1, n), we
notice than most of multiplications involved in Step 2 of algorithm A.5
are composed of integer multiplications by 0 or 1 which have a straight-
forward impact on the power consumption by significantly lowering it

13



compared to the multiplication of two random operands. It can then be
feasible to deduce directly from the power curve the nature of each oper-
ation and recover v value for each curve.
A simple tweak to counteract such an SPA attack is to compute (−r)−v

rather than r−v, n− 1 will then replace 1 as input operand of MontMult
during Multiply operations. This may still not be sufficient to protect
against advanced SPA or Template Analysis attacks as intrinsically r−v

or rv exponentiations are not randomized.
Applying additional randomization techniques on r−v and rv exponenti-
ations could be envisaged to protect against such threats but will reduce
efficiency and at the same time reason for MontExp-BRIP countermea-
sures.

5 Conclusion

Several possible implementations of BRIP algorithms have been presented
in this paper. We used the efficiency of Montgomery modular arithmetic
to provide an efficient message masking technique. We showed with
these implementations detecting collisions through power analysis, and
especially during modular multiplications, is a realistic threat. We also
explained that random length must be chosen very carefully to prevent
these implementations from the collision attacks we have described. Thus
using 32-bit or even 64-bit random values should be avoided here. In
the case where ISO random padding is used, it naturally prevents our
implementation from this collision attack and allows a shorter random
value (32 bits) to be used, but it is not always the case.

We also stress to the reader that random value manipulation must be
strongly protected in the MontExp-BRIP algorithm against the different
side channel techniques in order to prevent the random recovery by power
leakage. Such random recovery could then lead to other classical power
analysis on the secret.
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A Montgomery Arithmetic

A.1 Montgomery Multiplication
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Algorithm A.5 MontMul: Montgomery modular multiplication algorithm
Input: n, 0 ≤ x = (xv−1xv−2 . . . x1x0)b, y = (yv−1yv−2 . . . y1y0)b ≤ n − 1 ,
n′ = −n−1 mod b
Output: x× y × r−1 mod n

Step 1. a = (av−1av−2 . . . a1a0)← 0

Step 2. for i from 0 to v − 1 do
ui ← (a0 + xi × y0)× n′ mod b
a← (a + xi × y + ui × n)/b

Step 3. if a ≥ n then a← a− n

Step 4. Return(a)

A.2 Montgomery Exponentiation

Algorithm A.6 MontExp: Montgomery Square and Multiply from left to
right
Input: integers m and n such that m < n, k-bit exponent d = (dk−1dk−2 . . . d1d0)2
Output: MontExp(m,d,n)= md mod n

Step 1. a = r

Step 2. m = m× r mod n

Step 3. for i from k − 1 to 0 do
a = MontMul(a,a,n)
if di = 1 then a = MontMul(a,m,n)

Step 4. a = a× r−1 mod n = MontMul(a,1,n)

Step 5. Return(a)
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