
Software cannot protect software: An argument
for dedicated hardware in security and a
categorization of the trustworthiness of

information

Matthew Judge, Paul Williams, Yong Kim, and Barry Mullins

Air Force Institute of Technology
2950 Hobson Way

Wright Patterson AFB OH 45433, USA
{matthew.judge,paul.williams,yong.kim,barry.mullins}@afit.edu

Abstract. There are many current classifications and taxonomies re-
lating to computer security. One missing classification is the Trustwor-
thiness of Information being received by the security system, which we
define. This new classification along with Timeliness of Detection and
Security level of the Security System present motivation for hardware-
based security solutions. Including hardware is not an automatic solution
to the limitations of software solutions. Advantages are only gained from
hardware through design that ensures at least First-hand Information,
dedicated monitors, explicit hardware communication, dedicated storage,
and dedicated security processors.

1 Introduction

As security takes on ever increasing importance in today’s connected, digital
world; security solutions incorporate new, dedicated hardware at an increasing
rate [1–13]. Though these works and many others investigate the incorporation of
hardware into designs to gain different advantages, little work has been dedicated
to understanding what precisely can be accomplished with hardware that cannot
be accomplished solely with software solutions. Though many people believe a
hardware-based solution is necessary to achieve effective security, little or no
work exists demonstrating that this is true. The first and most obvious question
to be asked is whether hardware solves the shortcomings and vulnerabilities of
software based solutions. Exploring this question leads to a critical answer: Not
necessarily. This work then, attempts to capture the necessary design elements
for creating hardware that overcomes the weaknesses of purely software-based
solutions. To aid in defining these requirements, we propose a classification for
the Trustworthiness of Information and show that the necessary level of trust,
First-hand Information, can only be achieved by properly designed hardware.
Complete security systems will integrate these key hardware components with
security software as needed.

2

2 Current Security Classifications

Significant work has been published on categorizations, classifications, and tax-
onomies for computer security. Bazaz and Arthur present a taxonomy of vul-
nerabilities [14]. Axelsson develops a taxonomy of detection methods [15], that
Williams extends [16]. Kuperman classifies both the goals of detection and the
timeliness of detection [17], and Stakhanova et al. work towards a taxonomy of
intrusion detection system responses [18]. Mott presents work into classifying
the level of security that the security system maintains for itself [5]. All of these
different classifications provide valuable insight for working in the security field.
One critical classification missing from these is the Trustworthiness of Informa-
tion, which we develop in Sec. 4.3. Mott’s work and Kuperman’s timeliness of
detection classification are both integral to the discussion of why hardware is
necessary both on their own and how they relate to and are influenced by the
Trustworthiness of Information. We discuss each in greater depth here.

Kuperman’s notation categorizes time into an ordered sequence of events [17].
He defines the set of all events that can occur in the system, E, the subset of
all malicious events, B, B ⊆ E, and three events a, b, c such that a, b, c ∈ E
and b ∈ B. Given the notation tx to represent the time of event x occurring
and x → y representing a causal dependence of y upon x we assume the three
events are related such that a → b → c yielding the relationship, ta < tb < tc
must be true. Note that although x → y represents a causal dependence it does
not necessarily mean that x is the direct cause of y. Kuperman uses D(x) to
represent the detection of an event x.

With this notation defined, Kuperman presents four main timeliness catego-
rizations: real-time detection, near real-time detection, periodic detection, and
retrospective detection. We discuss the first two here, which represent detection
categories we hope to improve through our research.

Real-time Detection The detection of a bad event, b, occurs while the system
is operating and before events dependent on b occur, requiring the order

tb < tD(b) < tc (1)

Near Real-time Detection The detection of a bad event, b, occurs within
some predefined time step δ, either before or after tb.

|tb − tD(b)| ≤ δ (2)

Kuperman comments that this timeliness categorization should be indepen-
dent of the underlying hardware and the rate of event occurrence. Although this
goal is desirable for a software-based solution, it relies on assumptions of trust-
worthiness and lack of vulnerabilities in this underlying hardware. With today’s
computer hardware this independence is unobtainable. Rutkowska’s attack, dis-
cussed in Sec. 3, provides a specific example of why hardware cannot be blindly
trusted. If hardware cannot automatically be trusted it must be considered in
security measurements.

3

An often overlooked aspect of a computer security monitor is the security of
the monitor itself. This security is a critical aspect of a security system, since
compromising the monitors can effective render the security system useless. Mott
presents a classification of the security of the monitors creating eight levels of
monitoring system security [5] presented here.

Open This worst case scenario occurs when the monitored system has knowl-
edge of the monitor and shares information with the monitor without any
security mechanisms present.

Soft Security This level of monitor security is equivalent to open with software
used to secure the monitor. Both of these levels tend to contain monitors on
a uniprocessor host-based intrusion detection system.

Passive Security The monitor operates without the monitored system neces-
sarily knowing it is there. To compromise such a system, information about
how the monitor analyzes gathered state data must be known. Prime ex-
amples of this level of security include most network Intrusion Detection
Systems (IDSs) where only network traffic is monitored. Specific informa-
tion passed over the network has the potential to disable the system, but
there are no direct avenues of attack.

Self Security Similar to both open and soft security systems, the monitored
system shares information with the monitor. The manner in which the mon-
itor operates provides it with security, requiring the monitored system to be
compromised before the monitor can be compromised. An example of this
level of security is Williams’ CuPIDS [16].

Loose-hard Security The monitored system again has knowledge and coordi-
nates with the monitor, sharing information, but dedicated hardware mech-
anisms protect key portions of the security system from compromise such as
with hardware-based return address stacks [19].

Semi-hard Security The monitored system’s knowledge of the monitor is ex-
tremely limited. To provide this level of security the monitor cannot execute
on the same processor core as the monitored software and communications
happens through mechanisms like unmaskable interrupts that are kept to
a minimum. Compromise can only occur via code controlling synchroniza-
tion signals to the monitor, which would cause the monitor to operate in a
diminished capacity.

Strict-hard Security This security level adds to the requirements of semi-
hard security by requiring only hardware connections to the monitor and
removing synchronization signals to the monitor. The monitor must be able
to gather its own state information to remove dependence of the monitor on
the monitored system. Two examples of this level of security are CoPilot [6]
and Independent Auditors [4].

Complete Security This level of security is the ideal secure case, used as a
theoretical comparison point. In reality, such a monitoring system would
have no contact with the production system, negating it’s usefulness.

Mott notes that with many of these levels of security, there is a tradeoff
between the security of the monitor and the ease with which state information

4

can be gathered from the monitored system [5]. One critical piece of information
overlooked by these categories is the trustworthiness of the information that the
monitor is receiving. Although technically the monitor itself is not corrupted, the
effects can be equivalent. For example, a Supervisory Control And Data Acqui-
sition (SCADA) System controlling critical infrastructure such as the electrical
grid, could be manipulated to perform undesirable actions, without ever com-
promising the SCADA System. This can still be accomplished by an attacker
who can only manipulate the information being received by the SCADA System.
For instance, if an attacker can manipulate the information feeding the SCADA
System, telling it that there is a massive overdraw on the electrical grid, they
can affect SCADA System responses such as causing a rolling blackout. This is
accomplished without specifically corrupting the SCADA system to do so. The
SCADA System would respond correctly to the environment it believes exists,
not the actual environment. A simpler exploit corrupting the information being
passed to monitors is a denial of service (DoS) attack. If the SCADA system does
not receive readings from sensors monitoring critical sections of the system, it
will be unable to respond to parameters out of acceptable ranges. This could
quickly compound into catastrophic failure.

Although this issue is acknowledged in a number of works [6, 16, 17], we have
not found research that investigates this aspect. Our research explores this as-
pect of the monitor’s security. Rutkowska presents methods for corrupting the
memory access of the PCI Bus without affecting the processor’s access to mem-
ory [20] which is discussed in more detail in Sec. 3. This exploit highlights the
importance of this aspect of classification for the security of the monitoring sys-
tem. CoPilot [6], one of the examples Mott identifies as being strict-hard security,
is defeated by this attack because of its security weakness on this new axis of
categorization. We present an independent axis for categorizing the security of
the monitor relating to the trustworthiness of the monitored data: how far re-
moved the monitor is from what it is monitoring. This classification is defined
in Sec. 4.3.

3 Defeating Hardware-based RAM Acquisition

As the previous section began to develop, the ability to falsify the information
a security monitor receives corrupts the integrity of the security system. One
prominent example of this exploitation is Rutkowska’s defeat of hardware based
random access memory (RAM).

Rutkowska discusses both software and hardware approaches to memory ac-
quisition with the claim that the hardware based approaches are superior to
that of software based solutions [20]. She cites non-persistent malware as mo-
tivation for needing memory acquisition and she presents a number of known
exploits of software memory acquisition by code running at the same privilege
level as the acquisition software. One specific example of such an exploit is the
FU Rootkit [21]. Rutkowska notes that these software memory acquisition tools
require additional software on the target machine, which she claims violates the

5

forensic tool requirement not to write data to the targeted machine. She then
extols the virtues of hardware based solutions, setting her readers up for her
defeat of this “superior” memory acquisition method.

Fig. 1. Rutkowska’s Defeat of Hardware Based RAM Acquisition [20]

Rutkowska delivers three levels of compromise to hardware based memory
acquisition devices such as CoPilot [6] and Tribble [1]; each building upon the
same basic exploit with increasing levels of damage. This exploit, depicted in
Fig. 1 involves configuring the north bridge on a system to map arbitrary ranges
of physical memory to I/O space. This remapping denies memory access to
peripheral devices for the specified physical memory range while not affecting the
memory access of the processor(s). This allows an exploit to execute correctly,
while hiding the exploit’s presence from the hardware-based acquisition tool.
These levels range from a denial of service to an attack that provides the monitor
with false data, completely masking the compromise from the monitor.

The exploits Rutkowska presents show definitively that current hardware
based memory acquisition devices, such as those that plug in to a firewire port
or as a PCI device, are not reliable. The lesson to be taken from her work is not
that hardware cannot do a better job of providing security features, rather that
hardware is not a magic bullet; it does not automatically improve security. This
work highlights that many current hardware solution are missing an important
aspect of the capability and security of the monitoring system. This provides
substantial motivation to explore the trustworthiness of the information being
received by a security monitor. This critical axis of security for a monitor, though
acknowledged in numerous works [1, 6, 16, 17] is not well understood and not
clearly defined. Section 4.3 provides definitive categorization along this axis to

6

aid future work in security related fields understand what is required to provide
truly reliable security monitoring.

4 Why Hardware?

Most current security systems for computers are based largely on software sys-
tems. Numerous flaws and vulnerabilities have been exposed and even exploited
in these different software solutions. Compromise of protected code via rootk-
its [22] represents one of the most prevalent exploits. Recent work has begun
exploring different hardware based approaches to security [5, 6, 12] with many
people coming to believe that we cannot solely use software to protect software
and only hardware, coupled with software, can do that job successfully [1–13].
Though a number of advantages to hardware over software have been suggested,
we found no research discussing what precisely makes hardware a significant im-
provement over software and just what capabilities hardware provides that soft-
ware cannot. We present here a number of key advantages achievable through
the use of hardware.

Reduced Avenues of Attack Separate monitoring hardware can strengthen
the security of the monitor by reducing the extent of the coupling between
the security and production systems.

Trustworthiness of Information Correctly designed hardware guarantees that
the monitor receives valid data from the production system, something that
we show software incapable of doing.

Additional/Different Information Available Mott’s research explores a num-
ber of pieces of information that can be gathered through hardware primi-
tives and leveraged to increase the overall security of the system [5]. These
hardware primitives include information such as the program counter, in-
struction traces, and added visibility into memory.

Timeliness of Detection The ability to guarantee real-time detection, as de-
fined in Sec. 2, requires the ability to guarantee that the monitor will execute
with the ordering of (1). Dedicated monitors are necessary to accomplish
this.

In the rest of this section we develop justification for needing capabilities
beyond what software can provide and explore each of these advantages in greater
detail. We define what is required of hardware to overcome the vulnerabilities of
software and provide significantly improved performance.

4.1 Vulnerabilities of Software Security Systems

There are a number of vulnerabilities inherent in software-based security. Two
critical vulnerabilities are the inability to guarantee real-time monitoring in stan-
dard commercial operating systems, even on a multiprocessor system, and the
inability to protect the integrity of the security system once the production

7

system has been compromised. The first vulnerability is evidenced by the fact
that scheduling of processes on both uniprocessor and multiprocessor systems
does not make any guarantees on precise ordering or timing of when a specific
process gets time on a processor. Work such as CuPIDS changes this standard
paradigm to guarantee monitored processes run in lock step with the monitoring
process [16] and overcome this first critical vulnerability of software security sys-
tems. Despite CuPIDS’ ability to overcome this vulnerability, it cannot protect
itself once the kernel has been compromised.

The specific point where software loses the ability to protect other software
is when faced with exploitation of a vulnerability in privileged code. Once an
attack can gain access through such a vulnerability, they have access to any
piece of software in the system and can modify both data and executable code.
This allows for changes in both user applications and the operating system itself,
compromising the security of the security system itself. This can be accomplished
through modification to the security software itself or by modifying the operating
system to interact with the security software in another manner, such as reducing
its privilege level. Note that exploitation of vulnerabilities in privileged code
provides two main avenues of attack into the system. The more obvious method
of attacking the security software itself is to degrade or interrupt its capabilities
described above. The other avenue of attack is corrupting the information that
is being sent to the security software.

This second issue is the general method that rootkits use to remain unde-
tected. They interpose themselves between processes by taking control when
there is a library function or system call. By controlling what information is
passed back to the monitoring process the rootkit can neutralize the security
software without directly modifying it [22].

4.2 Advantages of Hardware

The vulnerabilities of software discussed above show clear need for a security
solution that can overcome these vulnerabilities. Does hardware provide pro-
tection from these attacks? Not necessarily. Hardware can provide increases in
protection, but only if appropriately designed into the system’s architecture.
Two key factors in designing hardware that can enhance these areas of security
are where we connect the security hardware to the system and how we make
those connections. Where we connect controls the Trustworthiness of Informa-
tion as well as influences the Timeliness of Detection. The next two subsections
explore these advantages in greater detail. How the security hardware is con-
nected impacts the amount of information available to the security system and
defines the only avenues of direct attacks on the security system. By limiting
the physical pathways between the production system and the security system
to specific hardware primitives, the attack surface is significantly reduced. These
primitives can also provide access to key information which is unobtainable via
software-based solutions. Both aspects of hardware primitives are discussed in
Sec. 4.5.

8

4.3 Trustworthiness of Information

Although the need for the monitor to receive accurate data is understood, there is
no real framework for understanding what precisely is needed to accomplish this.
Towards this end we define a new axis categorizing the trustworthiness of the
information being received by the monitor. This axis of trustworthiness stands
as its own contribution and should be considered when attempting to provide an
accurate, secure monitoring device of any sort. By creating this categorization
we set important bounds on what exactly affects the trustworthiness of the
information.

Fig. 2. Immediate Information: Secu-
rity Monitor placed inline between
main memory and the memory con-
troller.

Fig. 3. First-hand Information: Secu-
rity Monitor placed on a shared bus,
vulnerable to Denial of Service from ex-
cessive device traffic.

Immediate Information (Fig. 2) With immediate access to what is being
monitored we can insure the monitor is receiving true data. This immediate
categorization represents a specific form of first-hand information where the
monitor is inline, directly between what is being monitored and its inter-
action with the system. While this level of trustworthiness is certainly the
most definitive method for ensuring the monitor’s security, it leads toward a
design with individual monitors on every single hardware component, thus
requiring a complete redesign of all aspects of a system.

First-hand Information (Fig. 3) This level of trustworthiness represents a
monitor that has direct access to the data being output from some device.
Depending on the specific design of the architecture being monitored, this
level of trustworthiness will likely be equivalent to Immediate Information.
However, a shared bus architecture could be vulnerable to a denial of service
(DoS) exploit. This would be accomplished in much the manner that someone
would have trouble listening to another’s conversation in a crowded room.

Second-hand Information This level of trustworthiness encompasses any mon-
itor that relies on some intermediary mechanism, such as hardware or soft-
ware components, to pass it the data it is attempting to monitor. Although
each additional mechanism relied upon reduces the trustworthiness into
third-hand information and so forth with a continually lessening level of

9

trustworthiness. For simplicity we group all levels of trustworthiness that
cannot guarantee accurate monitoring into this category of second-hand in-
formation. Unless any and all mechanisms being relied upon to pass the
monitor data can be guaranteed secure, this presents an avenue of attack for
corrupting the monitor be feeding it false data. Figure 1, on page 5, shows a
PCI-based memory acquisition tool, such as CoPilot [6], that must trust the
PCI bridge, the south bridge, and the north bridge; trust which Rutkowska’s
research demonstrates as unwarranted [20].

It is this previously undefined axis of the monitor’s security that is being
exploited by Rutkowska’s attack. Our research defines the requirement to protect
against this attack: monitors must be capable of receiving at least First-hand
Information. Two important things to note about this axis of security are that
1) all software based security systems on a uniprocessor system are inherently
unable to achieve a level of trustworthiness better than Second-hand Information
since they must rely on data controlled by the operating system and 2) even
software based solutions designed to operate within a multiprocessor system,
such as CuPIDS [16], must still rely on the trustworthiness of main memory and
therefore receive no better than Second-hand Information. In order to ensure
accurate monitoring, the monitor needs to have access to at least First-hand
Information of the data being produced, any intermediate devices provide the
possibility of the data being manipulated before reaching the monitor. Therefore
at very least we need monitoring or interaction points at each of the bridges in
the system, i.e. any device that passes information from one part of the system
to another.

4.4 Timeliness of Detection

Another aspect of monitor placement is the speed with which a monitor can
detect an attack. One of the areas where the speed of a device far exceeds the
speed of the buses that pass information to and from it is the processor(s). To
accomplish real-time monitoring as defined in Sec. 2, monitors will need to be
closer to the main processor than system bridges will allow. One such example
of this is a hypothetical purely cache based attack [6]. Such an attack will be
able to do its damage before detection, since detection is only possible with
access to a present view of cache. Even if we accept near real-time monitoring
capabilities, Kuperman’s δ value in (2) will be significantly smaller for a monitor
that is located on-chip.

4.5 Hardware Primitives

The manner in which we connect monitors to the system plays a significant role
in enhancing both the security of the production system and the security of the
security system. By limiting connections between the monitor and production
systems and remaining within Mott’s Semi-hard security level the only avenues
of directly attacking the security system are the hardware primitives that bridge

10

the monitors and production system. As long as no primitives allow for modi-
fication of the monitoring system’s code, we maintain a greatly reduced attack
footprint for the security monitor. At the same time, these hardware primitives
can offer direct access to information previously difficult to obtain and even pro-
vide access to information not accessible through any software methods. Mott
presents a number of hardware primitives that can be leveraged in [5]. The two
main areas of interest for creating hardware security (and security in general)
have been attempts to monitor processes running on the production system,
mainly through various memory introspection techniques [1–3], and monitoring
the incoming network traffic as it enters the system [8–13].

4.6 What Do We Mean By Hardware Security?

To this point we have left the definition of hardware security somewhat up in
the air. All computer systems contain a mix of hardware and software and only
a limited amount is accomplished with purely hardware. To create a security
system purely in hardware would significantly hamper the flexibility and mod-
ifiability of such a system reducing the number of future attacks to which a
system could potentially respond. Solutions such as a field programmable gate
array (FPGA) can be used to extend software flexibility into hardware, though
it does require performance tradeoffs and is not pivotal to this aspect of our dis-
cussion. However, a pure hardware solution is not our goal when we talk about
hardware-based security. The key component of hardware-based security is the
communication between the production system and the security system. Whether
a specific monitor is pure hardware, a FPGA, or software running on some combi-
nation of hardware that remains separate from the production system hardware,
what qualifies a security component as hardware-based is that connection back
to the production system. Note that an important result of this definition is that
a hardware-based security solution requires physically separated memory. This
is not to say that pure hardware or at least FPGA solutions will not be required
in some instances to provide fast enough response. Areas where high-speed de-
tection is crucial will almost certainly benefit from pure hardware solutions. One
predominant example of this is the network IDS field where research has shown
benefits from hardware solutions [10, 11, 13, 23].

4.7 Hardware/Software Interaction

With the key component of using hardware being the communication between
the production system and the security system, software can be employed on a
separate security processor. This allows a full-fledged software security operating
system to run on such a dedicated security processor. Mott et al. explore this
interaction, pointing to the hardware monitors as decoupling production and se-
curity software [24]. This software can perform management and communication
roles between elements of the security system so long as there is no access to
modify the software via the production system. With the inclusion of dedicated

11

security system I/O, via some variant of a communications port, the software
can be modified and updated as needed to respond to future threats.

5 Specific Requirements for Achieving Benefits from
Hardware

So far we have discussed the different advantages of dedicated hardware for se-
curity solutions and discussed what is required to achieve these advantages. Here
we explicitly define these requirements for dedicated hardware. By designing to
these requirements, it is possible to design a comprehensive security solution
that achieves the advantages of hardware previously explored. These require-
ments are:

First-hand Information of all monitored information: This level of trusted
information guarantees accurate monitoring of what is happening in the sys-
tem. Without this level of trusted information security solutions are vulner-
able to being denied access to the information or even fed false information.
This vulnerability provides a route to compromise the effectiveness of the
security system, without the need to compromise the security system itself.

Dedicated Monitors for parallel, concurrent monitoring: To protect against
potential timing attacks monitors must be able to run concurrently with
what they are monitoring to allow the possibility guaranteeing of Kuper-
man’s real-time detection [17]. Any monitor which does not run concurrently
with its target must ensure that it runs often enough to be impervious to tim-
ing attacks. In a software-based solution this becomes infeasible due to the
performance penalty of continuous context switching. Dedicated hardware
monitors remove the burden on production resources and keep performance
degradation to a minimum [7].

Explicit Hardware Communication between the production and security
systems: By limiting communication between the production and security
systems to hardware pathways, we reduce avenues of attack upon the secu-
rity system to these explicitly defined pathways. Without modifiable commu-
nication pathways, the ability to corrupt these pathways is reduced. These
limited pathways provide a clear set of attack avenues which can be under-
stood and protected.

Dedicated Storage of security code and data: Without dedicated, separate
security storage we leave software communication pathways present in the
system. These communication pathways represent a significant avenue of at-
tack to be exploited. Any software-based separation becomes vulnerable to a
root-level compromise of the production system. Separate storage which can-
not be directly modified by the production system provides a more reliable
method of protecting the security code and data.

Dedicated Security Processor for controlling and coordinating the security
mechanisms: Though not explicitly a requirement for gaining security capa-
bilities, a dedicated security processor is included here for the coordination

12

and communication abilities it can provide. This separate processor will allow
for a secured security control center when coupled with these other require-
ments. It will provide the ability to modularly add security mechanisms into
a security backplane. An important aspect of this ease of modularity is the
ability to combine both network IDSs and host-based IDSs into a combined,
complete IDS which can leverage combined knowledge from each to provide
more flexible and effective response.

6 Conclusion

The use of hardware is necessary to provide quality security solutions. Short of
verifying the trustworthiness and security of all software and hardware mecha-
nisms in the chain from the monitored information back to the monitor, First-
hand Information, that requires dedicated hardware to achieve, is the only way
to guarantee the security monitor is not fed false data. As computer security
systems become more reliant on dedicated hardware, the need for a clear un-
derstanding of the necessary design requirements to overcome inherent software
security vulnerabilities is essential. This work provides a basis for this under-
standing by defining the advantages that can be gained from hardware, and the
necessary design to achieve them.

References

1. Carrier, B.D., Grand, J.: A hardware-based memory acquisition procedure for
digital investigations. Digital Investigation, 1 (February 2004)

2. Özdoganoglu, H., Vijaykumar, T.N., Brodley, C.E., Kuperman, B.A., Jalote, A.:
Smashguard: A hardware solution to prevent security attacks on the function return
address. IEEE Transactions on Computers 55 (2006)

3. Gordon-Ross, A., Vahid, F.: Frequent loop detection using efficient non-intrusive
on-chip hardware. In: CASES ’03: Proceedings of the 2003 international conference
on Compilers, architecture and synthesis for embedded systems. (2003)

4. Molina, J., Arbaugh, W.: Using independent auditors as instrusion detection sys-
tems. Information and Communications Security: 4th International Conference
(December 2003)

5. Mott, S.: Exploring hardware-based primitives to enhance parallel security mon-
itoring in a novel computing architecture. Master’s thesis, Air Force Institute of
Technology (March 2007)

6. Petroni, N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot-a coprocessor-based
kernel runtime integrity monitor. Proceedings of the 13th USENIX Security Sym-
posium (2004) 179–194

7. Williams, P.D., Spafford, E.H.: Cupids: An exploration of highly focused, co-
processor-based information system protection. Computer Networks, 51 (April
2007)

8. Song, H., Lockwood, J.W.: Efficient packet classification for network intrusion
detection using FPGA. In: FPGA ’05: Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate arrays. (2005)

13

9. Yi, S., koo Kim, B., Oh, J., Jang, J., Kesidis, G., Das, C.R.: Memory-efficient
content filtering hardware for high-speed intrusion detection systems. In: SAC ’07:
Proceedings of the 2007 ACM symposium on Applied computing. (2007)

10. Gonzalez, J.M., Paxson, V., Weaver, N.: Shunting: a hardware/software archi-
tecture for flexible, high-performance network intrusion prevention. In: CCS ’07:
Proceedings of the 14th ACM conference on Computer and communications secu-
rity. (2007)

11. Hutchings, B.L., Franklin, R., Carver, D.: Assisting network intrusion detection
with reconfigurable hardware. FCCM ’02: 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines 00 (2002)

12. Hart, S.: APHID: Anomoly processor in hardware for intrusion detection. Master’s
thesis, Air Force Institute of Technology (March 2007)

13. Bu, L., Chandy, J.A.: FPGA based network intrusion detection using content
addressable memories. In: Proceedings - 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM 2004, IEEE Computer Soci-
ety, Los Alamitos, CA 90720-1314, United States (April 2004)

14. Bazaz, A., Arthur, J.D.: Towards a taxonomy of vulnerabilities. Hawaii Interna-
tional Conference on System Sciences (2007)

15. Axelsson, S.: Intrusion detection systems: A survey and taxonomy. Technical
report, Chalmers University of Technology (March 2000)

16. Williams, P.D.: CuPIDS: Increasing Information System Security Through The
Use of Dedicated Co-Processing. PhD thesis, Purdue University (August 2005)

17. Kuperman, B.A.: A Categorization of Computer Security Monitoring Systems and
the Impact on the Design of Audit Sources. PhD thesis, Purdue University (2004)

18. Stakhanova, N., Basu, S., Wong, J.: A taxonomy of intrusion response systems.
Technical Report 06-05, Department of Computer Science, Iowa State University
(2006)

19. Lee, R.B., Karig, D.K., McGreggor, J.P., Shi, Z.: Enlisting hardware architecture
to thwart malicious code injection. In: Lecture Notes in Computer Science: Security
in Pervasive Computing. (2004)

20. Rutkowska, J.: Beyond the CPU: Defeating hardware based RAM acquisition
(February 2007) http://invisiblethings.org/papers.html.

21. FU Rootkit: http://www.rootkit.com/project.php?id=12.
22. Levine, J.; Grizzard, J.O.H.: A methodology to detect and characterize kernel

level rootkit exploits involving redirection of the system call table. Information
Assurance Workshop, 2004. Proceedings. Second IEEE International (April 2004)
107–125

23. Tummala, A.K., Patel, P.: Distributed ids using reconfigurable hardware. In:
21st International Parallel and Distributed Processing Symposium, IPDPS 2007,
Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ
08855-1331, United States (March 2007)

24. Mott, S., Hart, S., Montminy, D., Williams, P., Baldwin, R.: A hardware-based
architecture to support flexible real-time parallel intrusion detection. Proc. 2007
IEEE International Conference on System of Systems Engineering (2007)

