
Definition of a Web 2.0 Gateway for 3rd Party

Service Access to Next Generation Networks

N. Blum*, D. Linner*†, S. Krüssel*, T. Magedanz*†, S. Steglich*†

*Fraunhofer Institute for Open Communication Systems (FOKUS),

Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

{niklas.blum|david.linner|steffen.kruessel|thomas.magedanz}@fokus.fraunhofer.de

†Technische Universität Berlin,

Sekr. FR 5-14, Franklinstrasse 28/29, 10587 Berlin, Germany

{thomas.magedanz|stephan.steglich}@tu-berlin.de

Abstract Modern telecommunication networks and classical roles of operators

are subject to fundamental change. Many network operators are currently seeking

for new sources to generate revenue by exposing network capabilities to 3rd party

service providers. At the same time we can observe that applications on the World

Wide Web (WWW) are becoming more mature in terms of the definition of APIs

that are offered towards other services. The combinations of those services are

commonly referred to as Web 2.0 mash-ups. This report describes our approach to

include Next Generation Networks (NGN)-based telecommunications application

enabler into Web 2.0 mash-ups by defining a JavaScript-based service exposure

API that allows easy and straight forward integration of telecommunications en-

ablers into such mash-ups. The platform is validated through an application in-

cluding telecommunications-based services as conferencing, rich presence and lo-

cation, as well as the community portal Facebook and Google maps.

1 Introduction

Telecommunications is at crossroads, the convergence of fixed and mobile tele-

communications, cable networks, as well as the Internet leads into a global all-IP

based Next Generation Network (NGN). Through this ongoing process of the con-

vergence of access networks and the existence of new players in the telecommuni-

cations market, traditional operators and carriers are seeking for new business

models to increase their revenue. The reuse of an extensible set of existing service

components to rapidly create new market driven applications is a key aspect of

telecommunications platforms since many years and gains a new momentum with

the definition of dedicated application enablers for NGNs. One real-life example is

British Telecom's BT Web21C SDK [1] solution that defines an API to expose

telecommunications specific core network functionalities to 3rd party service de-

velopers using Web Services.

This paper describes our approach of the realization of a service access gate-

way for applications based on a JavaScript API to address the specific needs of

Web 2.0 developers. It is validated within a prototyped application for the com-

munity portal Facebook [2] offering access to functionalities such as conference

management, location, SMS, MMS and rich presence.

The paper is structured as follows: Section 2 provides a brief state of the art

overview of the NGN functionality namely the IP Multimedia Subsystem (IMS)

with focus on application enablers and technologies associated to the term Web

2.0. Section 3 describes our concept of a service enabler access gateway for Web

2.0 mash-ups. Section 4 provides an overview of the prototype application. We

end the paper with a conclusion and outlook in section 5.

2 Related Standards and technology Overview

The following subsections describe emerging standards as the IMS, IMS enablers,

related technologies to the term Web 2.0 like Ajax and the mash-up service archi-

tectures. Furthermore it shortly depicts existing solutions in the area of service ex-

posure for Web-based applications.

2.1 The IP Multimedia Subsystem

The IP Multimedia Subsystem (IMS) [3] has been defined from the 3rd Generation

Partnership Project (3GPP) Release 5 specifications on as an overlay architecture

on top of the 3GPP Packet Switched (PS) Core Network for the provisioning of

real time multi-media services. It is based on Internet Engineering Task Force

(IETF) protocols like the Session Initiation Protocol (SIP) [4] for session control

and Diameter [5] for Authentication, Authorization and Accounting (AAA) and

charging purposes. The basic IMS architecture is depicted in figure 1.

Due to the fact that the IMS overlay architecture is widely abstracted from the

air interfaces, the IMS can be used for any mobile access network technology as

well as for fixed line and cable access technology as currently promoted by ETSI

TISPAN (TIPHON (Telecommunications and Internet Protocol Harmonization

over Networks) and SPAN (Services and Protocols for Advanced Networks))

within the Next Generation Network (NGN) reference architecture definition [6].

The IMS provides easy and efficient ways to integrate different services, even

from third parties. Interactions between different value-added services are antici-

pated. It enables the seamless integration of legacy services and is designed for

consistent interactions with circuit switched domains. Furthermore it supports a

Wireless and Mobile Networking248

mechanism to negotiate Quality of Service (QoS) in different access networks.

The IMS also provides appropriate charging mechanisms for online and offline

charging. Thus you can realize different business models and charge for specific

events using an appropriate scheme.

Fig. 1 Basic IMS Architecture

The particular techniques and methodologies that are required to gain the advan-

tages of these key functionalities are not completely new, but the IMS provides the

first major integration and the interaction of all key functionalities.

2.2 IMS Enabler

Similar to Service-Independent Building Blocks (SIBs) which form part of the

conceptual model for Intelligent Networks, the Open Mobile Alliance (OMA) de-

fined during the last years service enablers for the IP Multimedia Subsystem. The

ideas was initially born during the specification of a Push-to-Talk over Cellular

(PoC) [7] service, a walkie-talkie like communication service between several

mobile peers based on the Internet Protocol (IP) using the SIP, Real-time Transfer

Protocol (RTP) and Real-time Transfer Control Protocol (RTCP). PoC uses Pres-

ence, Group Management and Instant Messaging as enablers to provide informa-

tion to the users as well as to the PoC service. This led alongside the standardiza-

tion of PoC to the definition of Presence SIMPLE [8] for Presence and Instant

Messaging and XML Documents Management (XDM) [9] for group and list man-

agement.

PoC as a public available service never received real acceptance besides the

U.S. market, but the concept of abstract application enablers is by now widely

used.

Service developers for next generation network based applications, especially

those offered by 3rd party service providers will want to make use of the advanced

multimedia communication functionalities offered by IMS-based applications. But

MWCN'2008 249

core communication functionality like voice- and video call control as well as leg-

acy messaging and location will reside at the operator's domain for security rea-

sons and a well-defined integration of the service platforms into the operator's

charging and provisioning functionality. Most application developers will also not

have the capability and resources to economically develop such complex commu-

nication features into their services. The OMA currently standardizes the OMA

Service Environment (OSE) [10] as an abstract enabler layer that serves as an ac-

cess gateway for 3rd parties and operator services. Figure 2 depicts the OSE archi-

tecture:

Fig. 2 OSE Architecture.

The OSE has been introduced to enable operators with the functionality to provide

their communication and application capabilities to users without the need for the

application developer to implement such functionality into their applications

themselves. The OSE provides various functions such as process monitoring,

software life cycle management, system support, operation, management and ad-

ministration controls the enablers

2.3 The WWW and Web 2.0

The WWW is by nature community-driven, not only with regard to content, but

also from a technical point of view. Simple protocols such as HTTP, description

languages as HTML and CSS, and architecture paradigms (e.g. Representational

State Transfer - REST) made the Web successful and simplicity is the decisive

factor for the developer community’s acceptance of extensions to the Web tech-

nology stack. Web 2.0 is less a question of novel technologies in the Web technol-

ogy stack, but rather a question of how existing technologies are applied to create

services tailored to user communities.

In this respect, client-side active scripting and the inherent capability of HTML

to integrate content from different sources play a major role. Active scripts are

shipped along with the web content to control content presentation and interactiv-

ity. The object based programming language ECMAScript [11], better known as

JavaScript, is today’s mostly used scripting language for Web pages. In addition to

Wireless and Mobile Networking250

operations on the associated document, all noteworthy Web browsers allow active

scripts to self-reliantly utilize the HTTP client interface in a pared-down configu-

ration. This feature of active scripts to access their origin server for the exchange

any of messages is referred to as Asynchronous Java Script (Ajax) [12]. Although

the Ajax API introduces with the XMLHttpRequest [13] just one new language

construct the amount of available developer tools based on Ajax show its current

importance.

The varieties of client-server interaction, given to active scripts through Ajax

include Remote Procedure Call (RPC) and Publish-Subscribe. The representatives

for RPC over HTTP in favor of the developer community are XML-RPC [14] and

JSON-RPC [15]. The major difference between both can be found in the represen-

tation of request and response, i.e. marshalling of method calls and objects. While

JSON-RPC utilizes a light-weight, non-standard syntax, XML-RPC is based on

W3C’s XML. However, RPC frameworks for Ajax usually require a respective

counterpart on the server-side. In practice, tool support for the selected backend

platform (e.g. .NET, J2EE, PHP) is often the decisive criterion for the selection of

a RPC framework.

The same holds for message passing and publish-subscribe approaches based

on Ajax and the support of HTTP 1.1 for continuous connections. Respective de-

velopment patterns and the message protocol Bayeux [16] are summarized to a

concept named Comet. Bayeux messages are represented in JSON (JavaScript Ob-

ject Notation) syntax and marshaled within the entity bodies of HTTP requests and

responses. Comet allows a Web server to notify events almost synchronous to

Web page embedded active scripts. Hence, applying Comet within a Web applica-

tion has a positive impact on the application’s interactivity, which is especially

appreciable in a Web 2.0 context.

The above technologies comprise a powerful client-side foundation for a novel

approach of creating web applications, called mash-up. A mash-up is a composi-

tion of 3rd party service building blocks to a new, customized web application. Ex-

amples for such 3rd party service building blocks can be found in the open APIs of

Google Maps [17], Yahoo search [18], Youtube [19], or Facebook [20]. While the

outgoing web server of a mash-up provides the description of the composition and

thus the actual services adding value to the building blocks, the rendering and exe-

cution of the mash-up happens at the client-side. Consequently, mash-ups poten-

tially decrease the need for intelligent web servers and avoid bottle necks, since

utilized 3rd party service building blocks are accessed by the mash-up clients di-

rectly. Furthermore, mash-ups enable the rapid creation of powerful applications,

even with limited engineering skills. By today, programmableweb [19] lists more

than 2500 serious mash-up applications on the web, tendency growing. Our Telco

/ Web 2.0 Gateway for 3rd Party Service Access to Next Generation Networks

aims at creating a novel application building block that brings telecommunication

services to mash-ups.

MWCN'2008 251

2.4 Existing Solutions / Related Work

With respect to the above mentioned correlation of simplicity and developer ac-

ceptance, a key objective of our efforts is to create opportunities for fast and easy

customization of telecommunications services in the Web. British Telecom’s

Web21c [1] project follows a similar motivation, while providing APIs and re-

spective SDKs to utilize services of their network within custom applications. The

list of supported service comprises, messaging, voice call, conference call, authen-

tication, inbound SMS, and call flow. The provided APIs are currently tailored to

the integration with .NET and Java.

An interface to NGN services that is suitable for the creation of mash-ups is the

SIPGate API [22]. Therein, XML-RPC is utilized to basically control calls and

conference calls, obtain data from the phone book, check the account balance or

the status of unified messaging.

A much smaller, but nonetheless charming exposition of a telephony network

service for usage on the Web is realized by Skype4Web [23]. Web references to

dynamic images allow obtaining users’ presence states in the network. Skype also

provides professional APIs to access network services such as call control, mes-

saging, and presence, but due to the peer-to-peer nature of the underlying network

the service access is integrated with the network client.

3 Telco / Web 2.0 Service Exposure Gateway

In this section we describe our design and implementation of a service enabler

access gateway for Web 2.0 mash-ups using telecommunications enablers.

3.1 Parlay X Gateway

The OCS-X [24] is an implementation of the Parlay X Web Services specification

for telecommunication networks. These interfaces provide a network abstraction

through a very simple and easy to use API based on Web Services technology,

which can be used remotely from 3rd party domains and service providers. The

OCS-X uses the current Parlay X Version 2.2 [25]. Parlay X defines a set of pow-

erful yet simple, highly abstracted, building blocks of telecom capabilities that de-

velopers and the IT community can both quickly comprehend and use to generate

new applications. Each building block will be abstracted from the set of telecom

capabilities exposed by the Parlay X APIs. The capabilities offered by a building

block may be homogeneous (e.g. call control only) or heterogeneous (e.g. mobility

and presence). A building block will usually not be application-specific. In order

to use them from within the Web 2.0 domain a gateway has been developed,

which allows access to the Parlay X API via JavaScript.

Wireless and Mobile Networking252

3.2 JSON-to-Web Services Gateway

Calling a Web Service from within an Ajax application is restricted to local Web

Services, due to the Same Origin Policy enforced by modern web browsers. How-

ever, Web Services are used to be consumed beyond server limits at external end-

points. In order to call external Web Services from JavaScript, the service request

has to be routed via some server component, which is called gateway in the fol-

lowing and is illustrated in figure 3. This gateway provides an interface for the cli-

ent-side JavaScript, mapping it to the particular interface of the external Web

Service. Thus, all parameters of an incoming Ajax request are passed on to the

Web Service endpoint. The Java Script client does access a single server as usual,

whereas the server may call Web Services remotely.

Web Services are typically accessed via SOAP messages that are difficult to

handle with Java Script. The utilization of a gateway allows replacing SOAP by

any protocol, as the protocol can be translated within the gateway. Therefore,

more convenient data description formats, such as JSON and simple XML [26],

can be used to ease the Web Service access.

Furthermore, the Web Service access can be simplified by abstracting the ac-

tual Web Service interface. Thereby, underlying Web Service business logic can

be hidden from the Java Script developer as well as offered functionality can be

expanded at the server side. For example, security constraints could be achieved

by the gateway transparently.

In order to realize a gateway functionality in the mentioned fashion, different

components are required that are depicted figure 3.

Fig. 3 Architecture of a telco-enabled Web.

The actual web application is stored on a regular web and connected to a database

for consistent data management that is available via Ajax. Furthermore, 3rd party

JavaScript APIs can be used within the web application (e.g. Google Maps) for

mash-up.

MWCN'2008 253

In addition, an application server is required for the actual Web Service access.

This server has to be connected to a Web Services platform offering multiple Web

Services (e.g. OCS-X). The service access is again encapsulated within a simple

API that can be used to extend existing Web 2.0 applications, such as the commu-

nity portal Facebook. In order to use certain notification possibilities that could be

offered by certain Web Services (e.g. in the IMS), Web Services endpoints have to

be available on the gateway. Therefore, a Web Services engine as Apache Axis2

[27] has been established at the server-side. Moreover, the application server has

to be connected to the Web Services engine to exchange incoming information

passing it on to the web application via Ajax.

This configuration allows the fast development of complex mash-ups com-

posed of Ajax APIs as well as open Web Services. Within the following section a

concrete implementation of such a mash-up is introduced as a proof-of-concept.

3.3 Implementation of JSON-to-Parlay X Gateway

The realization of the above architecture has been transferred to Parlay X Web

Services enabling IMS functionality. An overview about this concrete gateway is

depicted in figure 4. The implementation is Java- and JavaScript based and the

communication between client and gateway has been realized using JSON-RPC.

Therefore, the open Java to JavaScript Object Broker (jabsorb) [28] is used on the

client-side in order to transparently send JSON requests to remote Java objects.

On the server-side, the jabsorb framework is used providing a particular Servlet

that makes simple Java objects accessible via JSON-RPC that are automatically

called on the accordant request.

Fig. 4 JSON-to-ParlayX Gateway.

The Web Service access is done in each of those Java objects in order to request

the required information. Indeed, the addressed IMS Enabler can be requested pe-

riodically to keep information up to date, it is intended that arising changes (e.g.

location changes) are published automatically and not requested (pulled) manu-

Wireless and Mobile Networking254

ally. Therefore, the gateway must provide a Web Services endpoint itself to be no-

tified from the Parlay X gateway. These Web Services are setup on the Axis2 en-

gine [27] with their interfaces followed the Parlay X specification [25].

However, the classical Web model only allows for periodic polling, which

makes server-push communications difficult. In order to make directly use of the

notification mechanisms provided by the IMS the JavaScript client has to be ex-

tended by the Comet approach, which has been realized with the help of the

HTTP-based publish/subscribe framework Pushlets [29]. This framework enables

a direct forward of notifications to the client without periodic polling.

In order to forward incoming notifications, they must be available in the web

server, since it holds the only connection to the client. Thus, the web server is

connected to the Web Services engine that retrieves the particular information.

The connection between web server and Web Services engine is done via cross-

context communication [30] to share information between different web contain-

ers.

Based on this gateway, typical IMS features, like Instant Messaging, Confer-

ence Management and Rich Presence have been integrated into one of the largest

online community platforms on the Internet – Facebook. A typical Web 2.0 mash-

up composed of Facebook-Userdata, Google Maps and IMS Core functionalities

emerged that demonstrates the easy and fast usage of the created gateway and its

use for modern web development.

Facebook itself renders the development of a community application without

building up the entire community platform from scratch. Moreover, already exist-

ing personal data had been easily integrated for further accretion. The visual pres-

entation of location and presence data has been realized with the help of the Goo-

gle Maps API. While Facebook is used through a PHP API, Google Maps is a

pure JavaScript library that are both described in more detail in the following sec-

tion.

4 Demonstrator / Validation

The demonstration of our Telco / Web 2.0 service exposure gateway, introduced

above, is based on one of the largest Internet community portals with almost 65

million active users so far – Facebook. Facebook provides an API that allows de-

veloper to easily plug their applications into the portal getting access to Facebook

user data, for example, retrieving information about all buddies of a user. The ac-

cess on community-related information allows an easy mash-up of telecommuni-

cations features with user data. However, other APIs, such as Googles OpenSocial

[31] could have also been used, but has been missed out due to its immatureness at

the time of development. An overview is depicted in figure 5 that shows the cur-

rent application and its embedding into the IMS infrastructure via the developed

gateway.

MWCN'2008 255

In order to demonstrate a meaningful way to use information from within the IMS

a map has been integrated into the application to present presence and location in-

formation in the Web. For this integration the Google Maps API has been used,

but could have been exchanged by any other map API (e.g. Yahoo Maps). Addi-

tionally, user information from Facebook has been merged into the map to follow

the Web2.0 idea of information mash-up.

Fig. 5 Architecture of the Facebook Demonstrator.

Telecommunications specific-features have been realized in the following mod-

ules that each encapsulates a single functionality:

• Multimedia Conference: Voice conferencing through IMS. Participants can be

contacted within the Public Switched Telephone Network (PSTN) as well as

all-IP Next Generation Networks (NGN).

• Presence: Rich presence information, such as online/offline status and mood,

of a certain user is published.

• Terminal Location: Request location information of a certain user from the

IMS. It is necessary that the user provides location information from the IMS

client, for example, with the help of a GPS receiver.

• Short Messaging: Sending simple text messages (SMS).

• Multimedia Messaging: Sending and receiving multimedia messages (MMS),

consisting of plain text as well as application data. These messages are sent in-

stantly and are also used for Instant Messaging (IM). A feedback channel has

been also realized for this module to receive incoming messages.

• Address List Management: Transfer existing user- and group-information

from the Web- to the Telco-domain and vice versa.

As a typical Web 2.0 feature, the integration of News Feeds has been also real-

ized. However, the concept has been expanded on the telco side. The user can sub-

scribe to different feeds that are collected within a single feed. The user than is be-

ing informed about every new entry. Furthermore, this feed is extended by

Wireless and Mobile Networking256

location information out of the IMS. Therefore, user data at Facebook can be

combined by interesting places.

Nevertheless, the developed application does not replace an IMS client, since it

is only possible to handle certain management issues (e.g. call setup) or simple

functions (e.g. messaging), but it is not possible to act as a communication end-

point sending and receiving RTP streams. In fact, a typical IMS client is necessary

for the provisioning of location and presence information as well as for the actual

call setup. Therefore, the OpenIC IMS client [32] that is illustrated in figure 6 has

been extended by Web 2.0 features like a RSS module for writing own RSS feeds

as well as a map module that shows one’s current location in a Web 2.0 like fash-

ion. Moreover, all information published by the Address List Management com-

ponent of the gateway can be received by the client as well, which contains infor-

mation about the friends of a Facebook user and makes that information available

in the IMS. Finally, an auto-provisioning mechanism has been implemented that

allows for the subsequent integration of client modules triggered from within the

Web.

Fig. 6 Web 2.0 enabled IMS Client.

5 Conclusions and outlook

In this report, we described our implementation of a Web 2.0 API gateway for

telecommunications services and a proof-of-concept integration as a Facebook ap-

plication. Our focus was on the creation of a very high level API that meets the

needs and programming paradigms of developers from the WWW community. On

the other hand it was important to us to integrate and achieve full interworking

with existing legacy devices. Another emphasis was the reuse of existing IMS en-

ablers and to keep the implementation as generic as possible in regard of re-

usability of the components.

Architecture-wise, our service infrastructure is acting on top of a mobile opera-

tor infrastructure and offers operator core services like SMS and call control with

enhancements through Web 2.0 features on the presentation layer provided by a

mash-up. The implementation is part of the Open SOA Telco Playground at

MWCN'2008 257

Fraunhofer FOKUS [33] and provides the Web 2.0 Telco Enablers and the Web

2.0 API gateway.

Future work will be done on security issues related to exposing core network

capabilities to the WWW. Furthermore the integration of an OMA compliant Pol-

icy Enforcer as part of OSE will be implemented to provide flexible mechanisms

for Service Level Agreements (SLAs) between an operator and the service pro-

vider using the gateway.

References

1. BT. Web21C SDK. http://web21c.bt.com/.

2. Facebook. http://www.facebook.com/.

3. 3GPP. TS 23.228. IP Multimedia Subsystem (IMS). Stage 2 v.7.10.0. 2007.

4. H. Schulzrinne, et al.. IETF RFC 3261. SIP: Session Initiation Protocol. 2002.

5. P. Calhoun. IETF RFC3588. Diameter Base Protocol. 2003.

6. ETSI. http://www.etsi.org/tispan/.

7. Open Mobile Alliance (OMA). Enabler Release Definition for Push-to-talk over Cellular. Can-

didate Version 2.0 – 11 Dec 2007. 2007.

8. Open Mobile Alliance (OMA). Presence SIMPLE Architecture Document. Approved Version

1.0.1 – 28 Nov 2006. 2006.

9. Open Mobile Alliance (OMA). XML Document Management Architecture. Candidate Version

2.0 – 24 Jul 2007. 2007.

10. Open Mobile Alliance (OMA). OMA Service Environment. Approved Version 1.0.4 – 01 Feb

2007. 2007.

11. ECMAScript Language Specification, 3’rd Edition, 1999, http://www.ecma-

international.org/publications/standards/Ecma-262.htm

12. J. J. Garrett. Ajax: A new Approach to Web Applications. 2005.

13. The XMLHttpRequest Object, W3C Working Draft, October, 2007

http://www.w3.org/TR/XMLHttpRequest/

14. D. Winer; XML-RPC Specification, June, 1999, http://www.xmlrpc.com/spec

15. JSON-RPC Specification 1.1, Working Draft, August, 2006, http://json-rpc.org/wd/JSON-RPC-

1-1-WD-20060807.html

16. A. Russel, G. Wilkins, D. Davis, M. Nesbitt, Bayeux Protocol 1.0 draft 1, 2007,

http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html

17. Google Maps API, http://code.google.com/apis/maps/

18. Yahoo Search API, http://developer.yahoo.com/search/web/

19. Youtube Data API, http://code.google.com/apis/youtube/overview.html

20. Facebook API, http://developers.facebook.com/

21. Programmableweb, http://www.programmableweb.com/

22. SIPGate API, http://www.sipgate.co.uk/user/download_api.php

23. Skype4Web, https://developer.skype.com/Docs/Web

24. FOKUS Open Communication Server, http://www.open-ims.org/ocs-x

25. Parlay X. http://www.parlay.org/en/specifications/pxws.asp, 2008

26. W3C, Extensible Markup Language (XML). http://www.w3.org/XML/

27. Apache Software Foundation. Apache Axis2. http://ws.apache.org/axis2/

28. Jabsorb Framework. http://jabsorb.org/

29. Pushlets Framework. http://www.pushlets.com/

30. Apache Software Foundation. Apache Tomcat Configuration Reference (Cross-Context).

http://tomcat.apache.org/tomcat-6.0-doc/config/context.html

31. Google Inc. OpenSocial API. http://code.google.com/apis/opensocial/

32. A. Motanga, A. Bachmann, T. Magedanz, Requirements for an Extendible IMS Client Frame-

work, Mobilware'08, February 12-15, 2008, Innsbruck, Austria, ACM 978-1-59593-984-5/08/02

33. Open SOA Telco Playground, http://www.opensoaplayground.org

Wireless and Mobile Networking258

