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Abstract    Wireless sensor networks (WSNs) have been of great interest among 

academia and industry due to their diverse applications in recent years. The main 

goal of a WSN is data collection. As the amount of the collected data increases, it 

would be essential to develop some techniques to analyze them. In this paper, we 

propose an in-network optimization algorithm based on Nelder-Mead simplex to 

incrementally do regression analysis over distributed data. Then, we improve the 

resulted regressor by the application of boosting concept from machine learning 

theory. Simulation results show that the proposed algorithm not only increases ac-

curacy but is also more efficient in terms of communication compared to its gradi-

ent based counterparts. 

1    Introduction 

A wireless sensor network (WSN) comprises a group of sensors. Sensors usually 

have low power supply, limited computational capacity and memory. The main 

use of WSNs is for data collection. As the amount of collected data increases, 

some methods to analyze them are required [1, 2]. Machine learning approaches 

are good solutions, in this regard. Transmitting all the collected data to a fusion 

center for centrally analyzing the behavior of data and modeling it leads to a high 

accuracy in the final result. But, since communication capabilities of sensors are 

limited, this central approach significantly drains the energy of each node and de-

creases the life time of the network as a whole. In order to deviate with this prob-

lem, in-network approach is adapted which eliminates the need for transmitting 

data to the fusion center [3]. In-network processing increases local computation to 

prevent energy wasting through a large amount of communications required in 

central approach. Based on [3] a learning problem can be converted into one of 

optimization which is much easier to be dealt with. Accordingly, we aim to pro-

pose an incremental optimization algorithm to do regression analysis over distrib-

uted data which should also adapt to the limitations of WSNs.  Distributed optimi-

zation for WSNs based on gradient optimization has been previously studied in [1, 

4, and 5]. For the algorithm proposed in [1] a Hamiltonian cycle is set on sensors 

prior to optimization. Then, the estimate for parameter vector is transmitted from 

one neighboring sensor to the other and each sensor, using incremental sub-



gradient optimization, adjusts the parameters. The algorithm in [4] shows that 

clustering the network and setting a Hamiltonian cycle within each cluster not on-

ly increases the accuracy of final parameters but also makes the algorithm more 

robust to failures compared to the algorithm proposed in [1]. While [4] sets a 

Hamiltonian cycle among nodes of each cluster, [5] sets a Hamiltonian cycle 

among cluster heads and adapts an approach for each sensor to transmit com-

pressed data to the head of the cluster to which it belongs. This algorithm is much 

more efficient in terms of accuracy, communication cost, and network latency 

compared to the previously proposed algorithms. In optimization community, 

when the form of the objective function is known and it is differentiable, the best 

decision is to use the first order class of optimization algorithms, where incre-

mental sub-gradient is one of them. However, we have some reasons to apply NM 

simplex to optimization problem in WSNs which has not been studied previously 

in the field.  In this paper, we first develop an incremental version of NM simplex 

algorithm for WSNs. According to simulation results, although the accuracy 

achieved with Incremental NM Simplex algorithm is acceptable, yet it is far from 

the centralized accuracy and a method is required to improve it. The method ap-

plied here is the boosting from the machine learning theory. Boosting was origi-

nally developed for binary classification [6]. Later, some versions of it were pro-

posed for multi-class classification [7-9]. Other studies such as [10-13] boosted 

regressors instead of classifiers. Some parallel and distributed versions of boosting 

have also been proposed in [14-16]. Our experiments show that boosting really 

improves the accuracy of the regressor, obtained from Incremental NM Simplex. 

Thus the main contributions of this paper are: a) to apply NM simplex rather than 

gradient based optimization and b) to improve the regression accuracy by boost-

ing, in the context of WSNs. The rest of this paper is organized as follows. Section 

2 provides an overview of supervised learning and its application to WSNs and 

basics about NM simplex optimization. In section 3, assumptions and problem 

statement are stated.  The motivations to use NM simplex are discussed in section 

4. In section 5, we present the proposed algorithm. Experimental results are pre-

sented in section 6. Finally, in section 7 we conclude the paper and state some of 

the future works intended.  

2    Preliminaries 

In this section required basic knowledge are provided. 

2.1    Supervised Learning and its Application to WSNs 

According to [17], Supervised, Semi-supervised, and Unsupervised are three 

types of learning. Supervised learning, being the least intelligent, requires a la-

beled data set indicated as Eq. (1).  

                                                                              (1) 

Where  and  are feature and label sets, respectively. 

Features describe data and labels indicate the class to which data belongs. The 
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goal of supervised learning is to learn a function  to map  to such 

that . There are several algorithms for supervised learning one of which is 

regression, which fits a model to existing data. For further information about re-

gression refer to [18]. Sensors collect lots of data spatially and temporally. In or-

der to gain benefit of the collected data, there must be some analyzing methods. If 

we consider these data as a kind of labeled data then supervised learning can eas-

ily be applied. Throughout this paper, we will consider a network of sensors dis-

tributed in an environment which can measure temperature temporally and local-

ize themselves using an existing efficient localization algorithm such as [19].  

Here the labeled dataset includes time and location as features and temperature as 

the label. Thus supervised learning has to discover the function which given a lo-

cation in the space and a time epoch can predict the temperature with least possi-

ble error. 

2.2    Nelder-Mead Simplex Algorithm 

NM simplex which was first proposed in 1965 [20] is a local optimization algo-

rithm. There are some works done to free NM simplex from local optima such as 

[21]. NM simplex employs a regular pattern of points in the search space sequen-

tially to obtain the optimizer. Computationally it is relatively uncomplicated, 

hence easy to implement and quick to debug [22]. One of the major drawbacks of 

NM simplex is the lack of convergence proof. Further research, study and ex-

perimental results are expected to help understand its behavior. Details of NM 

simplex algorithm implemented in the experiments of this study are the same as 

[23] where for termination criterion the approach proposed in [24] is employed.  

3    Assumptions and Problem Statement 

This section introduces the assumptions and outlines the problem.  

3.1    Assumptions 

The following assumptions are considered throughout the paper: 

1. There are sensors as , each of which has collected data. 

2. ,  indices are used to refer to th sensor and th data in an arbitrary sensor, 

respectively ( , ). Thus  indicates th data from 

th sensor. 

3.  Sensors are distributed in a bi-dimensional area. Coordinates of are indicated 

by , . 

4. Three features and one label are chosen for describing data such that 

 and , where and  

 indicate the time of th measurement and th temperature in , 

respectively. 
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5.  Local dataset of  is indicated by , where . 

6. Global dataset, which is the dataset that could be obtained if transmission over 

long distances was possible, is denoted by , where  

and , where . 

7.  A Hamiltonian path is set among nodes (a distributed algorithm to set a Hamil-

tonian cycle is described in [25]). This is the routing scheme used in [1]. We 

selected it because of its simplicity and ability to clarify the main points of the 

proposed algorithm. Fig. 1 depicts this path. Here we have set a Hamiltonian 

path rather than a Hamiltonian cycle over the nodes. As every such a cycle can 

be converted to a Hamiltonian path by removing one of its edges, so the algo-

rithm in [25] is applicable. The reason to set a path rather than a cycle is stated 

in section 5.2.  We assume that and are the head and the tail nodes of the 

Hamiltonian path, respectively. 

8. As NM simplex is a heuristic method [22], it builds several simplexes to reach 

the optimizer. The number of local simplexes formed in , which might be dif-

ferent from one sensor to another and depends on the , is denoted by . 

9. Before learning starts, a query dissemination process distributes to all the sen-

sors in the network the user’s desired model to fit data. We have followed [26] 

in fitting a model to data, which suggests some polynomial models among 

which we chose ‘Linear space and quadratic time’ which will be called ‘quad-

ratic’ in the remaining of the paper.  

 

Fig. 1 A Hamiltonian path over the network nodes. Two adjacent nodes on the path can commu-

nicate with each other in any direction. 

3.2    Statement of the Problem 

The goal of the proposed algorithm is to incrementally fit a model to the col-

lected data. Considering the quadratic modeling of the data from section 3.1-

Assumption 9, where temperature is to be stated in terms of location and time of 

measurements, the model is as Eq. (2) 

             (2)                                 

, in which is a vector of unknown constants. Given a set of basis functions 

as ( ) the algorithm aims to estimate their coefficients such 

that the final model fits data with less possible error (Similar to the approach 

used in [26]). Based on [1, 3], the learning problem of can be converted to an 
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optimization problem to compute , such that applying least-square error Eq. (3) 

is minimized: 

(3)                                                                                                                    

That is to say, we would like to determine in a way that the final model fits 

all the data with the least possible error. Here, optimization is the same as mini-

mization. So, for quadratic modeling of temperature the problem of learning is 

converted into a minimization problem with five parameters. As mentioned pre-

viously in section 1, it is impossible or at least difficult to centrally compute , 

as Eq. (3) is highly dependent on individual data and their transmission to fusion 

center is energy-consuming. So, it is not feasible to have this formula centrally, 

but distributed. In fact, there are  sub formulas in the form of Eq. (4): 

 (4)                                                          

, which when added up give the central formula of Eq. (3). Following this 

consideration, Eq. (3) is rewritten as Eq. (5): 

                                                                                           (5) 

Where ,  and , the length of , is the number of 

parameters to be estimated. So, the goal of the proposed algorithm is to do the 

regression analysis by fitting a pre-specified model to the existing data in a dis-

tributed manner and to compute the final parameters as a vector  . 

4    Motivations 

The reason to use gradient methods in the previous works was the fact that when 

the objective function is in hand, having the formula of its first derivative is in-

evitable. Thus, there is a compelling reason to apply gradient-based optimization. 

But, examining the previous works revealed some deficiencies that made us to 

apply another optimization algorithm. Here we have listed the shortcomings en-

countered: 

1. For the incremental sub-gradient method to work, there must be an estimate of 

, a non-empty, closed, and convex subset of  in which optimizer is ex-

pected to exist [1, 4]. Determining such a subset prior to algorithm execution 

seems to be a difficult job and the distributed nature of the data makes it even 

worse. 

2. If in any stage of the algorithm execution, the estimate falls out of , a projec-

tion must be done to keep the value in the boundary. The experiments showed 

that the final results highly depend on the projection procedure. 

3. In incremental gradient method, at the end of the cycle, parameters suffer from 

an error. Experiments show that the obtained accuracy for our objective func-
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tion is far from the central results. It must be stated that the behavior of optimi-

zation methods depends on the objective function and hence, inaccurate results 

of one method over a special function does not label it as a non efficient me-

thod. 

4. When the objective function is quadratic, [1] estimates that often one cycle suf-

fices to find the optimizer with a low error. However, their experiments showed 

that, in one special function, 45 cycles led to the answer, which means large 

energy consumption. 

Based on these, it is desired to propose an algorithm which reduces the final 

error and frees the user or programmer from specifying Θ as well as the projec-

tion procedure. Reduction of communication in the expense of computation in-

crease is another goal followed. NM simplex is selected to fulfill these desires. 

One of the reasons for applying NM simplex rather than any other optimization 

method was its popularity among practitioners, despite the absence of any gen-

eral proof for its convergence. So, further experiments will be helpful to discover 

the nature of NM simplex. The other main reason to choose NM simplex was its 

computationally light procedure, which is consistent with the sensors limited 

computational capacity. 

5    Proposed Algorithm 

Based on fundamentals of NM simplex described in section 2.2 and the motiva-

tions of section 4, in this section we describe the proposed algorithm. 

5.1    IS: Incremental NM Simplex 

Incremental NM Simplex algorithm, IS henceforth, is illustrated in Fig. 2. Start-

ing from the first sensor on the path, each sensor runs a NM simplex algorithm 

on the local data and sends the computed parameters to the neighboring sensor. 

The neighboring sensor uses received parameters as the start point for its local 

simplex execution. In step ІІ of Fig. 2 the notion of indicates the coefficients 

of the final local regressor in . As mentioned in section 3.1-Assumption 8, there 

are locally built simplexes in numbered through 1 to , where th simplex 

leads to the final local optimizer. At the end of the algorithm, includes 

 and . Let’s rename  as   to distinguish it from 

global regressor obtained from BIS in the next section. Also the need to calculate 

is explained in the next section. 

5.2    BIS: Boosted Incremental NM Simplex Algorithm 

Although IS solves deficiencies of incremental gradient, yet the accuracy 

achieved needs to be improved. The idea here is to apply boosting in order to re-

duce regression error. 
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Fig. 2 Steps of Incremental NM Simplex (IS) algorithm. 

5.2.1    Motivation to apply Boosting 

The main idea of boosting as an ensemble learning method is to train several weak 

learners serially and to combine them in some way in order to compute a final 

strong learner [8]. Features mentioned in this sentence, were the motivation for the 

application of boosting to regression in WSNs. In these networks, sensors collect 

data independently of each other and don’t have access to each others’ datasets. 

Therefore, in case each sensor is to train a regressor individually, that regressor 

will behave weakly over global dataset which could be obtained centrally if 

transmission of data over long distances was possible. Serial behavior of boosting 

on the one hand, and setting a Hamiltonian path among nodes on the other, was 

the second motivation for proposing this method. Based on [15], there are three 

types of errors present in a learning algorithm which threaten the accuracy of the 

learner and can be reduced by the boosting. One is the systematic error of predic-

tion technique which is called bias and the other of these three is variance that is 

engaged with the sample set. The third error is not of interest here (for more in-

formation refer to [15]). Boosting is applied to simplex method as it suffers from 

both bias and variance. The former is due to the dependence of simplex on the 

starting point and as the objective function is made up of local samples, the latter 

type is also present. This is the third compelling reason to apply boosting in this 

paper. 

5.2.2    Boosting Procedure  

In boosting, the first regressor is trained over the entire dataset where all data are 

equally important [12]. Then this regressor is evaluated over the entire dataset and 

weights are assigned to data so that correctly learned data get smaller weights 

while higher weights are assigned to wrongly learned data (If the weight assigned 

to a correctly learned data is zero, it means that these data are simply eliminated 

from the dataset). Then a second regressor is trained over the new weighted data-

set which mostly concentrates over data with higher weights. This procedure con-

tinues until a desired level of accuracy is achieved. Furthermore, for each weak 

learner a weight is assigned which expresses its ability in global regression. Fi-

nally, all the regressors are combined to compute the global regressor which is 

much more accurate than any of the individual models [8]. Now, if boosting is to 

be applied to regression in WSNs, this procedure must be simulated in some way. 
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5.2.3    Simulation of Boosting Procedure in WSNs 

Before simulating the boosting procedure in a WSN, an important point must be 

highlighted: the difference between the first weak learner and the others. For the 

first learner, all data are equally important, whereas, the others pay more attention 

to some partitions of the entire dataset. Since as mentioned in section 5.2.2, for a 

new weak learner, the dataset is reweighed according to the previous learners’ be-

havior such that the weights of correctly learned data are decreased while the 

weights of the remaining are increased. Assuming a weight of zero is assigned to 

correctly learned data, this can be viewed as for the new learner the correctly 

learned data with the previous regressors is omitted. Therefore, instead of the en-

tire dataset, the learners other than the first consider only one partition of dataset.  

5.2.3.1    Simulation of the First Regressor 

For the first step of boosting procedure to be simulated in a WSN, all the data 

must be present in a single node; nevertheless it is not possible because of the re-

stricted power supply of small sensors. The simulation of this step is the IS from 

section 5.1, which aims at incrementally obtaining a global regressor. Although 

the result of this simulation is not as accurate as that of the central approach in the 

first step of boosting, yet it is an appropriate estimation.  Now in order to arrive at 

the weighted dataset needed in the next step,  must be evaluated over the 

entire dataset, a weight must be assigned to it and the correctly learned data must 

be eliminated from the sensors (assuming a weight of zero is assigned to correctly 

learned data). To accomplish these goals a second pass over the nodes is started in 

which each sensor’s dataset is shrunk to exclude correctly learned data 

with . Each sensor also calculates a partial weight for  by evaluating 

it over the local dataset and then by giving the partial weight to its neighbor on the 

path contributes at computing a global weight for , the sum of all the partial 

weights. 

5.2.3.2    Simulation of Next Regressors 

If in a WSN partitions mentioned at the beginning of this section could be ob-

tained, the rest of the boosting procedure would also be simulated. If we assume 

that each sensor monitors its own range of region, then the local data of one will 

be distinct from that of the others. Based on this, we can further assume that each 

local dataset (which is now shrunk due to evaluation of ) is the same as a 

partition in the boosting procedure and thus a local regressor obtained over a 

shrunk dataset matches a weak learner. Let’s refer to this as isolated learning in 

each sensor. But in reality there might be some common parts among different 

sensors observation areas in such a way that a larger part of a region is monitored 

by and a smaller part by , thus in order to train a more 

perfect local weak learner in , it is desirable to transfer the data collected from 

smaller part of the region by  to . Similarity in observations is usually 

among adjacent sensors, leading to data exchange over short distances. However, 

as the transmission of data is costly even over the short distances, it was decided 
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to transfer the regressors forward instead of transmitting data backward, which 

was somehow similar to the approach used in [14]. This means that a regressor is 

computed in  and then transmitted to . Obviously if includes any similar 

data to that of , the regressor will fit them correctly. If such data exists,   

simply excludes these data from its local dataset, avoiding unnecessary training of 

another regressor over repeated data. Such a procedure was tested against isolated 

learning in each sensor. The increased accuracy of the former was negligible in 

contrast to drained energy, so it was decided not to do this transfer and simply to 

run a local regressor in individual nodes. Thus to simulate next steps of the boost-

ing procedure:  

1. A second pass over the network is started from back to . (This is the same 

started in the simulation of first regressor in subsection 5.2.3.1). 

2.  is evaluated over ’s local dataset ( ) and each local dataset is 

shrunk to exclude correctly learned data leading to . 

3. A local NM simplex is run over the shrunk dataset and a weak regressor is ob-

tained ( ). 

4. Each weak regressor is evaluated and is assigned a weight in relation to global 

dataset, whose size is calculated during the first pass over the network in IS.  

5. Each sensor also takes part at computing  , the partial combination of 

weighted local regressors.  

 
Fig. 3 Steps of Boosted Incremental NM Simplex (BIS) algorithm. 

Finally computes , the final strong learner in the boosting procedure, 

as the sum of weighted local regressors and weighted  and transmits it to 

the fusion center. Boosted Incremental NM Simplex algorithm, BIS henceforth, 

has two steps and is illustrated more formally in Fig. 3. As IS terminates in , 
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second step of BIS starts from it, thus avoiding an extra direct communication 

from to  for transmitting two values of . Even though this seems to 

be a minor saving in energy consumption, it is valuable in WSNs context. This is 

why a Hamiltonian path is set over the nodes rather than a Hamiltonian cycle. Ac-

curacy of each regressor is reflected in its weight, which is the fraction of cor-

rectly learned data in relation to the global dataset. We have used a pre-specified 

threshold to decide if the data is learned correctly. This weighing procedure is 

suggested in [10] and is illustrated in Fig. 4. So the reason to calculate in IS 

from section 5.1 is for computing weights of regressors in the second step of BIS. 

Also calls to RWP () in Fig. 3, refer to the weighting procedure of Fig. 4. 

 
Fig. 4 Regressor Weighting Procedure 

 

6    Experimental Results  

We used the publicly available Intel Lab dataset which contains data collected 

from 54 sensors deployed in the Intel Berkeley Research Lab. Mica2Dot sensors 

with weather boards has collected time stamped topology information, along with 

humidity, temperature, light and voltage values once every 31 seconds [27]. Fig. 5 

depicts relation between temperature and time epochs for an arbitrary sensor. All 

the sensors in the network show the same behavior.  It is evident from the figure 

that except some noisy measurements, a polynomial model, repeated over time in-

tervals, relates temperature to time epochs.  Here we evaluate algorithms over 

such a randomly selected interval. sensors which contained uniformly dis-

tributed measurements over the interval were selected. For each sensor  

data were selected. Obviously a single sensor’s measured temperatures are con-

stantly related to its location. But for multiple sensors distributed over an area, 

temperature varies with changes in location. We have decided to consider a linear 

model for location.  Thus the intended model is comprised of some basis functions 

as ( ) which is also shown in Eq. 2 in section 3. 2. Additional ba-

sis functions such as … might improve the regression accuracy. But 

the important is the relative accuracy of different algorithms, which is independent 

of the fitting model and depends on the nature of the algorithms applied. 

           
                                      (a)                                                                    (b) 

Fig. 5 (a) Temperature variation over time for a randomly selected sensor. (b) Temperature 

over a randomly selected time interval which is also shown by an oval in (a). 
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6.1    Regression Accuracy  

Fig.6 (a) depicts Root Mean Square error (RMS) of regressors obtained from IS, 

BIS, Incremental Gradient (IG), and Centralized approach. Results shown for IG 

are for one pass over the network. As it was repeated for more passes, minor im-

provements were achieved in contrast to consumed energy. 

           
(a)                                                            (b) 

Fig. 6 (a) RMS of the final regressor for IG, Centralized approach, IS and BIS. As it is evident 

from the curves BIS has the least RMS compared to its distributed counterparts. (b) RMS of the 

BIS and the Centralized approach. For the Centralized curve, RMS in  is for the regressor 

trained over .   

 A better accuracy was achieved for 36 more passes over the network, and im-

proved very little after that, which was yet far from that of others. As it is evident 

from the figure, BIS is superior to its distributed counterparts. Fig. 6 (b) depicts 

the accuracy of BIS and Centralized algorithm. As it is expected, in both methods, 

except in some sensors, the overall RMS is decreasing as parameters reach the last 

sensor, which means that dataset is growing and more data is included. Although 

RMS of the BIS is not as good as that of the Centralized approach, yet it is better 

than any other distributed algorithm. The curve of IS in Fig. 6 (a) is also more sta-

ble in contrast to that of IG.  

6.2    Computation Requirements for IS and BIS 

At the first glance, it seems that local computation for the proposed algorithm is 

much more than that of the IG, but experimental results show that in average, the 

number of local simplexes formed is low. For IS, the average number of local 

simplexes formed was 3. For BIS, some additional computations were required in 

the second step, which had an average of 15 local simplexes produced. Other 

computations include simple addition and multiplication which are compatible 

with sensors limited computational capacity. So, altogether computation burden 

of the proposed algorithms is affordable for sensors.  

6.3    Communication Requirements 

There are two parameters transmitted among the nodes in IS: 

1. Partial global dataset size, which is an integer denoted by . 

2. Coefficients of a locally obtained regressor which is a vector of size . 
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And four parameters in the second step of BIS: 

1. Coefficients of the regressor obtained from IS, which is a vector of size  

2. Partial weight of , which is a double denoted by . 

3. Global dataset size which is an integer denoted by . 

4. Partial weighted combination of local regressors which is a double denoted 

by . 

Hence and  parameters in IS and in the second step of BIS are 

transmitted between two adjacent nodes respectively. In IG there is one parameter 

transmitted: Local regressor which is a vector of size . Let’s denote the number 

of passes over the network for IG algorithm by . In the Central approach there 

are  vectors transmitted from sensors to the fusion center each of which has a 

size of 3 for assumed labeled dataset as stated in section 2.1. Following [28] and 

considering the case where nodes are uniformly distributed in a unit square, the 

average distance between two successive nodes over a Hamiltonian path is: 

.Whereas in the Centralized approach the average distance between 

a sensor and the fusion center is 1 over the unit square. Based on these considera-

tions, Table. 1 shows communication order of four algorithms. Upon termination 

of BIS, IS, and IG there is a transmission of the final regressor from the last node 

on the path to the fusion center. As this is common in all three algorithms, it is 

eliminated from Table. 1. If and then , thus BIS 

and IS are more efficient in terms of communication than IG and as usually 

 , BIS, IS, and IG are much more efficient than Centralized approach. 

Compression of transmitted data and other similar strategies can decrease energy 

consumption even more. Thus in BIS, with two passes over the network a good es-

timation of regerssor parameters are obtained, which is more accurate than pa-

rameters obtained from several passes of IG over the network. Thus a good bal-

ance point for the tradeoff between energy consumption and regression accuracy 

is achieved. 

Table 1. Communication order of Centralized approach, (IG), IS, BIS. 

Algorithm Communication Cost 

Centralized   

IG 
 

IS 
 

BIS 
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7    Conclusions 

In this paper we proposed an in-network optimization technique for distributed re-

gression in WSNs. To overcome deficiencies of incremental gradient optimiza-

tion, NM simplex was applied and an incremental version of it (IS) was devel-

oped. Although, the accuracy of IS was higher than that of the incremental 

gradient, yet improvements were needed. Hence boosting was applied, and the 

global accuracy did really improve. Experiments also illustrated the actual effect 

of boosting in improving the accuracy. Efficiency of the proposed algorithm was 

also analyzed from the point of computation and communication. The conclusion 

is that, the proposed BIS algorithm is more efficient in terms of accuracy, com-

munication cost, and local computations compared to its gradient based predeces-

sors. Although the accuracy of BIS is closer to that of the central approach, further 

improvements are required. We have used the least-square error for converting re-

gression to optimization; other error functions which are more robust to noise 

might be applied. Other optimization algorithms rather than NM simplex should 

be considered, as well. Examining the evolutionary algorithms and comparing 

their performance with that of this paper is put for a later time.  
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