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Abstract. We present an indoor localization technique based on RF
profiling using the received signal strength (RSS) measurements from a
set of pre–selected reference points. We do not attach any interpretative
significance to the measurements other than use them to calculate their
difference from the measurements of the reference points. We study the
performance of our technique in an environment with multiple adjacent
rooms and find that it gives better results compared to the application
of the k-Nearest Neighbor algorithm that has been used in the literature
for the same task. We also study the proposed scheme and two other
well–known localization schemes, with respect to the sensitivity of the
localization on the number and layout of the reference points, as well
as on the number and layout of the deployed fixed points (pegs) from
where the measurements are collected. We find that one can achieve good
localization performance with either fewer reference points or with fewer
pegs as long as their layout is chosen carefully.

1 Introduction

Location-based services are a family of, predominantly wireless, network services
that, in order to operate effectively, have to rely on some form of location infor-
mation [4]. While the problem of determining location information has been well
supported by the Global Positioning System (GPS) [7], location tracking inside
buildings poses specific challenges. An alternative is to determine the location
of a node without relying on GPS, but instead based on some ground-deployed
permanent (or semi-permanent) wireless infrastructure, i.e., via indoor radiolo-

cation techniques. The vast majority of the literature in this area considers WiFi
wireless access points as a convenient (semi-) permanent infrastructure. The co-
ordinates of the (semi-) permanent infrastructure nodes are assumed to be known
and act as the reference by which the location of other nodes will be determined.
Access points are already deployed to extend Local Area Networks (LANs) to
wireless users, and localization is a secondary task carried out via the same in-
frastructure. A relevant, usually unstated, assumption is that the placement of
access points is restricted and/or performed for completely different reasons than
localization, i.e., to ensure adequate coverage for roaming users. Yet another as-
sumption is that the number of access points cannot be arbitrary and is usually



restricted by cost and connectivity considerations. We would rather not have to
deal with restrictions on the number and placement of the access points used for
radiolocation.

One heavily explored research direction is that of determining which access
point–based localization algorithm is best and under what circumstances, e.g.
[8]. Instead, in this paper we examine the impact on localization from decisions
about the number and placement of the (semi-) permanent nodes (called pegs in
the sequel). To this end, we use a localization scheme, dubbed LEMON1 which
we previously proposed in [3] and which was found to provide good localization
accuracy. In essence, our research is motivated by cost considerations. Namely, a
large number of simple low-cost wireless transceivers, like those usually assumed
to be part of a wireless sensor node, can be purchased for the cost of a single
access point. For example, for the cost of a single access point implementing the
most advanced version of the IEEE 802.11 standard (currently approximately
USD $200.00) one can purchase a dozen or so boards equipped with the a low
power RF transceiver and microcontroller (like, respectively, the Texas Instru-
ments CC1100 and MSP430). With low power battery–based operation and fixed
placement of the pegs, e.g., in furniture and walls, we could conceivably have a
finer granularity of localization information than what is provided by a handful
of WiFi access points that can be acquired with the same expense. The devices
to be localized, which we subsequently call tags, are essentially disposable, which
compares favorably with the cost of a (raw) GPS module (which cannot be used
indoor, anyway).

While the cost–benefit relation appears to be self–evident, a shortcoming of
populating a space with low cost wireless transceivers is that their readings are
not reliable, or even consistent. The low production cost, usually implies poor
accuracy when it comes to taking the measurements from such inexpensive nodes
“seriously.” Nevertheless, the hope is that, collectively, many poor quality mea-
surements will be better than few, somewhat more accurate, ones. Additionally,
the attainable bit rates of the low cost transceivers are usually low. For these
reasons we forego localization techniques that are known to be very sensitive
to the noise measurement (like lateration and angulation) or that demand ex-
tensive data transfers between pegs and localized tags. In fact in environments
that exhibit strong influence by multipath propagation effects, even the accuracy
of angulation and lateration techniques is questionable. We therefore consider
only signal strength pattern matching techniques, i.e., techniques that do not at-
tempt to link the signal strength measurements to any model–based estimate for
the actual distance between pegs and localized tag. Specifically, we restrict our
attention to location fingerprinting/profiling techniques based on the readings
collected at a number of locations, called the reference points.

We note that the simplest form of information that can be reasonably ex-
tracted from a measurement is the received signal strength (RSS) [1]. RSS mea-
surements do not require specialized additional hardware, as they are routinely
available already from most RF transceivers. The commonly acknowledged dis-

1 Location Estimation by Mining Oversampled Neighborhoods.



advantage of RSS is its poor and unpredictable correlation with distance result-
ing from the multi-path effect, which is typically quite serious inside a building.
On the other hand, RSS-based measurements are available from almost any
transceiver design used today, regardless of which physical layer protocol it im-
plements. In location fingerprinting, the perceived attributes of the tag’s signal
are compared against a pre-collected set of samples from known (profiled) refer-
ence points [1]. By resorting to profiling, one can hope to compensate for the in-
trinsic characteristics of the environment which render direct transformations of
the perceived attributes of RF signals into distances or angles highly unreliable.
This hope underlies our work. It appears that we would need to measure a large
number of reference points to counter the imprecise nature of the measurements.
This brings up the second issue discussed in this paper, which is determining
the smallest number of reference points that are sufficient for a given accuracy
of localization. Each reference point measurement could be considered an over-
head, since a user (profiler) would have to perform it and associate it with actual
coordinates. Whenever the environment changes drastically, e.g., when furniture
are rearranged or changed, re-measurement would be necessary. Therefore, the
smaller the number of required reference points, the better.

In the next section we present LEMON in detail and summarize the results
from [3]. In Section 3 we detail the experiments that were carried out for the
present study and the localization errors observed. Finally, Section 4 summarizes
our findings and outlines future research directions.

2 LEMON

LEMON can be viewed as a combination of a range-free approach with “tradi-
tional” profiling: the scheme is driven by a (somewhat fuzzy) concept of neigh-
borhood, while its objective is to produce an “educated” estimation of the actual
location from the coordinates of selected reference point readings. Technically, in
LEMON, the location of the static nodes (pegs) need not be known. A tag (the
node to be localized) can be essentially a node of the same type as a peg. During
the profiling stage, the network collects and stores in a database (maintained on
a central server) samples acquired from tag devices placed at pre-selected points
(the reference points) within the monitored area.

A single sample stored in the database can be viewed as a triplet < C,Ω, τ >,
where C stands for the known coordinates of the sampled point, Ω is the so-
called association set, and τ , called the sample’s class, identifies the (settable)
RF parameters of the transmitter (typically transmission power, bit rate, and
channel number). τ ’s role is to discern samples collected under different “op-
tions” of the tag’s transmitter, such that they will only be matched to (future)
readings acquired under the same options. For now, we only consider a planar
version of the problem, i.e., C = (x, y). The association set Ω consists of pairs
< p, r >, where p identifies a peg, and r is the RSS value measured by that peg.
A tracked tag periodically emits RF packets that include a sequence number
used to uniquely identify them. A peg receiving such a packet will forward to



the central server a report consisting of its own identifier, the tag identifier, the
packet number and class. Having received a number of such reports referring
to the same packet, the server will built an association set Φ representing the
combined momentary measurements of the tag’s RSS by all the pegs that can
hear the tag.

The initial step of the localization algorithm is to select from the database
a subset of samples representing the best match to the association list Φ. First
of all, only the samples of the same class as the received reports are subject
to selection. To further narrow down the search, the server finds in Φ the pair
< pm, rm >, such that rm is the highest among all pairs. Then, it only considers
those samples form the database whose association lists include pm as one of the
pegs. This pre-selection boils down to the postulate that the peg pm appearing
to be very close to the tracked tag be a member of all samples that will be used
for estimating the tag’s location.

Let Ω = {ω1, . . . , ωk} and Ψ = {ψ1, . . . , ψm} be two associations sets. By the
distance between these sets, we understand

D(Ω,Ψ) =

√

√

√

√

N
∑

j=1

(RΩ(j) −RΨ (j))2 (1)

where N is the total number of pegs in the network and RΩ(j) is defined as rj ,
if the pair < pj , rj > occurs in Ω, and 0 otherwise.

In the second step, the server evaluates the distance of each pre-selected
sample (its association list) from the current association list Φ. Then, it selects
K samples with the smallest distance.

In the last step, the coordinates of the selected samples are averaged to
produce the estimated coordinates of the tag. The averaging formula biases the
samples in such a way that the ones with a smaller distance from Φ contribute
proportionally more. Let Dmax be the maximum distance from Φ among the
best K selected samples and SD =

∑K

i Di be the sum of all those distances.
The tracked coordinates are estimated as:

xest =

∑K

i=1
xi × (Dmax −Di)

K ×Dmax − Sd

and yest =

∑K

i=1
yi × (Dmax −Di)

K ×Dmax − Sd

(2)

where (xi, yi) are the coordinates associated with sample i.
Note that the above approach does not link RSS to any distance metric but

treats it as a purely numerical attribute of a sample whose value should be close
to the observed value. The averaging formula factors in the magnitude of dis-
crepancy between RSS values (in terms of distance between points in Euclidean
space), but this is a purely numerical interpolation and not an application of any
RF propagation model. LEMON does not impose any restriction on the number
of pegs or reference points. It relies on the matching rules to locate those sam-
ples that best apply to a particular “instance” of localization. If the number of
samples is large, the role of the last-step interpolation becomes secondary: we
do not purport to expect that the specific RSS values encode useful information



about the distance. In particular, it may make sense to oversample the area,
e.g., collecting multiple samples from the same point. For example, those multi-
ple samples may correspond to the different orientations of the tag, as in [1]. In
the rest of this paper we also study how localization is affected when multiple
orientations (at the same point) are identified as such vs. what happens when
they are ignored.

3 Experiments

Fig. 1. Layout of pegs (circles), reference points (crosses), and localized points (stars).

A prototype LEMON system was implemented and tested at our university
campus. Early results have been reported in [3]. The devices for both tags and
pegs are the EMSPCC11 from Olsonet Communications,2 which is a low-cost
low-power mote for wireless sensor networking, programmable in PicOS [2]. The
node employs the CC1100 RF module from Texas Instruments operating within
the 916MHz band. The RF module of EMSPCC11 offers several settings. The
transmission power can vary from −15 dBm to 10 dBm (in 8 discrete steps), the
bit rate options are 5 kbps, 10 kbps, 38 kpbs, and 200 kbps, and there are 256
different channels (numbered 0 to 255) with 200 kHz spacing. All combinations
are possible and, in principle, sensible. The experiments reported on in the rest
of this paper were carried out at the lowest power setting with 5 kps transmission
rate using channel 0.

In our earlier work [3] we demonstrated how localization in three distinctly
different rooms resulted in a localization error less than one meter. Even though
LEMON’s accuracy has not been yet maximized, it already challenges the accu-
racy of location estimation reported in [5] which was about 2m using an even

2 See http://www.olsonet.com/Documents/emspcc11.pdf.



finer grid than ours. Also, our analysis of data revealed that most of the prob-
lems with localization resulted from assigning too much relevance to low RSS
values, i.e., corresponding to weak reception, which would exhibit large statis-
tical fluctuations. The numerical RSS readings presented by the RF module of
EMSPCC11 are positive numbers, roughly between 80 and 150, representing a
shifted dB signal level of the received packet. Assuming that those readings are
always between MIN and MAX, we applied the following scaling formula:

Rs =

(

r − MIN

MAX − MIN

)α

(3)

where α > 1. Note that for α = 1 we effectively obtain the original (not re-
scaled) case, as a linear transformation of all RSS readings, does not change the
outcome of our algorithm. The best results have been observed for α = 3 which
allowed us to estimate the tag location with an error of less than 1m in 90% of
the cases.

In this paper we restrict our attention to the problem of localization in multi-
ple (adjacent) rooms focusing on the layout of pegs and the number and location
of reference points, subject to certain regular patterns.

3.1 Multiple room localization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

LEMON_Oriented LEMON PLP

A
v

er
ag

e 
E

rr
o

r 
(m

)

Localization Scheme

Fig. 2. LEMON (with & without orientation) vs. PLP’s k-NN.

We conducted an experiment using three adjacent rooms. The dimension
of each room is about 3m × 5m. Each room includes four wooden tables and
chairs, a metal file cabinet and two desktop computers. We placed four pegs at
the corners of each room and generated a grid with the edge size around 1m.
In particular, in each room twelve readings were taken at the reference points
(indicated by crosses in Figure 1) and nine locations were estimated: by placing



tags at the nine points positioned at the center of each grid cell (indicated by
stars in Figure 1).

It was noted previously [1] that orientation impacts localization. To verify
that observation, we collected tag readings for four different directions (North,
South, East, and West) at each profiled or localized point. At the localization
stage, to take the orientation aspect into account, we would only use for esti-
mation the profiled data collected from tags oriented in the same way as the
one being localized. Even though the line of sight (LOS) was not interrupted
regardless of the orientation of the tag (suggesting that the orientation should
have no impact on location estimation), the observed error was larger when the
orientation aspect was ignored (i.e., all profiled data were used regardless of the
orientation of the localized tag). The observed difference was about 12 cm on
the average (Figure 2), in favor of the localization based solely on the reference
points collected with the same orientation. While the difference is not huge, it
crisply illustrates how an even minor change of tag placement (namely rotation
on the same spot) influences localization. Hence, baring information about ori-
entation, we should not expect localization accuracy to be any tighter than the
difference found between oriented vs. non-oriented localization.

A second element of this study is a comparison against a localization scheme
based on the k–Nearest Neighbor (k–NN) algorithm. Specifically, the PowerLine
Positioning (PLP) proposed in [6], employs k–NN for multi–room localization.
It is one of the few papers in the bibliography where localization is designed
specifically with multiple room environments in mind. PLP is also a profiling
based approach, but it uses powerlines as the means to distribute RF signals
throughout a building. Apart from the unconventional use of the powerline as
an “antenna,” PLP’s approach is to apply a sufficiently large k for the nearest
neighbors to localize and identify the room where the tag is located. The refer-
ence points from the identified room are then used with a smaller k to estimate
the tag’s location. We tested the same logic as PLP using our experimental data
with k equal to six and four for, respectively, selecting the room and then es-
timating the location within the room. The results show that the estimation
accuracy of PLP degrades as it subdivides the signal space according to the
physical layout, and then it localizes within a selected space. There is appar-
ent loss of information when we first identify the room and then localize strictly
within that room; hence, the large error distance shown in Figure 2, even against
LEMON without orientation information. LEMON outperforms PLP when we
consider the three rooms as one signal space and use all reference points to per-
form the estimation. What this demonstrates is that the intuition of restricting
the localization to a subset of reference points that might appear “closest” re-
sults in loss of information that could be crucial to localization, i.e., reference
points in adjacent rooms do matter.

3.2 Effect of reference points

In the rest of this study, we compare LEMON against two well known general–
purpose localization schemes, LANDMARC [5] and RADAR [1]. Specifically, we



Fig. 3. Locations of pegs and of 24 reference points (Diamond).

investigate the effect of the number of reference points and their arrangement on
localization error. For this purpose, we gathered 49 reference points, i.e., from
every grid point of a 7×7 grid, where the pegs were positioned at 16 locations
(depicted as circles in Figure 3). When a reference point measurement was at the
same location as a peg, the actual measurement was taken 6 cm away from the
peg. We then removed reference points from the database in a regular fashion
such that the density of reference points remained roughly the same across the
grid. Figure 3 shows the layout of reference points after removing 25 points;
the resulting setup is dubbed Diamond and consists of measurements from 24
reference points. By further removing points in the same fashion, i.e., one at a
time, we arrive at two new layouts (see Figure 4) called, respectively, Hexagon (18
points) and Nested-Hexagon-Diamond (12 points). Starting with the Hexagon
layout and eliminating more points, we produce two additional layouts dubbed
DoubleD (14 points) and Square (12 points), respectively.

The average error in location estimation for LEMON, LANDMARC, and
RADAR in each of the above layouts is shown in Figure 5. The average error for
LEMON with all the initial 49 reference points was 0.43m, but we could remove
points in a regular fashion and end up with 12 points while the error distance
was still less than 1m. This indicates that it is possible to have a less complex
deployment of LEMON without degrading the performance significantly (see,
e.g., the case of Dia(24)). Overall, we have observed that the more the reference
points the better the localization. Yet, the number of reference points alone is
not sufficient, as their placement matters as well (see for example the case of
DD(14) vs. Square(12)). Moreover, LEMON is less sensitive to the number of
reference points and their layout compared to LANDMARC and RADAR. In
fact, of all three, RADAR appears to be the one scheme that deteriorates the
most when the number of reference points is reduced.



18 node (Hexagon) 12 node (Hexagon-Diamond)

14 node (DoubleD) 12 node (Square)

Fig. 4. Reference point location configurations.

3.3 Effect of peg placement

The unique feature of LEMON is its flexibility of using as many pegs as needed
without imposing any restriction on their number. However, there might exist
better or worse ways of placing those pegs that may offer better or worse estima-
tion. Finding the best placement of pegs for a target localization accuracy may
pose a challenge. We may not need, say, 16 Pegs for 7×7 grid to keep the error
distance below 1m. Thus we conducted another experiment to try to produce
configurations with fewer pegs that still provide a localization error less than
1m. Figure 6 shows two such layouts with 8 Pegs and the corresponding average
localization error is shown in Figure 7. As we can see, it is possible to eliminate
half of the Pegs and still maintain error distance well below 1m. We also found
that removing just four pegs (the “center square” of circles in Figure 3) would
leave 12 pegs (called “Square” in Figure 7) but somewhat higher localization
error than the configurations with the fewer but “better placed” pegs. This may
suggest that a clever design of placing pegs on the target area may help us reduce
the error distance. Our observations indicate that removing pegs from inside the
grid may not be a good idea. Yet, what is even more interesting to note is that
all three schemes (LEMON, LANDMARC, and RADAR) are relatively insensi-
tive to the peg layout, compared to the impact that the layout (and number)
of reference points could have. Additionally, LANDMARC appears to have a
slightly better performance than the other two, but the statistical significance of



the differences is very small. The lesson is that peg placement is not as critical
an issue as the dense “sampling” of the space by many reference points. This is
good news, as the placement of pegs is likely to be constrained or even dictated
by external factors, e.g., placement of furniture, walls, etc.
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Fig. 5. Localization error for different reference point configurations.

Nested-Square ZigZag

Fig. 6. Peg layouts for eight pegs.

4 Conclusions

Our proposed scheme, LEMON, can easily be applied to in-building localization
using inexpensive devices and can provide an average localization error well
below 1m. Furthermore, we have found evidence that attempts at restricting
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Fig. 7. Localization error for different peg layouts.

the population of reference points to those in the suspected proximity of the
target (e.g., for complexity reasons) tend to backfire. Put differently, the final
accuracy of estimation depends on information collected from distant reference
points in a surprisingly significant sort of way.

LEMON’s use of a rich set of reference points, collected by pegs positioned at
fixed locations, was put under the microscope and we found out that a smaller
set of reference points or a smaller set of fixed points (peg stations) can provide
good localization, in particular if their layout has been carefully designed. This
is particularly true for the layout and number of reference points. In fact, faced
with a choice between introducing more reference points or more pegs, the answer
appears to be in favor of more reference points.

We can confidently say that the limits of LEMON have not been yet reached.
LEMON achieved a localization error below 1m compared to the accuracy of
location estimation reported in [5], which was about 2m using a finer grid than
in our case. Yet, LEMON did not apply any of the additional techniques outlined
in [5] which could conceivably improve its performance of LEMON even further.
For example, one idea of LANDMARC and its derivatives [5], is to assign a fixed
set of reference tags constantly providing profile samples. This approach can help
by updating the reference point measurements almost in real–time to factor in
the possible changes in the monitored space, e.g., due to furniture moving, the
number of inhabitants etc. Thus one can think of adapting LEMON on-line, such
that a subset of reference points in the database is being perpetually replaced
with new readings provided by pre-installed “fixed tags.” Finally, the uniformity
and low cost of the equipment makes LEMON a highly viable and very practical
solution.

The selection of reference points and/or peg locations appears to be an ex-
tremely important facet of the problem, of which we have just scratched the
surface in this paper. We plan to define the placement problem formally as an
optimization problem. Its solution may guide real-life deployments of pegs and
the ways of collecting reference points (profiling) as to minimize the system’s



complexity (cost) for the required accuracy of localization. The analytical re-
sults can be verified with our experimental data.

References

1. P. Bahl and V.N. Padmanabhan. RADAR: an in-building RF-based user location
and tracking system. In Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. (INFOCOM 2000), Israel, March 2000.
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4. A Küpper. Location–Based Services: Fundamentals and Operation. Wiley, 2005.
5. L.M. Ni, Y. Liu, Y.C. Lau, and A.P. Patil. LANDMARC: indoor location sensing

using active RFID. Wirel. Netw., 10(6):701–710, 2004.
6. S.N. Patel, K.N. Truong, and G.D. Abowd. PowerLine Positioning: A practical

sub-room-level indoor location system for domestic use. In In the proc. of Ubicomp
2006, pages 441–458. Springer, 2006.

7. United States Coast Guard Navigation Center. Global positioning system standard
positioning service specification, June 1995.

8. M. Wallbaum and S. Diepolder. Benchmarking wireless lan location systems. In
Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce
and Services (WMCS05), pages 42–51, Munich, Germany, July 2005.


