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Abstract  The efficiency analysis a hyperbolic position location estimation 
in the multipath propagation environment in the wideband code division 
multiple access (WCDMA) interface was presented. Four, the most popular 
methods: Chan’s [1], Foy’s [2], Fang’s [3] and Friedlander’s [4] were con-
sidered. These algorithms enable the calculation of the geographical posi-
tion of a mobile station (MS) using the time differences of arrival (TDOA) 
between several base stations (BS) and MS. The simulation model is out-
lined and simulation results are presented. 

1   Introduction 

Hyperbolic position location estimation is accomplished in two stages. The first 
stage involves estimation of the time difference of arrival (TDOA) between 
transmitters through the use of time delay estimation techniques. The estimated 
TDOA's are then transformed into range difference measurements between base 
stations (BSs), resulting in a set of nonlinear hyperbolic equations. The second 
stage utilizes efficient algorithms to produce an unambiguous solution to these 
nonlinear hyperbolic equations.  

Referring all TDOA's to the first base station, which is assumed to be the base 
station controlling, the distance between the i-th source (BS) and the receiver is 
given as 
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where (Xi, Yi) and (x, y) are coordination of i-th base station and mobile station 
(MS) respectively. The range difference between base stations with respect to the 
first arriving base station is 
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where v is the radio signal speed, Ri,1 is the range difference distance between the 
first base station and the i-th base station, R1 is the distance between the first base 
station and the MS, and ti,1 is the estimated TDOA between the first base station 



and the i-th base station. This defines the set of nonlinear hyperbolic equations 
whose solution gives 2-D coordinates of the mobile station. 

This paper presents the efficiency analysis a hyperbolic position location esti-
mation methods in the multipath propagation environment, especially Chan’s, 
Foy’s, Fang’s and Friedlander’s algorithms. 

2   Mathematical model 

Solving the nonlinear equations of (2) is difficult. Consequently, linearizing 
this set of equations is commonly performed. One way of linearizing these equa-
tions is through the use of Taylor-series expansion and retaining the first two 
terms [2]. An commonly used alternative method to the Taylor-series expansion 
method, presented in [1], [3] and [4], is to first transform the set of nonlinear equa-
tions in (2) into another set of equations. Rearranging the form of (2) into 
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Equation (1) can now be rewritten as 
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Subtracting (1) at i=1 from (4) results in 
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where Xi,1 and Yi,1 are equal to Xi – X and Yi – Y respectively. The set of equations 
in (5) are now linear with the source location (x, y) and the range of the first base 
station to the source R1 as the unknowns, and are more easily handled. 

In this paper a 2-D hyperbolic position location system using only three base 
station is considered. 

2.1   Chan’s Method 

Following Chan's method [1], for a three base station system, producing two 
TDOA's, x and y can be solved in terms of R1 from (5). The solution is in the form 
of 
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with i = 1, a quadratic equation in terms of R1 is produced 
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Substituting the positive root back into (6) results in the final solution. There 
may exist two positive roots from the quadratic equation that can produce two dif-
ferent solutions, resulting in an ambiguity. Simulations in this work have shown, 
that only the following root should be considered for cellular position location 
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2.2   Foy’s Method 

The Foy’s method linearizes the set of equations in (2) by Taylor-series expan-
sion then uses an iterative method to solve the system of linear equations. The 
iterative method begins with an initial guess and improves the estimate at each ite-
ration by determining the local linear least square solution. With a set of TDOA 
estimates, the method starts with an initial guess (x0, y0) and computes the devia-
tions [Δx, Δy]T of the position location estimation 
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The values R1 and R2 are computed from (1) with x=x0 and y=y0. In the next ite-
ration, x0 and y0 are set to x0+Δx and y0+Δy. The whole process is repeated until Δx 
and Δy are sufficiently small, resulting in the estimated position location of the (x, 
y). This Taylor-series method can provide accurate results, however, it requires a 
close initial guess (x0, y0) to guarantee convergence and can be very computation-
ally intensive. 

2.3   Fang’s Method 

Fang establishes a coordinate system so that the first base station is located at 
(0, 0), the second BS at (X2, 0) and the third BS at (X3, Y3). The following relation-
ships are simplified 
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Using these relationships, the equation of (5) can be rewritten as 
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Equating the two equations and simplifying results in 
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Substituting equation (17) into the equation (15) results in 
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Solving the quadratic equation (20), we get two values for x. Using a priori in-
formation, one of the values is chosen and is used to find out y from (17). It has 
been found by simulations in this research that one of the roots of (20) is beyond 
the cell coverage area. Hence for position location in cellular systems we only 
need to evaluate the following root from (20) 
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As stated earlier, putting this value of x in (17) will give us the other coordinate 
of the mobile's position estimate. 



2.4   Friedlander’s Method 

Friedlander's method [4] utilizes a least squares error criterion to solve for the 
position location. He first transforms the linear set of equations of (5) into 
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Then realizes this equation in matrix form as 
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In order to eliminate the second term of (26), which requires knowledge of the 
unknown term R1, the equation in (26) is premultiplied by a matrix N which has p 
in its null-space. Matrix N is defined as 
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Closed form solution for the coordinates of the source is found by solving 
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The mobile station position can then be computed using the least square solu-
tion. A closed form solution which can be used is given by Friedlander as 
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3   Simulation model 

The experiments were carried out using the simulation model required for the 
UMTS [6]. This is a typical bad urban environmental model (Manhattan model). 
The area consisted 32 blocks with a total number of 21 base stations. The street 
width was 30 m and the distance between two street corners was 230 m (see 
Fig. 3.1). Base station antennas were placed 10 m above the mobile users but be-
low rooftops. In our implementation, we covered the simulation area with a regu-
lar grid with resolution of 10 m. In the simulation model, the effect of a multipath 
propagation was implemented. 
 

 
Fig. 1. Simulation model of the bad urban environment (Manhattan model). 

The time of radio signal arrival between the mobile station and base stations 
under the multipath environment was modeled by the sum of true value τ0 and 
non-line of sight (NLOS) error τm [7] 

mτττ += 0  (36) 

The variable τm is defined as mean excess delay and essentially correlated with 
the root mean squared delay spread τrms [8] 
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where k is a constant proportional coefficient (k=1 in urban region), T1 is the me-
dian value of τrms at d=1km (for urban environment T1 = 0.7 μs), d is the distance 
between the mobile station and base station, ε is an exponent (for urban environ-
ment ε=0.5) and y is a lognormal variate. Specifically, 

yY lg10⋅=  (38) 

is a Gaussian random variable over the terrain at the distance d, having zero mean 
and a standard deviation σy (for urban environment σy = 4dB). 



4 Simulation results 

The most commonly used measure of positioning accuracy is the root mean 
square error metric. For a one dimensional case its value can be calculated as in 
[5] 
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where xt and yt denote the true MS coordinate, xi and yi its estimation, and n 
(n=10 000) represents a number of measurements. For the purpose of this article, 
however, the two dimensional metric is exploited instead. It can be easily derived 
by calculating the one dimensional metric for both coordinates, and than final val-
ue can be computed 
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Such a measure is very useful due to a possibility of representing it on a plane 
as a circle, which a center is the true target’s position and radius’ length is RMSxy 
value. Within such a circle there are about 63% target’s position estimations. Bas-
ing on the two dimensional root mean square error metric, another circle can be 
created. Its radius’ length is two times longer than the previous one’s. Within this 
circle there are about 98% target’s position estimations. Moreover, the cumulative 
probability distribution functions (CDF) of the absolute position error were ob-
tained from the simulation investigations. The absolute position error is defined as 
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where x and y denote the estimated coordinates of a mobile station. All timing 
values have been assumed to be accurate within ± ½ of a WCDMA chip (the uni-
form random time error corresponds to a maximum distance error of about 
± 38 m). 

Comparisons of errors for the different methods are in Tab. 1. The simulation 
results are presented in Fig. 2. The hyperbolic position location estimation me-
thods presented offer different accuracy's and complexities. The Chan's method 
offers a closed form solution, thus eliminating the need for an iteration approach, 
but requires a priori information to eliminate ambiguities. The Foy’s method, us-
ing Taylor-series least square method offers accurate position location estimation 
at reasonable noise levels and is applicable to any number of range difference 
measurements, but can be computational intensive. 

Table 1. Comparison of errors for the different methods. 

Method Type of errors 
RMSx [m] RMSy [m] RMSxy [m] 

Chan 82.13 134.05 157.21 
Foy 107.99 103.60 149.65 



Fang 78.19 108.61 133.83 
Friedlander 240.79 233.35 335.31 

 

 
Fig. 2. The CDFs of absolute position error for the proposed methods. 

The Taylor-series method is iterative and has the risk of convergence to local 
minima. The Fang's method provides an optimal solution when the system of equ-
ations is consistent but does not make use of redundant measurements (only tree 
base stations are needed). The Friedlander's approach reduces the computational 
requirements for the solution but does is suboptimal because it eliminates a fun-
damental relationship and is difficult to implementation – inverse matrix with very 
low or high values. 

5   Summary 

To summarize Chan's method offers a closed form and is the best available op-
tion for solving hyperbolic equations (2). This method also requires a priori know-
ledge of the approximate location and distance between mobile station and first 
(serving) base station. 

The optimal position location algorithm for a given situation depends on the 
geometrical configuration of the base stations, the number of coordinates of the 
source to be solved and range difference measurements utilized, computational re-
quirements and complexity, assumptions on the statistical nature of the channel 
and desired accuracy. 

An interesting observation that was made while studying the ambiguities in the 
Fang's and Chan's algorithms was that both these ambiguities are essentially the 
same. It was seen that if we make wrong choices in both algorithms for a given 
case then the wrong results given by both algorithms are identical. 
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