
Soft Concurrent Constraint Programming
with Local Variables

Laura Bussi1, Fabio Gadducci1(B), and Francesco Santini2

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
laura.bussi@phd.unipi.it, fabio.gadducci@unipi.it

2 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
Perugia, Italy

francesco.santini@unipg.it

Abstract. We extend Soft Concurrent Constraint languages with the
possibility to manage variables that are local (i.e., private) to some of
the agents. Being constraints soft, it is possible to represent preferences
as a partially ordered set. With respect to the related literature using an
idempotent operator for constraint composition, a soft language requires
a revision of the hiding operator, which is used to locally keep the com-
putation effect on a variable, and conceal it from the global store. We
provide the language with labelled and unlabelled reduction semantics as
well as bisimulation equivalences, further proving their correspondence.

Keywords: Soft concurrent constraint programming · residuated
monoids · local variables · bisimulation equivalences

1 Introduction

Concurrent Constraint Programming (CCP) is a declarative model for concur-
rency where agents interact on a common store of information by telling and
asking constraints [22]. In general terms, a constraint is a relationship on a set
of variables: an assignment of (some of) the variables in the store needs to be
found so to satisfy a given goal. A constraint system provides a signature from
which the constraints are built; it is formalised as an algebra with operators to
express conjunction of constraints, absent and inconsistent information, hiding
of information and parameter passing.

The polyadic and cylindric algebras are two algebraisation of the first-order
calculus [16], which have been widely adopted in the literature to provide the
semantics of constraint formulas [17,25]. A cylindric algebra is formed by enhanc-
ing a Boolean algebra by means of a family of unary operations called cylindri-
fications. Technically, the cylindrification operation ∃x(c) is used to project out
the information about a variable x from a constraint c: for example, because it is

Research partially supported by the MIUR PRIN 2017FTXR7S “IT-MaTTerS” and
by GNCS-INdAM (“Gruppo Nazionale per il Calcolo Scientifico”).

c© IFIP International Federation for Information Processing 2022
M. H. ter Beek and M. Sirjani (Eds.): COORDINATION 2022, LNCS 13271, pp. 159–177, 2022.
https://doi.org/10.1007/978-3-031-08143-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08143-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-08143-9_10

160 L. Bussi et al.

important to focus only on the variables that appear in the goal of a constraint
logic program.

While polyadic algebras are the algebraic version of the pure first-order cal-
culus, cylindric algebras yield an algebraisation of the first-order calculus with
equality. However, equality can be also achieved in polyadic algebras via addi-
tional axioms that specify which terms are to be considered equal under the
abstract interpretation.

While most of the solutions in the literature adopt a cylindric algebra to
represent constraints [25], other proposals take advantage of polyadic algebras:
in [17] the motivation is to allow projections on infinite sets, while in [8] replac-
ing diagonals (used to perform parameters passing [25], borrowed from cylindric
algebras) with polyadic operators allows for a compact - polynomial - representa-
tion of soft constraints. Moreover, in case it is necessary to use preferences beside
hard constraints, i.e. Soft Concurrent Constraint Programming (SCCP) [3,15],
algebra operators interact with a residuated monoid structure of values [14]:
while the semi-lattice of such preferences must be complete for cylindric alge-
bras, it is not necessary so for polyadic ones [8].

The soft CCP language we present in this paper is a further generalisation
of what can be found in the literature, in particular [1] (see also Sect. 7). More
precisely, it allows for a more general algebraic structure than the absorptive
and idempotent monoid used there, and it covers also bipolar (i.e., positive/neg-
ative) preferences, thus generalising [6]; secondly, polyadic algebras can model
many problems using a polynomial representation of constraints. In fact, poly-
nomial constraints play an important role in program analysis and verification
(e.g. when synthesising program invariants and analysing the reachability of
hybrid systems), and they have been recently used in SAT modulo theories [9].
Moreover, the language allows an agent to perform operations on variables (in
particular, adding and asking constraints) that are local, i.e., visible only to the
agent itself: for this reason, the hiding operator needs to consider the effect of
local steps with respect to the global store, which is seen by all the agents par-
ticipating to a concurrent computation. In this way, it is possible to distinguish
between local and global knowledge of agents, in the form of a local and a global
store of constraints.

Beside the language syntax, we provide a reduction semantics and a satu-
rated bisimulation relation, again taking inspiration from and generalising [1].
In order for two computation states to be saturated bisimilar, it is required that
i) they should expose the same barbs, ii) whenever one of them moves then the
other should reply and arrive at an equivalent state, iii) they should be equiva-
lent under all the possible stores. Intuitively, barbs are basic observations (i.e.,
predicates) on the system states; in the case of CCP languages, barbs are rep-
resented by the constraint store. In addition, we show a labelled bisimulation to
(partially) overcome the need to check the store closure (i.e., item iii). As a final
step, we show that the labelled and unlabelled reduction semantics correspond,
and we advance a labelled bisimulation relation.

Soft Concurrent Constraint Programming with Local Variables 161

This paper is a continuation of [8], exploiting the polyadic formalism to
define a concurrent constraint language. Section 2 and Sect. 3 present the nec-
essary background on the algebraic structure needed to model polyadic con-
straints. The following sections are focused on the semantics of a concurrent
constraint-based language using local variables and polyadic constraints, on the
correspondence between different semantics, and on the equivalence relations
among processes. Section 4 presents the syntax and a reduction semantics for
the language, while Sect. 5 presents a labelled reduction for the same language.
Section 6 shows further formal results on the correspondence between the two
semantics, and a bisimilarity relation to compare processes with the labelled
semantics. In Sect. 7 we summarise the most related work about CCP-based
languages with the notion of local and global variables. In Sect. 8 we finally
wrap up the paper with conclusive thoughts and ideas about future works.

2 An Introduction to Residuated Monoids

This section reports some results on residuated monoids, which are the algebraic
structure adopted for modelling soft constraints in the following of the paper.
These background results are mostly drawn from [15], where also proofs can be
found.

2.1 Preliminaries on Ordered Monoids

The first step is to define an algebraic structure for modelling preferences, where
it is possible to compare values and combine them. Our choice falls into the
range of bipolar approaches, in order to represent both positive and negative
preferences: we refer to [14] for a detailed introduction and a comparison with
other proposals.

Definition 1 (Orders). A partial order (PO) is a pair 〈A,≤〉 such that A is
a set and ≤ ⊆ A × A is a reflexive, transitive, and anti-symmetric relation. A
semi-lattice (SL) is a PO such that any finite subset of A has a least upper bound
(LUB).

The LUB of a (possibly infinite) subset X ⊆ A is denoted
∨

X, and it is
clearly unique. Note that

∨ ∅ is the bottom, denoted as ⊥, of the PO. Should it
exist,

∨
A is the top, denoted as 	, of the PO.

Definition 2 (Ordered monoids). A (commutative) monoid is a triple 〈A,⊗,
1〉 such that ⊗ : A × A → A is a commutative and associative function and
1 ∈ A is its identity element, i.e., ∀a ∈ A.a⊗1 = a. A partially ordered monoid
(POM) is a 4-tuple 〈A,≤,⊗,1〉 such that 〈A,≤〉 is a PO and 〈A,⊗,1〉 a monoid.
A semi-lattice monoid (SLM) is a POM such that their underlying PO is a SL.

As usual, we use the infix notation: a ⊗ b stands for ⊗(a, b).

162 L. Bussi et al.

Example 1 (Power set). Given a (possibly infinite) set S, a key example is rep-
resented by the POM P(S) = 〈2S ,⊆,∩, S〉 of subsets of S, with the partial order
given by subset inclusion and the (idempotent) monoidal operator by intersec-
tion. In fact, P(S) is a continuous lattice, since all LUBs exist, and S is both the
top and the identity element.

In general, the partial order ≤ and the multiplication operator ⊗ can be
unrelated. This is not the case for distributive SLMs (such as P(S) above).

Definition 3 (Distributivity). Let 〈A,≤,⊗,1〉 be an SLM. It is distributive
if for any finite X ⊆ A it holds ∀a ∈ A. a ⊗ ∨

X =
∨{a ⊗ x | x ∈ X}.

Note that distributivity implies that ⊗ is monotone with respect to ≤.

Remark 1. It is almost straightforward to show that our proposal encom-
passes many other formalisms in the literature. Indeed, distributive semi-lattice
monoids are tropical semirings (also known as dioids), namely, semirings with an
idempotent sum operator a⊕b, which in our formalism is obtained as

∨{a, b}. If
1 is the top of the SL we end up in absorptive semirings [19], which are known as
c-semirings in the soft constraint jargon [3] (see [4] for a brief survey on residua-
tion for such semirings). Note that requiring the monotonicity of ⊗ and imposing
1 to be the top of the partial order means that preferences are negative, i.e., that
it holds ∀a, b ∈ A.a ⊗ b ≤ a.

2.2 Remarks on Residuation

It is often needed to be able to “remove” part of a preference, due e.g. to the
non-monotone nature of the language at hand for manipulating constraints. The
structure of our choice is given by residuated monoids [19]. They introduce a new
operator �÷ , which represents a “weak” (due to the presence of partial orders)
inverse of ⊗.

Definition 4 (Residuation). A residuated POM is a 5-tuple 〈A,≤,⊗, �÷ ,1〉
such that 〈A,≤,⊗,1〉 is a POM and �÷ : A × A → A is a function satisfying
∀a, b, c ∈ A.b ⊗ c ≤ a ⇐⇒ c ≤ a�÷ b. A residuated SLM is a residuated POM
such that the underlying PO is a SL.

In order to confirm the intuition about weak inverses, Lemma 1 below pre-
cisely states that residuation conveys the meaning of an approximated form of
subtraction.

Lemma 1. Let 〈A, ≤,⊗, �÷ ,1〉 be a residuated POM. Then a�÷ b =
∨{c | b⊗c ≤

a} for all a, b ∈ A.

In words, the LUB of the (possibly infinite) set {c | b ⊗ c ≤ a} exists and is
equal to a�÷ b. In fact, residuation implies distributivity (see [14, Lemma 2.2]).

Lemma 2. Let 〈A,≤,⊗, �÷ ,1〉 be a residuated POM. Then ⊗ is monotone. If
additionally it is a SLM, then it is distributive.

Soft Concurrent Constraint Programming with Local Variables 163

Example 2. Consider again the SLM P(S) from Example 1. It is clearly resid-
uated, with X �÷ Y = (S \ Y) ∪ X. In fact, the residuated operator plays the
role of classical logical implication Y =⇒ X. Note also that S \ Y = ∅�÷ Y , so
algebraically we have that X �÷Y = X ∨ (⊥�÷ Y) holds in P(S).

In any residuated POM the �÷ operator is also monotone on the first argu-
ment and anti-monotone on the second one, i.e., ∀a, b, c ∈ A. a ≤ b =⇒ c�÷ b ≤
c�÷ a. The definition below identifies sub-classes of residuated monoids that are
suitable for an easier manipulation of constraints (see e.g. [4]).

Definition 5 (Families of POMs). A residuated POM 〈A,≤,⊗, �÷ ,1〉 is

– localised if ∀a ∈ A.a �∈ {⊥,	} =⇒ a�÷ a = 1;
– invertible if ∀a, b ∈ A.a ≤ b < 	 =⇒ b ⊗ (a�÷ b) = a;
– cancellative if ∀a, b, c ∈ A.a �∈ {⊥,	} ∧ a ⊗ b = a ⊗ c =⇒ b = c.

Remark 2. When introduced in [14, Def. 2.4], localisation was equivalently stated
as ∀a, b ∈ A.⊥ < a ≤ b < 	 =⇒ a�÷ b ≤ 1. Indeed, the latter implies a�÷ a ≤ 1,
while 1 ≤ a�÷ a by definition. Now, assuming a�÷ a = 1 and a ≤ b, by anti-
monotonicity a�÷ b ≤ a�÷ a = 1. Note the constraint on a �∈ {⊥,	}: indeed, a
residuated POM always has a top element and moreover a�÷ ⊥ = 	�÷ a = 	 for
any a.

Note that being cancellative is a strong requirement. It implies e.g. some
uniqueness of invertibility, that is, for any a, b there exists at most a c such that
b ⊗ c = a. It is moreover equivalent to what we could call strong locality, that
is, ∀a, b ∈ A.a �∈ {⊥,	} =⇒ (a ⊗ b)�÷ a = b. Indeed, this property implies
cancellativeness, since if a ⊗ b = a ⊗ c then b = (a ⊗ b)�÷ a = (a ⊗ c)�÷ a = c. On
the other side, it is implied, since ((a ⊗ b)�÷ a) ⊗ a = a ⊗ b holds in residuated
POMs.

As a final remark, note that P(S) is localised and invertible, yet it is not
cancellative.

3 A Polyadic Approach to Constraint Manipulation

This section presents our personal take on polyadic algebras for ordered monoids:
the standard axiomatisation of e.g. [24] has been completely reworked, in order
to be adapted to the constraints formalism. It extends our previous description
in [8] by further elaborating on the laws for the polyadic operators in residuated
monoids.

3.1 Cylindric and Polyadic Operators for Ordered Monoids

We introduce two families of operators that will be used for modelling variables
hiding and substitution, which are key features in languages for manipulating
constraints. One is a well-known abstraction for existential quantifiers, the other
one an axiomatisation of the notion of substitution, and it is proposed as a

164 L. Bussi et al.

weaker alternative to diagonals [25], the standard tool for modelling equivalence
in constraint programming.1

Cylindric Operators. We fix a POM S = 〈A,≤,⊗,1〉 and a set V of variables,
and we define a family of cylindric operators axiomatising existential quantifiers.

Definition 6 (Cylindric ops). A cylindric operator ∃ for S and V is a family
of monotone functions ∃x : A → A indexed by elements in V such that for all
a, b ∈ A and x, y ∈ V

1. a ≤ ∃xa,
2. ∃x∃ya = ∃y∃xa,
3. ∃x(a ⊗ ∃xb) = ∃xa ⊗ ∃xb.

Let a ∈ A. The support of a is the set of variables sv(a) = {x | ∃xa �= a}.
In other words, ∃ fixes a monoid action which is monotone and increasing.

Polyadic Operators. We now move to define a family of operators axiomatis-
ing substitutions. They interact with quantifiers, thus, beside a partially ordered
monoid S and a set V of variables, we fix a cylindric operator ∃ over S and V .

Let F (V) be the set of functions with domain and codomain V . For a function
σ its support is sv(σ) = {x | σ(x) �= x} and, for a set X ⊆ V , σ |X : X → V
denotes the restriction of σ to X and σc(X) = {y | σ(y) ∈ X} the counter-image
of X along σ.

Definition 7 (Polyadic ops). A polyadic operator s for a cylindric operator
∃ is a family of monotone functions sσ : A → A indexed by elements in F (V)
such that for all a, b ∈ A, x ∈ V , and σ, τ ∈ F (V)

1. sv(σ) ∩ sv(a) = ∅ =⇒ sσa = a,
2. sσ(a ⊗ b) = sσa ⊗ sσb,
3. σ |sv(a)= τ |sv(a) =⇒ sσa = sτa,

4. ∃xsσa =

{
sσ∃ya if σc({x}) = {y}
sσa if σc({x}) = ∅ .

Apolyadic operator offers enough structure formodelling variable substitution.
In the following, we fix a cylindric operator ∃ and a polyadic operator s for it.

3.2 Cylindric and Polyadic Operators for Residuated Monoids

We now consider the interaction of previous structures with residuation. To this
end, in the following we assume that S is a residuated POM (see Definition 4).

1 “Weaker alternative” here means that diagonals allow for axiomatising substitutions
at the expenses of working with complete partial orders: see e.g. [15, Definition 11].

Soft Concurrent Constraint Programming with Local Variables 165

Lemma 3. Let x ∈ V and a, b ∈ A. Then it holds ∃x(a�÷ ∃xb) ≤ ∃xa�÷∃xb ≤
∃x(∃xa�÷ b).

Remark 3. It is easy to check that ∃x(a�÷ ∃xb) ≤ ∃xa�÷ ∃xb is actually equivalent
to state that ∃x(a ⊗ ∃xb) ≥ ∃xa ⊗ ∃xb.

We can show that �÷ does not substantially alter the free variables of its
arguments.

Lemma 4. Let a, b ∈ A. Then it holds sv(a�÷ b) ⊆ sv(a) ∪ sv(b).

A result similar to Lemma 3 relates residuation and polyadic operators.

Lemma 5. Let a, b ∈ A and σ ∈ F (V). Then it holds sσ(a�÷ b) ≤ sσa�÷ sσb.
Furthermore, if σ is invertible, then the equality holds.

3.3 Polyadic Soft Constraints

Our key example comes from the soft constraints literature: our presentation
generalises [5], whose underlying algebraic structure is of absorptive and idem-
potent semirings.

Definition 8 (Soft constraints). Let V be a set of variables, D a finite
domain of interpretation and S = 〈A,≤,⊗, �÷ ,1〉 a residuated SLM. A (soft)
constraint c : (V → D) → A is a function associating a value in A with each
assignment η : V → D of the variables.

The set of constraints forms a residuated SLM C, with the structure lifted
from S. Denoting the application of a constraint function c : (V → D) → A to a
variable assignment η : V → D as cη, we have that c1 ≤ c2 if c1η ≤ c2η for all
η : V → D.

Lemma 6 (Cylindric and polyadic operators for (soft) constraints).
The residuated SLM of constraints C admits cylindric and polyadic operators,
defined as

– (∃xc)η =
∨{cρ | η |V \{x}= ρ |V \{x}} for all x ∈ V ,

– (sσc)η = c(η ◦ σ) for all σ ∈ F (V).

Remark 4. Note that sv(c) coincides with the classical notion of support for soft
constraints. Indeed, if x �∈ sv(c), then two assignments η1, η2 : V → D differing
only for the image of x coincide (i.e., cη1 = cη2). The cylindric operator is called
projection in the soft framework, and ∃xc is denoted c ⇓V \{x}.

Example 3. For the sake of simplicity, and to better illustrate the differences
of our proposal with respect to [1], our running example will be the SLM of
soft constraints where D is a finite initial segment of the naturals and S is the
residuated SLM 〈{⊥,	}, {⊥ ≤ 	},∧,	〉 of booleans. That SLM coincide with
the SLM P(F), for F the family of functions V → D: it is localised and invertible,

166 L. Bussi et al.

and the top and the identity element coincides with F , i.e., the constraint c such
that cη = 	 for all η. We will then usually express a constraint in P(F) as a SAT
formula with inequations like x ≤ 1, intended as (x ≤ 1)η = 	 if η(x) ≤ 1 and ⊥
otherwise. The support of x ≤ 1 is of course {x}. As expected, ∃x behaves as an
existential quantifier, so that ∃x(x ≤ 1) = 	 and ∃x((x ≤ 1) ∧ (y ≤ 3)) = y ≤ 3.
Similarly, for a substitution σ we have that sσ(x ≤ 1) = σ(x) ≤ 1.

4 Polyadic Soft CCP: Syntax and Reduction Semantics

This section introduces our language. We fix a set of variables V , ranged over
by x, y, . . ., and a residuated POM S = 〈C ,≤,⊗, �÷ ,1〉, which is cylindric and
polyadic over V and whose elements are ranged over by c, d, . . .

Definition 9 (Agents). The set A of agents, parametric with respect to a set
P of (unary) procedure declarations p(x) = A, is given by the following grammar

A ::= stop | tell(c) | ask(c) �→ A | A ‖ A | p(x) | ∃xA

Hence, the syntax includes a termination agent stop, and the two typical
operations of CCP languages [25]: tell(c) adds the constraint c to a common
store through which all agents interact, and ask(c) �→ A continues as agent A
only when c is entailed by such a store (otherwise its execution is suspended).
The other operators respectively express the parallel composition between two
agents (i.e., A ‖ A), the hiding of a variable x in the computation of A (∃xA),
and, finally, the calling of a procedure p ∈ P (whose body is an agent A) with
an actual parameter identified by variable x.

In the following we consider a set E of extended agents that uses the existen-
tial operator ∃π

xA, where π ∈ C ∗ is meant to represent the sequence of updates
performed on the local store. More precisely, the extended agent may carry some
information about the hidden variable x in an incremental way. We will often
write ∃xA for ∃[]

x A and πi for the i-th element of π = [π0, . . . , πn].
We denote by fv(A) the set of free variables of an (extended) agent, defined

in the expected way by structural induction, assuming that fv(tell(c)) = sv(c),
fv(ask(c) �→ A) = sv(c) ∪ fv(A), and fv(∃π

xA) = (fv(A) ∪ ⋃
i sv(πi)) \ {x}. In

the following, we restrict our attention to procedure declarations p(x) = A such
that fv(A) = {x}.

Definition 10 (Substitutions). Let [y/x] : V → V be the substitution defined
as

[y/x](w) =

{
y if w = x

w otherwise
.

It induces an operator [y/x] : E → E on extended agents as expected, in particular

(∃π
wA)[y/x] =

{
∃(s[y/x]π)

w A[y/x] if w �∈ {x, y}
(∃(s[z/w]π)

z A[z/w])[y/x] for z �∈ fv(∃π
wA) otherwise

Soft Concurrent Constraint Programming with Local Variables 167

where s[y/x] : C → C is the function associated with [y/x] and s[y/x][π1, . . . , πn]
is a shorthand for [s[y/x]π1, . . . , s[y/x]πn].

Note that the choice of z in the rule above is immaterial, since for the polyadic
operator it holds ∃xc = ∃ys[y/x](c) if y �∈ sv(c). In the following we consider
terms to be equivalent up-to α-conversion, meaning that terms differing only
for hidden variables are considered equivalent, i.e., ∃π

wA = ∃(s[z/w]π)
z A[z/w] for

z �∈ fv(∃π
wA).

Lemma 7. Let A ∈ E and x �∈ fv(A). Then A[y/x] = A.

Table 1. Axioms of the reduction semantics for SCCP.

A1 〈tell(c), σ〉 → 〈stop, σ ⊗ c〉 Tell

A2 σ ≤ c

〈ask(c) �→ A, σ〉 → 〈A, σ〉 Ask

A3 p(x) = A ∈ P
〈p(y), σ〉 → 〈A[y/x], σ〉 Rec

Example 4. Consider the SLM P(F) illustrated in Example 3. We can specify
agents such as ask(y ≤ 5) �→ stop, i.e., an agent asking the store about the
possible values of y, then terminating. Or ∃x(tell(x ≤ 1) ‖ tell(y ≤ 3)) with
x �= y, meaning that the constraint x ≤ 1 is local: indeed, thanks to α-conversion
it coincides with ∃z(tell(z ≤ 1) ‖ tell(y ≤ 3)) for any z �= y. As we are going to
see, the execution of tell(z ≤ 1) will take the latter agent to ∃[z≤1]

z tell(y ≤ 3),
which in turn coincides with ∃[x≤1]

x tell(y ≤ 3).

4.1 Reduction Semantics

We now move to the reduction semantics of our calculus. Given a sequence
π = [π1, . . . , πn], we will use π⊗ and ∃xπ as shorthands for π1 ⊗ . . . ⊗ πn and
[∃xπ1, . . . ,∃xπn], respectively, sometimes combining them as in (∃xπ)⊗, with
[]⊗ = 1.

Definition 11 (Reductions). Let Γ = E ×C be the set of configurations. The
direct reduction semantics for SCCP is the pair 〈Γ,→〉 such that → ⊆ Γ × Γ
is the binary relations obtained by the axioms in Table 1.

The reduction semantics for SCCP is the pair 〈Γ,→〉 such that → ⊆ Γ × Γ
is the binary relation obtained by the rules in Table 1 and Table 2.

168 L. Bussi et al.

Table 2. Contextual rules of the reduction semantics for SCCP.

R1
〈A, σ〉 → 〈A′, σ′〉

〈A ‖ B, σ〉 → 〈A′ ‖ B, σ′〉 Par1

R2
〈A, π0 ⊗ σ〉 → 〈B, σ1〉 with π0 = π⊗ �÷ (∃xπ)⊗

〈∃π
xA, σ〉 → 〈∃πρ

x B, σ ⊗ ∃xρ〉 with ρ = σ1 �÷ (π0 ⊗ σ)
for x 	∈ sv(σ) Hide

The split distinguishes between the axioms and the rules guaranteeing the
closure with respect to the parallel and existential operators. Indeed, rule R1
models the interleaving of two agents in parallel, assuming for the sake of simplic-
ity that the parallel operator is associative and commutative, as well as satisfying
stop ‖ A = A. In A1 a constraint c is added to the store σ. A2 checks if c is
entailed by σ: if not, the computation is blocked. Axiom A3 replaces a proce-
dure identifier with the associated body, renaming the formal parameter with
the actual one.

Let us instead discuss in some details the rule R2. The intuition is that
if we reach an agent 〈∃π

xA, σ〉, then during the computation a sequence π of
updates has been performed by the local agent, and (∃xπ)⊗ has been added to
the global store. The chosen store for the configuration in the premise is π0 ⊗ σ
for π0 = π⊗ �÷ (∃xπ)⊗: the effect (∃xπ)⊗ of the sequence of updates is removed
from the local store π⊗, which may carry information about x, since that effect
had been previously added to the global store. Now, ρ = σ1 �÷ (π0⊗σ) is precisely
the information added by the step originating from A, which is then restricted
and added to σ. On the local store we simply add that effect ρ to the sequence
of updates, with πρ = [π0, . . . , πn, ρ].

Lemma 8 (On monotonicity). Let 〈A, σ〉 → 〈B, ρ〉 be a reduction. Then
ρ = (ρ�÷ σ) ⊗ σ and fv(〈B, ρ〉) ⊆ fv(〈A, σ〉).
Example 5. Consider the agents A1 = ask(y ≤ 5) �→ stop and A2 = ∃x(tell(x ≤
1) ‖ tell(y ≤ 3)) with x �= y discussed in Example 4, and the configuration
〈A1 ‖ A2,	〉. Starting from the configuration 〈A2,	〉 we have the reductions

〈A2,	〉 → 〈∃[y≤3]
x tell(x ≤ 1), y ≤ 3〉 → 〈∃[y≤3,y>3∨x≤1]

x stop, y ≤ 3〉

In both cases, first we apply A1, then R1 and finally R2. Looking at the
application of R2 to the first reduction, we have that π⊗ = 	 = (∃xπ)⊗,
thus π0 = 	, ρ = (y ≤ 3)�÷ 	 = y ≤ 3 = ∃x(y ≤ 3). Now, consider the
second reduction. In that case we have π0 = (y ≤ 3)�÷ (y ≤ 3) = 	 and
ρ = ((y ≤ 3) ∧ (x ≤ 1))�÷ (y ≤ 3) = y > 3 ∨ x ≤ 1 and ∃xρ = 	. Note
that in both the second and third state, agent A1 could be executed.

Remark 5. With respect to the crisp language with local variables introduced
in [1], which can be recast in our framework as absorptive POMs where the
monoidal operator is idempotent, our proposal differs mostly for the structure

Soft Concurrent Constraint Programming with Local Variables 169

of rule R2, which could be presented as shown below

〈A, π0 ⊗ σ〉 → 〈B, ξ ⊗ π0 ⊗ σ〉 with π0 = π⊗ �÷ (∃xπ)⊗
〈∃π

xA, σ〉 → 〈∃πξ
x B, σ ⊗ ∃xξ〉 for x �∈ sv(σ)

The proposals coincide for cancellative monoids, since inverses are unique. How-
ever, this is not so if the monoidal operator is idempotent, thus the crisp rule
represents in fact a schema, giving rise to a possibly infinite family of reductions
departing from an agent. Our choice of the witness ∃xσ1 �÷ (π0 ⊗ σ) avoids such
non-determinism.

Let γ = 〈A, σ〉 be a configuration. We denote by fv(γ) the set fv(A)∪ sv(σ)
and by γ[z/w] the component-wise application of the substitution [z/w].

Definition 12. A configuration 〈A, σ〉 is initial if A ∈ A and σ = 1; it is reach-
able if it can be reached by an initial configuration via a sequence of reductions.

Lemma 9 (On monotonicity, II). Let 〈A ‖ ∃π
xB, σ〉 be a reachable configu-

ration. Then σ = (σ �÷ (∃xπ)⊗) ⊗ (∃xπ)⊗.

Remark 6. An alternative solution for the structure of rule R2 would have been

〈A, π⊗ ⊗ σ0〉 → 〈B, σ1〉 with σ0 = σ �÷ (∃xπ)⊗
〈∃π

xA, σ〉 → 〈∃πρ
x B, σ ⊗ ∃xρ〉 with ρ = σ1 �÷ (π⊗ ⊗ σ0)

for x �∈ sv(σ)

Indeed, in the light of Lemma 9, the proposals coincide for invertible semirings,
since π0 ⊗ σ = (π⊗ �÷ (∃xπ)⊗) ⊗ (∃xπ)⊗ ⊗ (σ �÷ (∃xπ)⊗) ≤ π⊗ ⊗ (σ �÷ (∃xπ)⊗),
and the equality holds for invertible semirings since π⊗ ≤ (∃xπ)⊗.

4.2 Saturated Bisimulation

As proposed in [1] for crisp languages, we define a barbed equivalence between
two agents [21]. Intuitively, barbs are basic observations (predicates) on the
states of a system, and in our case they correspond to the constraints in C .

Definition 13 (Barbs). Let 〈A, σ〉 be a configuration and c ∈ C . We say that
〈A, σ〉 verifies c, or that 〈A, σ〉 ↓c holds, if σ ≤ c.

Satisfying a barb c means that the agent ask(c) �→ A can be executed in the
store σ, i.e., the reduction 〈ask(c) �→ A, σ〉 → 〈A, σ〉 is allowed. We now move
to equivalences: along [1], we propose the use of saturated bisimilarity to obtain
a congruence.

Definition 14 (Saturated bisimilarity). A saturated bisimulation is a sym-
metric relation R on configurations such that whenever (〈A, σ〉, 〈B, ρ〉) ∈ R

1. if 〈A, σ〉 ↓c then 〈B, ρ〉 ↓c;
2. if 〈A, σ〉 → γ1 then there is γ2 such that 〈B, ρ〉 → γ2 and (γ1, γ2) ∈ R;
3. (〈A, σ ⊗ d〉, 〈B, ρ ⊗ d〉) ∈ R for all d.

170 L. Bussi et al.

We say that γ1 and γ2 are saturated bisimilar (γ1 ∼s γ2) if there exists a satu-
rated bisimulation R such that (γ1, γ2) ∈ R. We write A ∼s B if 〈A,1〉 ∼s 〈B,1〉.

Note that 〈A, σ〉 ∼s 〈B, ρ〉 implies that σ = ρ. Moreover, it is also a congru-
ence. Indeed, a context C[·], i.e., an agent with a placeholder ·, can modify the
behaviour of a configuration only by adding constraints to its store.

Proposition 1. Let A ∼s B and C[·] a context. Then C[A] ∼s C[B].

5 Labelled Reduction Semantics

The definition of ∼s is unsatisfactory because of the store closure, i.e., the quan-
tification in condition 3 of Definition 14. This section presents a labelled version
of the reduction semantics that allows for partially avoiding such drawback.

Definition 15 (Labelled reductions). Let Γ = A × C be the set of config-
urations. The labelled direct reduction semantics for SCCP is the pair 〈Γ,−→〉
such that → ⊆ Γ × C × Γ is the ternary relation obtained by the axioms in
Table 3.

The labelled reduction semantics for SCCP is the pair 〈Γ,→〉 such that →
⊆ Γ ×C ×Γ is the ternary relation obtained by the rules in Table 3 and Table 4.

Table 3. Axioms of the labelled semantics for SCCP.

LA1 〈tell(c), σ〉 1−→ 〈stop, σ ⊗ c〉 Tell

LA2 α ≤ c�÷ σ

〈ask(c) �→ A, σ〉 α−→ 〈A,α ⊗ σ〉 Ask

LA3 p(x) = A ∈ P
〈p(y), σ〉 1−→ 〈A[y/x], σ〉

Rec

Table 4. Contextual rules of the labelled semantics for SCCP.

LR1
〈A, σ〉 α−→ 〈A

′
, σ

′〉
〈A ‖ B, σ〉 α−→ 〈A′ ‖ B, σ′〉

Par

LR2
〈A, π0 ⊗ σ〉 α−→ 〈B, σ1〉 with π0 = π⊗ �÷ (∃xπ)⊗

〈∃π
xA, σ〉 α−→ 〈∃πρ

x B, α ⊗ σ ⊗ ∃xρ〉 with ρ = σ1 �÷ (α ⊗ π0 ⊗ σ)
for x
∈ sv(σ) ∪ sv(α) Hide

In Table 3 and Table 4 we refine the notion of transition (respectively given in
Table 1 and Table 2) by adding a label that carries additional information about

Soft Concurrent Constraint Programming with Local Variables 171

the constraints that cause the reduction. Indeed, rules in Table 3 and Table 4
mimic those in Table 1 and Table 2, except for a constraint α that represents the
additional information that must be combined with σ in order to fire an action
from 〈A, σ〉 to 〈A′, σ′〉.

For the rules in Table 3, as well as for rule LR1, we can restate the intuition
given for their unlabelled counterparts. The difference concerns the axioms for
ask(c): if c is not entailed from σ, then some additional information is imported
from the environment, ensuring that the state α ⊗ σ ≤ c allows the execution of
ask(c).

Once again, the more complex axiom is LR2. With respect to R2, the addi-
tional intuition is that α should not contain the restricted variable x: addi-
tional information can be obtained from the environment, as long as it does not
interact with data that are private to the local agent. Note that by choosing
ρ = σ1 �÷ (α ⊗ π0 ⊗ σ), we are removing α from the update to be memorised
in the local store. However, since α is added to the global store, it will not be
necessary to receive it again in the future.

Example 6. Consider the agent A = ∃x(tell(x ≤ 1) ‖ ask(y ≤ 5) �→ stop), with
the same SLM as in Example 5. We now have the labelled reductions

〈A,	〉 1−→ 〈∃[x≤1]
x ask(y ≤ 5) �→ stop,	〉 α−→ 〈∃[x≤1,x>1∨α]

x stop,	〉

for every α ≤ (y ≤ 5)�÷ (x ≤ 1) = (x > 1) ∨ (y ≤ 5) such that x �∈ sv(α), e.g.,
y ≤ 5. Indeed, for the first reduction we first apply LA1, then LR1, and finally
LR2, while for the second reduction we first apply LA2 and then LR2. Looking
at the application of LR2 to the first reduction, we have that π⊗ = 	 = (∃xπ)⊗,
thus π0 = 	, ρ = (x ≤ 1)�÷ 	 = x ≤ 1 and ∃xρ = 	. Now, consider the second
reduction. In that case we have π0 = (x ≤ 1)�÷ 	 = x ≤ 1, ρ = (α ∧ (x ≤
1))�÷ (x ≤ 1) = x > 1 ∨ α and ∃xρ = 	.

Remark 7. Concerning rule LA2, an alternative solution would have been to
restrict the possible reductions to the one with the maximal label, that is,
〈ask(c) �→ A, σ〉 c �÷ σ−−−→ 〈A, (c�÷ σ) ⊗ σ〉. However, as hinted at in Exam-
ple 6, this might have been restrictive in combination with rule LR2. Selecting
α = (x > 1) ∨ (y ≤ 5) is problematic, since x occurs free. Instead, the choice
of α = y ≤ 5, or any other value such as y ≤ 4, y ≤ 3, . . ., fits the intuition of
information from the environment triggering the reduction.

Note instead that the choice of removing the requirement x �∈ sv(α) and put
∃xα as label in the conclusion of rule LR2 would be too liberal. Once again,
it would be counterintuitive for the previous example, since ∃x((x > 1) ∨ (y ≤
5)) = 	. Or consider the configuration γ = 〈∃[x≤1]

x ask(x = 0) �→ stop,	〉: such a
configuration should intuitively be deadlocked. However, we have that 〈ask(x =
0) �→ stop, x ≤ 1〉 α−→ 〈stop, α ∧ x ≤ 1〉 for α ≤ (x = 0)�÷ (x ≤ 1) = (x >

1) ∨ (x = 0) = x �= 1, thus allowing the reduction γ
	−→ 〈∃[x≤1,α∨x≤1]

x stop,	〉,
which clashes with the intuition that receiving information should not enable
reductions involving (necessarily) the restricted variable.

172 L. Bussi et al.

Lemma 10 (On labelled monotonicity). Let 〈A, σ〉 α−→ 〈B, ρ〉 be a labelled
reduction. Then ρ = (ρ�÷ (α ⊗ σ)) ⊗ α ⊗ σ and fv(〈B, ρ〉) ⊆ fv(〈A, σ〉) ∪ sv(α).

Remark 8. We will later prove that if S is localised and α �= 1 then ρ�÷ (α⊗σ) =
1. In other terms, if 〈A, σ〉 α−→ 〈B, ρ〉 is a labelled reduction and α �= 1, then
ρ = α⊗σ. Indeed, since α �= 1 its derivation must use the axiom LA2. Consider
e.g. a labelled reduction 〈∃π

xA, σ〉 α−→ 〈∃πρ
x B,α ⊗ σ ⊗ ∃xρ〉. If α �= 1, then ρ = 1.

Indeed, this is the expected behaviour: if an input from the context is needed,
there is no contribution by the agent to the local store, hence the update is
correctly 1.

Definition 16. A configuration is l-reachable if it can be reached by an initial
configuration via a sequence of labelled reductions.

Lemma 11 (On labelled monotonicity, II). Let 〈B ‖ ∃π
xC, σ〉 be an l-

reachable configuration. Then σ = (σ �÷ (∃xπ)⊗) ⊗ (∃xπ)⊗.

6 Semantics Correspondence and Labelled Bisimilarity

We collect further formal results in two different subsections: Sect. 6.1 proves
the correspondence between the unlabelled and the labelled semantics, while
Sect. 6.2 proposes a bisimilarity reduction for the labelled semantics.

6.1 On the Correspondence Between Reduction Semantics

This section shows the connection between labelled and unlabelled reduction
semantics.

Proposition 2 (Soundness). If 〈A, σ〉 α−→ 〈B, σ′〉 then 〈A,α ⊗ σ〉 → 〈B, σ′〉.
The theorem above can be easily reversed, saying that if a configuration

〈A, σ〉 is reachable, then it is also l-reachable via a sequence of reductions labelled
with 1.

Lemma 12. If 〈A, σ〉 → 〈B, σ′〉 then 〈A, σ〉 1−→ 〈B, σ′〉.
These results also ensure that a configuration is reachable iff it is l-reachable.

However, we are interested in a more general notion of completeness, possibly
taking into account reductions needing a label. For this, we first need some
technical lemmas.

Now, note that the proof of every (labelled) reduction is given by the choice
of an axiom and a series of applications of the rules LR1 and LR2. Also, note
that if 〈A, σ〉 α−→ 〈B, σ′〉 is a reduction via the axiom LA1, then α = 1.

Proposition 3 (Completeness, I). Let 〈A, τ〉 1−→ 〈B, τ ′〉 be a reduction via
the axiom LA1 for τ �∈ {⊥,	}. If C is cancellative then 〈A, σ〉 1−→ 〈B, σ′〉 and
τ ′ �÷ τ = σ′ �÷σ for every σ �∈ {⊥,	}.

Soft Concurrent Constraint Programming with Local Variables 173

Proposition 4 (Completeness, II). Let 〈A, τ〉 β−→ 〈B, τ ′〉 be a reduction via
the axiom LA2 for τ �∈ {⊥,	}. If C is localised then τ ′ = β ⊗ τ and if α ≤
(β ⊗ τ)�÷ σ then 〈A, σ〉 α−→ 〈B,α ⊗ σ〉 for every σ �∈ {⊥,	}.

Clearly α = (β ⊗ τ)�÷ σ is a possible witness. Note however that it might be
that β ⊗ τ �≤ α ⊗ σ if σ = ⊥, in which case α = 	.

6.2 Labelled Bisimulation

We now exploit the labelled reductions in order to define a suitable notion of
bisimilarity without the upward closure condition. As it occurs with the crisp
language [1] and the soft variant with global variables [15], barbs cannot be
removed from the definition of bisimilarity because they cannot be inferred by
the reductions.

Definition 17 (Strong bisimilarity). A strong bisimulation is a symmetric
relation R on configurations such that whenever (〈A, σ〉, 〈B, ρ〉) ∈ R

1. if 〈A, σ〉 ↓c then 〈B, ρ〉 ↓c;
2. if 〈A, σ〉 α−→ γ1 then there is γ2 such that 〈B,α ⊗ ρ〉 → γ2 and (γ1, γ2) ∈ R;
3. (〈A, σ ⊗ d〉, 〈B, ρ ⊗ d〉) ∈ R for all d such that d �≤ 1.

We say that γ1 and γ2 are strongly bisimilar (γ1 ∼ γ2) if there exists a strong
bisimulation R such that (γ1, γ2) ∈ R. We write A ∼ B if 〈A,1〉 ∼ 〈B,1〉.

Note that 〈A, σ〉 ∼ 〈B, ρ〉 implies σ = ρ, as for saturated bisimilarity. We
improved on the feasibility of ∼ by requiring that the equivalence is upward
closed only whenever the store does not decrease. Note that in some cases, e.g.
when C is absorptive (as in [1]), the clause is vacuous. However, thanks to the
correspondence results in Sect. 6.1, it can be proved upward-closed for all d, and
thus it is also a congruence.

Proposition 5. Let 〈A, σ〉 ∼ 〈B, ρ〉 and d ∈ C . If C is cancellative then 〈A, σ⊗
d〉 ∼ 〈B, ρ ⊗ d〉.

As for the unlabelled case (Proposition 1), strong bisimilarity is a congruence.

Proposition 6. Let A ∼ B and C[·] a context. If C is cancellative then C[A] ∼
C[B].

Finally, we can state the correspondence between our bisimilarity semantics.

Theorem 1. ∼s⊆∼. Moreover, if C is cancellative, then the equality holds.

174 L. Bussi et al.

7 Related Works

As it is possible to appreciate from the survey in [22], the literature on CCP
languages is quite ample. In the following of this section we briefly summarise
proposals that consider both local and global stores, and information mobility.

The work that is most related to ours is represented by [1]. Anyhow, the
differences are significant: in that work the underlying constraint system is crisp,
as it can only deal with hard constraints (which indeed we can do as well).
Furthermore, the authors of [1] adopt a cylindric algebra instead of a polyadic
one, as introduced in Sect. 1. Finally, as already noted in Remark 5 in this paper,
the use of the local store is different with respect to our approach. Since the
monoidal operator is idempotent, in [1] the semantics of the hiding operator is
simply presented as 〈∃e

xA, σ〉 → 〈∃e′
x B, σ ⊗ ∃xe′〉 if 〈A, e ⊗ ∃xσ〉 → 〈B, e′ ⊗ ∃xσ〉.

Since we have introduced polyadic operators, with their simpler representation
of substitutions, and thus we consider agents up-to α-conversion, we can replace
∃xσ with σ by requiring that x �∈ sv(σ). Most importantly, in [1] the local store
e is used to fire a step that only changes the local store to e′, and this change is
visible in the global store except for the effect on variable x. However, this rule
is intrinsically non-deterministic, since many such e′ can exist. Moreover, since
we are not idempotent we cannot add the whole e′ to both the local and the
global stores, but only the “difference” between e′ and e at each step.

In [20] the authors describe a spatial constraint system with operators to
specify information and processes moving from a space to another. Such a lan-
guage provides for the specification of spatial mobility and epistemic concepts
such as belief, utterance and lies: besides local stores for agents (representing
belief), it can express the epistemic notion of knowledge by means of a derived
spatial operator that specifies global shared information. Differently from this
work, our approach focuses on preferences, on the concurrent language on top
of the system, and on process equivalences.

The process calculi in [2,12] provide to agents the use of assertions within
π-like processes. A soft language is adopted in [12]: from a variant of π-calculus
it inherits explicit fusions, i.e. simple constraints expressing name equalities,
in order to pass constraints from an agent to another. However, the algebraic
structure is neither residuated nor polyadic; in addition, no process-equivalence
relation is proposed. In [13,23] processes can send constraints using communi-
cation channels much like in the π-calculus.

A further language that uses π-calculus features to exchange constraints
between agents, but this time with a probabilistic semantics, is shown in [10].
A congruence relation and a labelled transition system are also shown in the
paper.

In [18] the authors propose an extension of the CCP language with the pur-
pose to model process migration within a hierarchical network. Agents bring
their local store when they migrate. In [11] the authors enrich a CCP language
with the possibility to share (read/write) the information in the global store,
and communicate with other agents (via multi-party or handshake).

Soft Concurrent Constraint Programming with Local Variables 175

All the systems described in this section are based on hard constraints, and
they do not consider preferences associated with constraints (except [12], whose
algebraic structure is however less general). In addition, a very few proposals
formalise process equivalences by providing a deeper investigation of the seman-
tics.

8 Conclusions and Further Works

With the language we presented in this paper, our goal was to further extend and
generalise the family of CCP-based languages. In fact, i) with respect to crisp
languages we can represent preferences, and thus both hard and soft constraints.
Then, ii) polyadic operators make it possible to have a compact representation
of soft constraints (about this, we point the interested reader to [8]), which in
turn can be used in several applications, as in hybrid systems, loop invariant
generation, and parameter design of control [9]. Furthermore, iii) the polyadic
algebra we adopted takes advantage of a residuated POM which allows any par-
tially ordered set of preference values, while �÷ permits to easily compute barbs
and remove one constraint (store) from another. The use of a non idempotent
operator ⊗ for combining constraints led us to redesign the local stores proposed
in [1], to add to the global store the information added at each computation step
only.

An important issue we are currently working on is to remove the requirement
of cancellativeness on the first completeness result between the reduction seman-
tics, hence in the correspondence between the barbed and strong bisimilarities,
as well as to remove the closure of the store with d �≤ 1 in the definition of strong
bisimilarity. Instead, our proposal could be easily extended in order to describe
the weak variant of our bisimulation equivalences, which is the main reason why
we introduced barbs directly in this paper. Indeed, in such semantics equivalent
configurations may have different stores, and barbs were introduced to address
this kind of issues [21].

In the case of “soft languages”, the removal of constraints can also be partial,
while in case of “crisp languages”, constraint tokens can only be entirely removed
or left in the store. A retract operation could also be directly included in the
language syntax, in the style of [7,12], even if it is not in the scope of this paper.

For the future, we conceive more applicative extensions of the language we
designed: while in this paper we focused on its formal definition, semantics,
and process equivalence, we can think of application fields concerning epistemic
concepts or process migration from node to node, as some of the proposals in
Sect. 7 offer.

Separately from the process algebra focus we developed in this paper, we
can also think of defining the class of Polynomial Soft Constraint Satisfaction
Problems (PSCSPs), as accomplished in [26] with crisp constraints, in order to
achieve a similar generalisation with respect to CSPs. Hence, we can implement
polynomial constraint satisfaction as a SMT module, where agents can tell con-
straints and ask for their satisfaction.

176 L. Bussi et al.

References

1. Aristizábal, A., Bonchi, F., Palamidessi, C., Pino, L., Valencia, F.: Deriving labels
and bisimilarity for concurrent constraint programming. In: Hofmann, M. (ed.)
FoSSaCS 2011. LNCS, vol. 6604, pp. 138–152. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19805-2 10

2. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: mobile processes,
nominal data, and logic. In: LICS 2009, pp. 39–48. IEEE Computer Society (2009)

3. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

4. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based
formalisms. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI
2006. FAIA, vol. 141, pp. 63–67. IOS Press (2006)

5. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming.
ACM Trans. Comput. Log. 7(3), 563–589 (2006)

6. Bistarelli, S., Pini, M.S., Rossi, F., Venable, K.B.: From soft constraints to bipo-
lar preferences: modelling framework and solving issues. Exp. Theor. Artif. Intell.
22(2), 135–158 (2010)

7. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language to
model the negotiation process. Fund. Inform. 111(3), 257–279 (2011)

8. Bonchi, F., Bussi, L., Gadducci, F., Santini, F.: Polyadic soft constraints. In: Alvim,
M.S., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to Security and
Privacy. LNCS, vol. 11760, pp. 241–257. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-31175-9 14

9. Borralleras, C., Lucas, S., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: SAT
modulo linear arithmetic for solving polynomial constraints. J. Automed Reasoning
48(1), 107–131 (2012)

10. Bortolussi, L., Wiklicky, H.: A distributed and probabilistic concurrent constraint
programming language. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 143–158. Springer, Heidelberg (2005). https://doi.org/10.1007/
11562931 13

11. Brim, L., Kret́ınský, M., Jacquet, J., Gilbert, D.R.: Modelling multi-agent systems
as synchronous concurrent constraint processes. Comput. Artif. Intell. 21(6) (2002)

12. Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint
pi-calculus. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 254–268.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78739-6 20

13. Dı́az, J.F., Rueda, C., Valencia, F.D.: Pi+- calculus: a calculus for concurrent
processes with constraints. CLEI Electron. J. 1(2) (1998)

14. Gadducci, F., Santini, F.: Residuation for bipolar preferences in soft constraints.
Inf. Process. Lett. 118, 69–74 (2017)

15. Gadducci, F., Santini, F., Pino, L.F., Valencia, F.D.: Observational and
behavioural equivalences for soft concurrent constraint programming. J. Log. Alge-
braic Methods Program. 92, 45–63 (2017)

16. Galler, B.A.: Cylindric and polyadic algebras. Proc. Am. Math. Soc. 8(1), 176–183
(1957)

17. Giacobazzi, R., Debray, S.K., Levi, G.: A generalized semantics for constraint logic
programs. In: FGCS 1992, pp. 581–591. IOS Press (1992)

18. Gilbert, D., Palamidessi, C.: Concurrent constraint programming with process
mobility. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 463–477.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44957-4 31

https://doi.org/10.1007/978-3-642-19805-2_10
https://doi.org/10.1007/978-3-642-19805-2_10
https://doi.org/10.1007/978-3-030-31175-9_14
https://doi.org/10.1007/978-3-030-31175-9_14
https://doi.org/10.1007/11562931_13
https://doi.org/10.1007/11562931_13
https://doi.org/10.1007/978-3-540-78739-6_20
https://doi.org/10.1007/3-540-44957-4_31

Soft Concurrent Constraint Programming with Local Variables 177

19. Golan, J.: Semirings and Affine Equations over Them. Kluwer (2003)
20. Guzmán, M., Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: Belief, knowledge,

lies and other utterances in an algebra for space and extrusion. J. Log. Algebraic
Methods Program. 86(1), 107–133 (2017)

21. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55719-9 114

22. Olarte, C., Rueda, C., Valencia, F.D.: Models and emerging trends of concurrent
constraint programming. Constraints 18(4), 535–578 (2013)

23. Réty, J.: Distributed concurrent constraint programming. Fund. Inform. 34(3),
323–346 (1998)

24. Sági, G.: Polyadic algebras. In: Andréka, H., Ferenczi, M., Németi, I. (eds.)
Cylindric-like Algebras and Algebraic Logic. BSMS, vol. 22, pp. 367–389. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35025-2 18

25. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: Wise, D.S. (ed.) POPL 1991, pp. 333–352. ACM Press
(1991)

26. Scott, A.D., Sorkin, G.B.: Polynomial constraint satisfaction problems, graph bisec-
tion, and the Ising partition function. ACM Trans. Algorithms 5(4), 45:1–45:27
(2009)

https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/978-3-642-35025-2_18

	Soft Concurrent Constraint Programming with Local Variables
	1 Introduction
	2 An Introduction to Residuated Monoids
	2.1 Preliminaries on Ordered Monoids
	2.2 Remarks on Residuation

	3 A Polyadic Approach to Constraint Manipulation
	3.1 Cylindric and Polyadic Operators for Ordered Monoids
	3.2 Cylindric and Polyadic Operators for Residuated Monoids
	3.3 Polyadic Soft Constraints

	4 Polyadic Soft CCP: Syntax and Reduction Semantics
	4.1 Reduction Semantics
	4.2 Saturated Bisimulation

	5 Labelled Reduction Semantics
	6 Semantics Correspondence and Labelled Bisimilarity
	6.1 On the Correspondence Between Reduction Semantics
	6.2 Labelled Bisimulation

	7 Related Works
	8 Conclusions and Further Works
	References

