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Abstract. We tackle the problem of establishing the soundness of
approximate bisimilarity with respect to PCTL and its relaxed seman-
tics. To this purpose, we consider a notion of bisimilarity similar to the
one introduced by Desharnais, Laviolette, and Tracol, which is paramet-
ric with respect to an approximation error δ, and to the depth n of the
observation along traces. Essentially, our soundness theorem establishes
that, when a state q satisfies a given formula up-to error δ and steps n,
and q is bisimilar to q′ up-to error δ′ and enough steps, we prove that
q′ also satisfies the formula up-to a suitable error δ′′ and steps n. The
new error δ′′ is computed from δ, δ′ and the formula, and only depends
linearly on n. We provide a detailed overview of our soundness proof.

Keywords: PCTL · Probabilistic processes · Approximate
bisimulation

1 Introduction

The behaviour of many real-world systems can be formally modelled as proba-
bilistic processes, e.g. as discrete-time Markov chains. Specifying and verifying
properties on these systems requires probabilistic versions of temporal logics,
such as PCTL [25]. PCTL allows to express probability bounds using the for-
mula Pr≥π[ψ], which is satisfied by those states starting from which the path
formula ψ holds with probability ≥ π. A well-known issue is that real-world
systems can have tiny deviations from their mathematical models, while logi-
cal properties, such as those written in PCTL, impose sharp constraints on the
behaviour. To address this issue, one can use a relaxed semantics for PCTL, as
in [21]. There, the semantics of formulae is parameterised over the error δ ≥ 0
one is willing to tolerate. While in the standard semantics of Pr≥π[ψ] the bound
≥ π is exact, in relaxed PCTL this bound is weakened to ≥ π − δ. So, the
relaxed semantics generalises the standard PCTL semantics of [25], which can
be obtained by choosing δ = 0. Instead, choosing an error δ > 0 effectively
provides a way to measure “how much” a state satisfies a given formula: some
states might require only a very small error, while others a much larger one.
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When dealing with temporal logics such as PCTL, one often wants to study
some notion of state equivalence which preserves the semantics of formulae: that
is, when two states are equivalent, they satisfy the same formulae. For instance,
probabilistic bisimilarities like those in [16,19,29] preserve the semantics of for-
mulae for PCTL and other temporal logics. Although strict probabilistic bisim-
ilarity preserves the semantics of relaxed PCTL, it is not robust against small
deviations in the probability of transitions in Markov chains [24]. A possible app-
roach to deal with this issue is to also relax the notion of probabilistic bisimilarity,
by making it parametric with respect to an error δ [21]. Relaxing bisimilarity
in this way poses a choice regarding which properties of the strict probabilistic
bisimilarity are to be kept. In particular, transitivity is enjoyed by the strict
probabilistic bisimilarity, but it is not desirable for the relaxed notion. Indeed,
we could have three states q, q′ and q′′ where the behaviour of q and q′ is similar
enough (within the error δ), the behaviour of q′ and q′′ is also similar enough
(within δ), but the distance between q and q′′ is larger than the allowed error δ.
At best, we can have a sort of “triangular inequality”, where q and q′′ can still
be related but only with a larger error 2 · δ.

head

1/2

tail

1/2

1/2

1/2

Fig. 1. A Markov chain modelling repeated tosses of a fair coin.

Bisimilarity is usually defined by coinduction, essentially requiring that
the relation is preserved along an arbitrarily long sequence of moves. Still, in
some settings, observing the behaviour over a very long run is undesirable. For
instance, consider the PCTL formula φ = Pr≥0.5[true U≤n a], which is satisfied
by those states from which, with probability ≥ 0.5, a is satisfied within n steps.
In this case, a behavioural equivalence relation that preserves the semantics of φ
can neglect the long-run behaviour after n steps. More generally, if all the until
operators are bounded, as in φ1U

≤kφ2, then each formula has an upper bound of
steps n after which a behavioural equivalence relation can ignore what happens
next. Observing the behaviour after this upper bound is unnecessarily strict,
and indeed in some settings it is customary to neglect what happens in the very
long run. For instance, a real-world player repeatedly tossing a coin is usually
considered equivalent to a Markov chain with two states and four transitions
with probability 1/2 (see Fig. 1), even if in the long run the real-world system
will diverge from the ideal one (e.g., when the player dies).

Another setting where observing the long-term behaviour is notoriously unde-
sirable is that of cryptography. When studying the security of systems modelling
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cryptographic protocols, two states are commonly considered equivalent when
their behaviour is similar (up to a small error δ) in the short run, even when in
the long run they diverge. For instance, a state q could represent an ideal system
where no attacks can be performed by construction, while another state q′ could
represent a real system where an adversary can try to disrupt the cryptographic
protocol. In such a scenario, if the protocol is secure, we would like to have q and
q′ equivalent, since the behaviour of the real system is close to the one of the
ideal system. Note that in the real system an adversary can repeatedly try to
guess the secret cryptographic keys, and break security in the very long run, with
very high probability. Accordingly, standard security definitions require that the
behaviour of the ideal and real system are within a small error, but only for a
bounded number of steps, after which their behaviour could diverge.

Contributions. To overcome the above mentioned issues, in this work we intro-
duce a bounded, approximate notion of bisimilarity ∼n

δ , that only observes the
first n steps, and allows for an error δ. Unlike standard bisimilarity, our relation
is naturally defined by induction on n. We call this looser variant of bisimilar-
ity an up-to-n, δ bisimilarity. We showcase up-to-n, δ bisimilarity on a running
example (Examples 1, 2 and 4), comparing an ideal combination padlock against
a real one which can be opened by an adversary guessing its combination. We
show that the two systems are bisimilar up-to-n, δ, while they are not bisim-
ilar according to the standard coinductive notion. We then discuss how the
two systems satisfy a basic security property expressed in PCTL, with suitable
errors. To make our theory amenable to reason about infinite-state systems, such
as those usually found when modelling cryptographic protocols, all our results
apply to Markov chains with countably many states. In this respect, our work
departs from most literature on probabilistic bisimulations [21,33] and bisimilar-
ity distances [7,9,13,22,34–36], which usually assume finite-state Markov chains.
In Example 3 we exploit infinite-state Markov chains to compare a biased ran-
dom bit generator with an ideal one.

Our main contribution is a soundness theorem establishing that, when a state
q satisfies a PCTL formula φ (up to a given error), any bisimilar state q′ ∼ q
must also satisfy φ, at the cost of a slight increase of the error. More precisely,
if φ only involves until operators bounded by ≤ n, state q satisfies φ up to some
error, and bisimilarity holds for enough steps and error δ, then q′ satisfies φ with
an additional asymptotic error O(n · δ).

This asymptotic behaviour is compatible with the usual assumptions of com-
putational security in cryptography. There, models of security protocols include
a security parameter η, which affects the length of the cryptographic keys and
the running time of the protocol: more precisely, a protocol is assumed to run
for n(η) steps, which is polynomially bounded w.r.t. η. As already mentioned
above, cryptographic notions of security do not observe the behaviour of the
systems after this bound n(η), since in the long run an adversary can surely
guess the secret keys by brute force. Coherently, a protocol is considered to be
secure if (roughly) its actual behaviour is approximately equivalent to the ideal
one for n(η) steps and up to an error δ(η), which has to be a negligible function,
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asymptotically approaching zero faster than any rational function. Under these
bounds on n and δ, the asymptotic error O(n · δ) in our soundness theorem is
negligible in η. Consequently, if two states q and q′ represent the ideal and actual
behaviour, respectively, and they are bisimilar up to a negligible error, they will
satisfy the same PCTL formulae with a negligible error.

We provide a detailed overview of the proof of our soundness theorem,
explaining the techniques that we used. Due to space limitations, we present
the full proofs of our results in [5].

Related Work. There is a well-established line of research on establishing sound-
ness and completeness of probabilistic bisimulations against various kinds of
probabilistic logics [19,23,26,29,31,32].

The work closest to ours is that of D’Innocenzo, Abate and Katoen [21], which
addresses the model checking problem on relaxed PCTL. Their relaxed PCTL
differs from ours in a few aspects. First, their syntax allows for an individual
bound for each until operator U≤k, while we assume all such bounds are equal.
This difference does not seem to affect our results, which could be extended to
cover the general case. Second, their main result shows that bisimilar states up-
to a given error ε satisfy the same formulae ψ, provided that ψ ranges over the
so-called ε-robust formulae. Instead, our soundness result applies to all PCTL
formulae, and ensures that when moving from a state satisfying φ to a bisimilar
one, φ is still satisfied, but at the cost of slightly increasing the error. Third,
their relaxed semantics differs from ours. In ours, we relax all the probability
bounds by the same amount δ. Instead, the relaxation in [21] affects the bounds
by a different amount which depends on the error ε, the until bound k, and the
underlying DTMC.

Desharnais, Laviolette and Tracol [20] use a coinductive approximate proba-
bilistic bisimilarity, up-to an error δ. Using such coinductive bisimilarity, [20]
establishes the soundness and completeness with respect to a Larsen-Skou
logic [29] (instead of PCTL). In [20], a bounded, up-to n, δ version of bisimi-
larity is only briefly used to derive a decision algorithm for coinductive bisimi-
larity under the assumption that the state space is finite. In our work, instead,
the bounded up-to n, δ bisimilarity is the main focus of study. In particular,
our soundness result only assumes n, δ bisimilarity, which is strictly weaker than
coinductive bisimilarity. Another minor difference is that [20] considers a labelled
Markov process, i.e. the probabilistic variant of a labelled transition system,
while we instead focus on DTMCs having labels on states.

Bian and Abate [6] study bisimulation and trace equivalence up-to an error
ε, and show that ε-bisimilar states are also ε′-trace equivalent, for a suitable
ε′ which depends on ε. Furthermore, they show that ε-trace equivalent states
satisfy the same formulae in a bounded LTL, up-to a certain error. In our work,
we focus instead on the branching logic PCTL.

A related research line is that on bisimulation metrics [7,8,10]. Some of these
metrics, like our up-to bisimilarity, take approximations into account [12,17].
Similarly to our bisimilarity, bisimulation metrics allow to establish two states
equivalent up-to a certain error (but usually do not take into account the bound
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on the number of steps). Interestingly, Castiglioni, Gebler and Tini [12] intro-
duce a notion of distance between Larsen-Skou formulae, and prove that the
bisimulation distance between two processes corresponds to the distance between
their mimicking formulae. De Alfaro, Majumdar, Raman and Stoelinga [2] ele-
gantly characterise bisimulation metrics with a quantitative μ-calculus. Such
logic allows to specify interesting properties such as maximal reachability and
safety probability, and the maximal probability of satisfying a general ω-regular
specification, but not full PCTL. Mio [30] characterises a bisimulation metric
based on total variability with a more general quantitative μ-calculus, dubbed
�Lukasiewicz μ-calculus, able to encode PCTL. Both [2] and [30] do not take
the number of steps into account, therefore their applicability to the analysis of
security protocols is yet to be investigated.

Metrics with discount [1,3,9,15,18] are sometimes used to relate the
behaviour of probabilistic processes, weighing less those events that happen in
the far future compared to those happening in the first steps. Often, in these
metrics each step causes the probability of the next events to be multiplied
by a constant factor c < 1, in order to diminish their importance. Note that
this discount makes it so that after η steps, this diminishing factor becomes cη,
which is a negligible function of η. As discussed before, in cryptographic security
one needs to consider as important those events happening within polynomially
many steps, while neglecting the ones after such a polynomial threshold. Using
an exponential discount factor cη after only η steps goes against this principle,
since it would cause a secure system to be at a negligible distance from an inse-
cure one which can be violated after just η steps. For this reason, instead of
using a metric with discount, in this paper we resort to a bisimilarity that is
parametrized over the number of steps n and error δ, allowing us to obtain a
notion which distinguishes between the mentioned secure and insecure systems.

Several works develop algorithms to decide probabilistic bisimilarity, and to
compute metrics [11,13,22,34–36]. To this purpose, they restrict to finite-state
systems, like e.g. probabilistic automata. Our results, instead, apply also to
infinite-state systems.

2 PCTL

Assume a set L of labels, ranged over by l, and let δ, π range over non-negative
reals. A discrete-time Markov chain (DTMC) is a standard model of probabilis-
tic systems. Throughout this paper, we consider a DTMC having a countable,
possibly infinite, set of states q, each carrying a subset of labels 	(q) ⊆ L.

Definition 1 (Discrete-Time Markov Chain). A (labelled) DTMC is a
triple (Q,Pr, 	) where:

– Q is a countable set of states;
– Pr : Q2 → [0, 1] is a function, named transition probability function;
– 	 : Q → P(L) is a labelling function
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Given q ∈ Q and Q ⊆ Q, we write Pr(q,Q) for
∑

q′∈Q Pr(q, q′) and we require
that Pr(q,Q) = 1 for all q ∈ Q.

A trace is an infinite sequence of states t = q0q1 · · · , where we write t(i) for
qi, i.e. the i-th element of t. A trace fragment is a finite, non-empty sequence of
states t̃ = q0 · · · qn−1, where |t̃| = n ≥ 1 is its length. Given a trace fragment t̃
and a state q, we write t̃qω for the trace t̃qqq · · · .

It is well-known that, given an initial state q0, the DTMC induces a σ-
algebra of measurable sets of traces T starting from q0, i.e. the σ-algebra gen-
erated by cylinders. More in detail, given a trace fragment t̃ = q0 · · · qn−1,
its cylinder Cyl(t̃) = {t | t̃ is a prefix of t} is given probabilityPr(Cyl(t̃)) =
∏n−2

i=0 Pr(qi, qi+1). As usual, if n = 1 the product is empty and evaluates to
1. Closing the family of cylinders under countable unions and complement we
obtain the family of measurable sets. The probability measure on cylinders then
uniquely extends to all the measurable sets.

Given a set of trace fragments T̃ , all starting from the same state q0 and
having the same length, we let Pr(T̃ ) = Pr(

⋃
t̃∈T̃ Cyl(t̃)) =

∑
t̃∈T̃ Pr(Cyl(t̃)).

Note that using same-length trace fragments ensures that their cylinders are
disjoint, hence the second equality holds.

Below, we define PCTL formulae. Our syntax is mostly standard, except
for the until operator. There, for the sake of simplicity, we do not bound the
number of steps in the syntax φ1 U φ2, but we do so in the semantics. Concretely,
this amounts to imposing the same bound to all the occurrences of U in the
formula. Such bound is then provided as a parameter to the semantics. We
foresee no problems in relaxing this restriction, which we make only to simplify
our treatment.

Definition 2 (PCTL syntax). The syntax of PCTL is given by the following
grammar, defining state formulae φ and path formulae ψ:

φ :: = l | true | ¬φ | φ ∧ φ | Pr�π[ψ] where � ∈ {>,≥}
ψ :: = X φ | φ U φ

As syntactic sugar, we write Pr<π[ψ] for ¬Pr≥π[ψ], and Pr≤π[ψ] for ¬Pr>π[ψ].

Given a PCTL formula φ, we define its maximum X-nesting Xmax (φ) and its
maximum U-nesting Umax (φ) inductively as follows:

Definition 3 (Maximum nesting). For ◦ ∈ {X,U}, we define:

◦max (l) = 0 ◦max (true) = 0 ◦max (¬φ) = ◦max (φ)
◦max (φ1 ∧ φ2) = max(◦max (φ1), ◦max (φ2)) ◦max (Pr�π[ψ]) = ◦max (ψ)

◦max (Xφ) = ◦max (φ) +

{
1 if ◦ = X

0 otherwise

◦max (φ1Uφ2) = max(◦max (φ1), ◦max (φ2)) +

{
1 if ◦ = U

0 otherwise
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We now define a semantics for PCTL where the probability bounds �π in
Pr�π[ψ] can be relaxed or strengthened by an error δ. Our semantics is parame-
terized over the until bound n, the error δ ∈ R≥0, and a direction r ∈ {+1,−1}.
Given the parameters, the semantics associates each PCTL state formula with
the set of states satisfying it. Intuitively, when r = +1 we relax the semantics of
the formula, so that increasing δ causes more states to satisfy it. More precisely,
the probability bounds �π in positive occurrences of Pr�π[ψ] are decreased by
δ, while those in negative occurrences are increased by δ. Dually, when r = −1
we strengthen the semantics, modifying �π in the opposite direction.

Definition 4 (PCTL semantics). The semantics of PCTL formulas is given
below. Let n ∈ N, δ ∈ R≥0 and r ∈ {+1,−1}.

[[l]]nδ,r = {q ∈ Q | l ∈ 	(q)}
[[true]]nδ,r = Q

[[¬φ]]nδ,r = Q \ [[φ]]nδ,−r

[[φ1 ∧ φ2]]nδ,r = [[φ1]]nδ,r ∩ [[φ2]]nδ,r
[[Pr�π[ψ]]]nδ,r = {q ∈ Q | Pr(Cyl(q) ∩ [[ψ]]nδ,r) + r · δ � π}
[[Xφ]]nδ,r = {t | t(1) ∈ [[φ]]nδ,r}
[[φ1Uφ2]]nδ,r = {t | ∃i ∈ 0..n. t(i) ∈ [[φ2]]nδ,r ∧ ∀j ∈ 0..i − 1. t(j) ∈ [[φ1]]nδ,r}

The semantics is mostly standard, except for Pr�π[ψ] and φ1Uφ2. The seman-
tics of Pr�π[ψ] adds r · δ to the probability of satisfying ψ, which relaxes or
strengthens (depending on r) the probability bound as needed. The semantics
of φ1Uφ2 uses the parameter n to bound the number of steps within which φ2

must hold.
Our semantics enjoys monotonicity. The semantics of state and path formulae

is increasing w.r.t. δ if r = +1, and decreasing otherwise. The semantics also
increases when moving from r = −1 to r = +1.

Lemma 1 (Monotonicity). Whenever δ ≤ δ′, we have:

[[φ]]nδ,+1 ⊆ [[φ]]nδ′,+1 [[φ]]nδ′,−1 ⊆ [[φ]]nδ,−1 [[φ]]nδ,−1 ⊆ [[φ]]nδ,+1

[[ψ]]nδ,+1 ⊆ [[ψ]]nδ′,+1 [[ψ]]nδ′,−1 ⊆ [[ψ]]nδ,−1 [[ψ]]nδ,−1 ⊆ [[ψ]]nδ,+1

Note that monotonicity does not hold for the parameter n, i.e. even if n ≤ n′,
we can not conclude [[φ]]nδ,+1 ⊆ [[φ]]n

′
δ,+1. As a counterexample, let Q = {q0, q1},

	(q0) = ∅, 	(q1) = {a}, Pr(q0, q1) = Pr(q1, q1) = 1, and Pr(q, q′) = 0 elsewhere.
Given φ = Pr≤0[true U a], we have q0 ∈ [[φ]]00,+1 since in n = 0 steps it is
impossible to reach a state satisfying a. However, we do not have q0 ∈ [[φ]]10,+1

since in n′ = 1 steps we always reach q1, which satisfies a.

Example 1. We compare an ideal combination padlock to a real one from the
point of view of an adversary. The ideal padlock has a single state qok, represent-
ing a closed padlock that can not be opened. Instead, the real padlock is under
attack from the adversary who tries to open the padlock by repeatedly guess-
ing its 5-digit PIN. At each step the adversary generates a (uniformly) random
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qok1 q0 q1
1 − 1

N q2
1 − 1

N−1
q3

1 − 1
N−2

qerr

1 − 1
N−3

qN−1

1
2

1

1
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1
N−1 1

N−2
1

N−3

1

Fig. 2. A Markov chain modelling an ideal (left) and a real (right) padlock.

PIN, different from all the ones which have been attempted so far, and tries to
open the padlock with it. The states of the real padlock are q0, . . . , qN−1 (with
N = 105), where qi represents the situation where i unsuccessful attempts have
been made, and an additional state qerr that represents that the padlock was
opened.

Since after i attempts the adversary needs to guess the correct PIN among
the N − i remaining combinations, the real padlock in state qi moves to qerr with
probability 1/(N − i), and to qi+1 with the complementary probability.

Summing up, we simultaneously model both the ideal and real padlock as a
single DTMC with the following transition probability function (see Fig. 2):

Pr(qok, qok) = 1
Pr(qerr, qerr) = 1
Pr(qi, qerr) = 1/(N − i) 0 ≤ i < N
Pr(qi, qi+1) = 1 − 1/(N − i) 0 ≤ i < N − 1
Pr(q, q′) = 0 otherwise

We label the states with labels L = {}err by letting 	(qerr) = {}err and 	(q) = ∅
for all q �= qerr.

The PCTL formula φ = Pr≤0[true U err] models the expected behaviour of
an unbreakable padlock, requiring that the set of traces where the padlock is
eventually opened has zero probability. Formally, φ is satisfied by state q when

q ∈ [[φ]]nδ,+1 ⇐⇒ q ∈ [[¬Pr>0[true U err]]]nδ,+1

⇐⇒ q /∈ [[Pr>0[true U err]]]nδ,−1

⇐⇒ ¬(Pr(Cyl(q) ∩ [[true U err]]nδ,−1) − δ > 0)

⇐⇒ Pr(Cyl(q) ∩ [[true U err]]nδ,−1) ≤ δ (1)

When q = qok we have that Cyl(qok) ∩ [[true U err]]nδ,−1 = ∅, hence the above
probability is zero, which is surely ≤ δ. Consequently, φ is satisfied by the ideal
padlock qok, for all n ≥ 0 and δ ≥ 0.

By contrast, φ is not always satisfied by the real padlock q = q0, since we
have q0 ∈ [[φ]]nδ,+1 only for some values of n and δ. To show why, we start by
considering some trivial cases. Choosing δ = 1 makes Eq. (1) trivially true for
all n. Furthermore, if we choose n = 1, then Cyl(q0)∩ [[true U err]]nδ,−1 = {q0q

ω
err}
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is a set of traces with probability 1/N . Therefore, equation (1) holds only when
δ ≥ 1/N . More in general, when n ≥ 1, we have

Cyl(q0) ∩ [[true U err]]nδ,−1 = {q0q
ω
err, q0q1q

ω
err, q0q1q2q

ω
err, . . . , q0 . . . qn−1q

ω
err}

The probability of the above set is the probability of guessing the PIN within
n steps. The complementary event, i.e. not guessing the PIN for n times, has
probability

N − 1
N

· N − 2
N − 1

· · · N − n

N − (n − 1)
=

N − n

N

Consequently, (1) simplifies to n/N ≤ δ, suggesting the least value of δ (depend-
ing on n) for which q0 satisfies φ. For instance, when n = 103, this amounts to
claiming that the real padlock is secure, up to an error of δ = n/N = 10−2.

3 Up-to-n, δ Bisimilarity

We now define a relation on states q ∼n
δ q′ that intuitively holds whenever q

and q′ exhibit similar behaviour for a bounded number of steps. The parameter
n controls the number of steps, while δ controls the error allowed in each step.
Note that since we only observe the first n steps, our notion is inductive, unlike
unbounded bisimilarity which is co-inductive, similarly to [12].

Definition 5 (Up-to-n, δ Bisimilarity). We define the relation q ∼n
δ q′ as

follows by induction on n:

1. q ∼0
δ q′ always holds

2. q ∼n+1
δ q′ holds if and only if, for all Q ⊆ Q:

(a) 	(q) = 	(q′)
(b) Pr(q,Q) ≤ Pr(q′,∼n

δ (Q)) + δ
(c) Pr(q′, Q) ≤ Pr(q,∼n

δ (Q)) + δ

where ∼n
δ (Q) = {q′ | ∃q ∈ Q. q ∼n

δ q′} is the image of the set Q according to
the bisimilarity relation.

We now establish two basic properties of the bisimilarity. Our notion is reflex-
ive and symmetric, and enjoys a triangular property. Furthermore, it is mono-
tonic on both n and δ.

Lemma 2. The relation ∼ satisfies:

q ∼n
δ q q ∼n

δ q′ =⇒ q′ ∼n
δ q q ∼n

δ q′ ∧ q′ ∼n
δ′ q′′ =⇒ q ∼n

δ+δ′ q′′

Proof. Straightforward induction on n. ��
Lemma 3 (Monotonicity).

n ≥ n′ ∧ δ ≤ δ′ ∧ p ∼n
δ q =⇒ p ∼n′

δ′ q
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Example 2. We use up-to-n, δ bisimilarity to compare the behaviour of the ideal
padlock qok and the real one, in any of its states, when observed for n steps.
When n = 0 bisimilarity trivially holds, so below we only consider n > 0.

We start from the simplest case: bisimilarity does not hold between qok and
qerr. Indeed, qok and qerr have distinct labels (	(qok) = ∅ �= {err} = 	(qerr)), hence
we do not have qok ∼n

δ qerr, no matter what n > 0 and δ are.
We now compare qok with any qi. When n = 1, both states have an empty

label set, i.e. 	(qok) = 	(qi) = ∅, hence they are bisimilar for any error δ. We
therefore can write qok ∼1

δ qi for any δ ≥ 0.
When n = 2, we need a larger error δ to make qok and qi bisimilar. Indeed, if

we perform a move from qi, the padlock can be broken with probability 1/(N −
i), in which case we reach qerr, thus violating bisimilarity. Accounting for such
probability, we only obtain qok ∼2

δ qi for any δ ≥ 1/(N − i).
When n = 3, we need an even larger error δ to make qok and qi bisimilar.

Indeed, while the first PIN guessing attempt has probability 1/(N − i), in the
second move the guessing probability increases to 1/(N −i−1). Choosing δ equal
to the largest probability is enough to account for both moves, hence we obtain
qok ∼3

δ qi for any δ ≥ 1/(N − i − 1). Technically, note that the denominator
N − i − 1 might be zero, since when i = n − 1 the first move always guesses the
PIN, and the second guess never actually happens. In such case, we instead take
δ = 1.

More in general, for an arbitrary n ≥ 2, we obtain through a similar argument
that qok ∼n

δ qi for any δ ≥ 1/(N − i−n+2). Intuitively, δ = 1/(N − i−n+2) is
the probability of guessing the PIN in the last attempt (the n-th), which is the
attempt having the highest success probability. Again, when the denominator
N − i − n + 2 becomes zero (or negative), we instead take δ = 1.

Note that the DTMC of the ideal and real padlocks (Example 1) has finitely
many states. Our bisimilarity notion and results, however, can also deal with
DTMCs with a countably infinite set of states, as we show in the next example.

Example 3. We consider an ideal system which randomly generates bit streams
in a fair way. We model such a system as having two states {qa, qb}, with tran-
sition probabilities Pr(x, y) = 1/2 for any x, y ∈ {qa, qb}, as in Fig. 1. We label
state qa with label a denoting bit 0, and state qb with label b denoting bit 1.

g0, a g0 + 1, a
1
2

g0 + 2, a
g0+1
2g0+1

g0+2
2g0+2

g0, b1
2

1
2

g0 + 1, bg0
2g0+1

1
2

g0 + 2, bg0
2g0+2

g0+1
2g0+1g0

2g0+1

g0+2
2g0+2

g0
2g0+2

Fig. 3. A Markov chain modelling an unfair random generator of bit streams.
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We compare this ideal system with a real system which generates bit streams
in an unfair way. At each step, the real system draws a ball from an urn, initially
having g0 a-labelled balls and g0 b-labelled balls. After each drawing, the ball
is placed back in the urn. However, every time an a-labelled ball is drawn, an
additional a-labelled ball is put in the urn, making the next drawings more biased
towards a.

We model the real system using the infinite1 set of states N × {a, b}, whose
first component counts the number of a-labelled balls in the urn, and the second
component is the label of the last-drawn ball. The transition probabilities are as
follows, where g0 ∈ N+ (see Fig. 3):

Pr((g, x), (g + 1, a)) = g/(g + g0)
Pr((g, x), (g, b)) = g0/(g + g0)
Pr((g, x), (g′, x′)) = 0 otherwise

We label each such state with its second component.
We now compare the ideal system to the real one. Intuitively, the ideal sys-

tem, when started from state qa, produces a sequence of states whose labels are
uniform independent random values in {a, b}. Instead, the real system slowly
becomes more and more biased towards label a. More precisely, when started
from state (g0, a), in the first drawing the next label is uniformly distributed
between a and b, as in the ideal system. When the sampled state has label
a, this causes the component g to be incremented, increasing the probability
g/(g + g0) of sampling another a in the next steps. Indeed, the value g is always
equal to g0 plus the number of sampled a-labelled states so far.

Therefore, unlike the ideal system, on the long run the real system will visit
a-labelled states with very high probability, since the g component slowly but
steadily increases. While this fact makes the two systems not bisimilar according
to the standard probabilistic bisimilarity [28], if we restrict the number of steps
to n � g0 and tolerate a small error δ, we can obtain qa ∼n

δ (g0, a).
For instance, if we let g0 = 1000, n = 100 and δ = 0.05 we have qa ∼n

δ (g0, a).
This is because, in n steps, the first component g of a real system (g, x) will at
most reach 1100, making the probability of the next step to be (g + 1, a) to be
at most 1100/2100 � 0.523. This differs from the ideal probability 0.5 by less
than δ, hence bisimilarity holds.

4 Soundness

Our soundness theorem shows that, if we consider any state q satisfying φ (with
steps n and error δ′), and any state q′ which is bisimilar to q (with enough steps
and error δ), then q′ must satisfy φ, with the same number n of steps, at the
cost of suitably increasing the error. For a fixed φ, the “large enough” number
of steps and the increase in the error depend linearly on n.

1 Modelling this behaviour inherently requires an infinite set of states, since each
number of a-labelled balls in the urn leads to a unique transition probability function.
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Theorem 1 (Soundness). Given a formula φ, let kX = Xmax (φ) be the max-
imum X-nesting of φ, and let kU = Umax (φ) be the maximum U-nesting of φ.
Then, for all n, δ, δ′ we have:

∼n̄
δ ([[φ]]nδ′,+1) ⊆ [[φ]]nn̄·δ+δ′,+1 where n̄ = n · kU + kX + 1

Example 4. We now apply Theorem 1 to our padlock system in the running
example. To do so, we take the same formula φ = Pr≤0[true U err] of Example 1
and choose n = 103 and δ′ = 0. Since φ has only one until operator and no next
operators, the value n̄ in the statement of the theorem is n̄ = 103·1+0+1 = 1001.
Therefore, from Theorem 1 we obtain, for all δ:

∼1001
δ ([[φ]]10000,+1) ⊆ [[φ]]10001001·δ,+1

In Example 1 we discussed how the ideal padlock qok satisfies the formula φ
for any number of steps and any error value. In particular, choosing 1000 steps
and zero error, we get qok ∈ [[φ]]10000,+1.

Moreover, in Example 2 we observed that states qok and q0 are bisimilar with
n̄ = 1001 and δ = 1/(N − 0 − n̄ + 2) = 1/99001, i.e. qok ∼n̄

δ q0.
In such case, the theorem ensures that q0 ∈ [[φ]]10001001/99001,+1, hence the real

padlock can be considered unbreakable if we limit our attention to the first
n = 1000 steps, up to an error of 1001/99001 ≈ 0.010111. Finally, we note that
such error is remarkably close to the least value that would still make q0 satisfy
φ, which we computed in Example 1 as n/N = 103/105 = 0.01.

In the rest of this section, we describe the general structure of the proof in a
top-down fashion, leaving the detailed proof for [5].

We prove the soundness theorem by induction on the state formula φ, hence
we also need to deal with path formulae ψ. Note that the statement of the theo-
rem considers the image of the semantics of the state formula φ w.r.t. bisimilarity
(i.e., ∼n̄

δ ([[φ]]nδ′,+1)). Analogously, to deal with path formulae we also need an
analogous notion on sets of traces. To this purpose, we consider the set of traces
in the definition of the semantics: T = Cyl(p) ∩ [[ψ]]nδ,r. Then, given a state q
bisimilar to p, we define the set of pointwise bisimilar traces starting from q,
which we denote with R̃n

δ,q(T ). Technically, since ψ can only observe a finite
portion of a trace, it is enough to define R̃n

δ,q(T̃ ) on sets of trace fragments T̃ .

Definition 6. Write Fn
q0 for the set of all trace fragments of length n starting

from q0. Assuming p ∼n
δ q, we define R̃n

δ,q() : P(Fn
p ) → P(Fn

q ) as follows:

R̃n
δ,q(T̃ ) = {ũ ∈ Fn

q | ∃t̃ ∈ T̃ .∀0 ≤ i < n. t̃(i) ∼n−i
δ ũ(i)}

The key inequality we exploit in the proof (Lemma 4) compares the proba-
bility of a set of trace fragments T̃ starting from p to the one of the related set
of trace fragments R̃m

δ,q(T̃ ) starting from a q bisimilar to p. We remark that the
component n̄δ in the error that appears in Theorem 1 results from the component
mδ appearing in the following lemma.
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Lemma 4. If p ∼n
δ q and T̃ is a set of trace fragments of length m, with m ≤ n,

starting from p, then:
Pr(T̃ ) ≤ Pr(R̃m

δ,q(T̃ )) + mδ

Lemma 4 allows T̃ to be an infinite set (because the set of states Q can be
infinite). We reduce this case to that where T̃ is finite. We first recall a basic
calculus property: any inequality a ≤ b can be proved by establishing instead
a ≤ b+ε for all ε > 0. Then, since the probability distribution of trace fragments
of length m is discrete, for any ε > 0 we can always take a finite subset of the
infinite set T̃ whose probability differs from that of T̃ less than ε. It is therefore
enough to consider the case where T̃ is finite, as done in the following lemma.

Lemma 5. If p ∼n
δ q and T̃ is a finite set of trace fragments of length n > 0

starting from p, then:
Pr(T̃ ) ≤ Pr(R̃n

δ,q(T̃ )) + nδ

We prove Lemma 5 by induction on n. In the inductive step, we partition the
traces according to their first move, i.e., on their next state after p (for the trace
fragments in T ) or q (for the bisimilar counterparts). A main challenge here is
caused by the probabilities of such moves being weakly connected. Indeed, when
p moves to p′, we might have several states q′, bisimilar to p′, such that q moves
to q′. Worse, when p moves to another state p′′, we might find that some of the
states q′ we met before are also bisimilar to p′′. Such overlaps make it hard to
connect the probability of p moves to that of q moves.

To overcome these issues, we exploit the technical lemma below. Let set A
represent the p moves, and set B represent the q moves. Then, associate to each
set element a ∈ A, b ∈ B a value (fA(a), fB(b) in the lemma) representing the
move probability. The lemma ensures that each fA(a) can be expressed as a
weighted sum of fB(b) for the elements b bisimilar to a. Here, the weights h(a, b)
make it possible to relate a p move to a “weighted set” of q moves. Furthermore,
the lemma ensures that no b ∈ B has been cumulatively used for more than a
unit weight (

∑
a∈A h(a, b) ≤ 1).

Lemma 6. Let A be a finite set and B be a countable set, equipped with functions
fA : A → R+

0 and fB : B → R+
0 . Let g : A → 2B be such that

∑
b∈g(a) fB(b)

converges for all a ∈ A. If, for all A′ ⊆ A :
∑

a∈A′
fA(a) ≤

∑

b∈⋃
a∈A′ g(a)

fB(b) (2)

then there exists h : A × B → [0, 1] such that:

∀b ∈ B :
∑

a∈A

h(a, b) ≤ 1 (3)

∀A′ ⊆ A :
∑

a∈A′
fA(a) =

∑

a∈A′

∑

b∈g(a)

h(a, b)fB(b) (4)
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Fig. 4. Graphical representation of Lemma 6 (left) and its proof (right).

We visualize Lemma 6 in Fig. 4 through an example. The leftmost graph
shows a finite set A = {a1, a2, a3} where each ai is equipped with its associated
value fA(ai) and, similarly, a finite set B = {b1, . . . , b4} where each bi has its own
value fB(bi). The function g is rendered as the edges of the graph, connecting
each ai with all bj ∈ g(ai).

The graph satisfies the hypotheses, as one can easily verify. For instance,
when A′ = {a1, a2} inequality (2) simplifies to 0.3 + 0.5 ≤ 0.5 + 0.6. The thesis
ensures the existence of a weight function h(−,−) whose values are shown in the
graph on the left over each edge.

These values indeed satisfy (3): for instance, if we pick b = b2 the inequality
reduces to 0.5 + 0.16̄ ≤ 1. Furthermore, (4) is also satisfied: for instance, taking
A′ = {a2} the equation reduces to 0.5 = 0.4·0.5+0.5·0.6, while taking A′ = {a3}
the equation reduces to 0.2 = 0.16̄ · 0.6 + 1.0 · 0.05 + 1.0 · 0.05.

The rightmost graph in Fig. 4 instead sketches how our proof devises the
desired weight function h, by constructing a network flow problem, and exploiting
the well-known min-cut/max-flow theorem [14], following the approach of [4]. We
start by adding a source node to the right (white bullet in the figure), connected
to nodes in B, and a sink node to the left, connected to nodes in A. We write
the capacity over each edge: we use fB(bi) for the edges connected to the source,
fA(ai) for the edges connected to the sink, and +∞ for the other edges in the
middle.

Then, we argue that the leftmost cut C shown in the figure is a min-cut.
Intuitively, if we take another cut C ′ not including some edge in C, then C ′ has
to include other edges making C ′ not any better than C. Indeed, C ′ can surely
not include any edge in the middle, since they have +∞ capacity. Therefore, if
C ′ does not include an edge from some ai to the sink, it has to include all the
edges from the source to each bj ∈ g(ai). In this case, hypothesis (2) ensures
that doing so does not lead to a better cut. Hence, C is indeed a min-cut.

From the max-flow corresponding to the min-cut, we derive the values for
h(−,−). Thesis (3) follows from the flow conservation law on each bi, and the
fact that the incoming flow of each bj from the source is bounded by the capacity
of the related edge. Finally, thesis (4) follows from the flow conservation law on
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each ai, and the fact that the outgoing flow of each ai to the sink is exactly the
capacity of the related edge, since the edge is on a min-cut.

5 Conclusions

In this paper we studied how the (relaxed) semantics of PCTL formulae interacts
with (approximate) probabilistic bisimulation. In the regular, non relaxed case,
it is well-known that when a state q satisfies a PCTL formula φ, then all the
states that are probabilistic-bisimilar to q also satisfy φ ([19]). Theorem 1 extends
this to the relaxed semantics, establishing that when a state q satisfies a PCTL
formula φ up-to n steps and error δ, then all the states that are approximately
probabilistic bisimilar to q with error δ′ (and enough steps) also satisfy φ up-to
n steps and suitably increased error. We provide a way to compute the new error
in terms of n, δ, δ′.

Our results are a first step towards a novel approach to the security analysis
of cryptographic protocols using probabilistic bisimulations. Ideally, when one
is able to prove that a real-world specification of a cryptographic protocol is
bisimilar to an ideal one, with an error that is asymptotically negligible as long
as the number of steps is kept polynomial, then one can invoke Theorem 1 and
claim that the two models satisfy the same PCTL formulae (with negligible
error and a polynomial number of steps), essentially reducing the security proof
of the cryptographic protocol to verifying the ideal model. A relevant line for
future work is to study the applicability of our theory in this setting. Related to
this, one would like to investigate proof techniques for establishing approximate
bisimilarity and refinement [27].

Another possible line of research would be devising algorithms for approx-
imate bisimilarity, along the lines of [11,13,22,34–36]. This direction, however,
would require restricting our theory to finite-state systems, which contrasts with
our general motivation coming from cryptographic security. Indeed, in the anal-
ysis of cryptographic protocols, security is usually to be proven against an arbi-
trary adversary, hence also against infinite-state ones. Hence, model-checking of
finite-state systems would not directly be applicable in this setting.
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