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Abstract. Programming massively distributed systems in unreliable
environments poses several non-trivial challenges. Such systems need
to be able to adapt and self-organise, and special algorithms need to
be developed for this purpose. In particular, simulators provide an irre-
placeable tool for the development process.

Among other tools for programming self-organizing systems, the
FieldCalc++ (FCPP, implementing the field calculus in C++) library
stands out for its efficiency, portability and extensibility, and its support
for aggregate programs. On the other hand, the simulator’s output was
limited up to now to numeric statistical information, reducing the user’s
ability to understand and interact with the system under simulation.

In this paper, we present a novel graphical user interface for FCPP,
allowing for a real-time, interactive and three-dimensional visualization
of the simulated system. Through this interface, the user can control the
simulation flow, visualize summary information of the network at a sin-
gle glance, and inspect detailed information via auxiliary windows. The
interface is designed to require minimal effort from the end user for its
setup, and can be further extended for increased interaction.

Keywords: Distributed computing · Aggregate computing ·
Toolchains

1 Introduction

Human environments are increasingly populated by situated and mobile comput-
ing devices (phones, watches, vehicles, sensors, smart home appliances), and the
problem of their coordination into meaningful distributed systems is therefore
growing in importance as well as in complexity.

Implementing such distributed systems by individual programming of every
single node has become prohibitively costly and error prone, driving the search
for solutions increasing the autonomy of computing systems while reducing their
overall complexity. In particular, the class of Collective Adaptive Systems (CAS),
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which are able to autonomously adapt their internal structure and function in
response to external events, has the potential to meet the coordination challenges
outlined above.

However, programming CAS in an effective way is in itself a non-trivial
task. Aggregate Programming (AP) [10] is drawing an increasing attention as
an effective approach to program distributed, situated CAS, based on the func-
tional composition of reusable blocks of collective behaviour, with the goal of
effectively achieving resilient complex behaviours in dynamic networks, integrat-
ing and surpassing traditional multi-agent planning techniques [3,4]. Functional
composition is key in enabling the study of properties like self-stabilisation [25]
and density independence [11] on complex CAS starting from simple building
blocks (e.g., broadcast, collective distance estimation and data aggregation).

Few different implementations of the AP paradigm exist: the Java external
DSL Protelis [23], the Scala library Scafi [26] and the C++ library FieldCalc++
(FCPP) [2]. Among them, the latter stands out for its portability and high
efficiency, obtained without sacrificing ease of use and extensibility. The main
strenghts of FCPP are its component-based architecture, which enables exten-
sibility, the widespread support for C++ on target architectures, which allows
deployments on most systems (including microcontrollers), and its speed and
memory requirements compared to the other JVM-based implementations.

A shortcoming of the simulation support of FCPP has been up to now the
lack of a graphical interface. While it was possible to configure scenarios with
hundreds of nodes, and run an AP program on each of them while keeping
track of aggregate statistics on resulting node attributes, the dynamic evolution
of such systems could not be visualized. However, such a visualization is often
very important to get an intuitive idea of the system behavior, especially for
debugging and spotting unexpected global emergent behaviors.

In this paper, we present an extension to FCPP defining new components
for the 3D visualization of simulations, also providing a basic support to the
simulation of environments with obstacles. Through the new interface, the user
can control the simulation flow, visualize summary information of the network
at a single glance, and inspect detailed information via auxiliary windows. Inter-
estingly, as we shall demonstrate below, the new components perfectly fit within
the existing architecture, showing that the component-based approach adopted
for FCPP does indeed make it easier to extend it with new functionalities. To
showcase the possible applications, we conclude the paper presenting four new
case studies that have been added to the FCPP sample project to demonstrate
the new features. In order to increase the accessibility of the tool, a video demo
of the FCPP GUI has been recently made available,1 together with a quick-start
guide2 and other resources.3

The paper is structured as follows. Section 2 presents the background, includ-
ing the FCPP and OpenGL libraries. Section 3 discusses the extension of FCPP

1 https://www.youtube.com/watch?v=zWsNqJMVxKs.
2 https://github.com/fcpp/fcpp-exercises#readme.
3 Accessible starting from: https://fcpp.github.io.

https://www.youtube.com/watch?v=zWsNqJMVxKs
https://github.com/fcpp/fcpp-exercises#readme
https://fcpp.github.io
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for 3D simulations. Section 4 shows four case studies demonstrating the new
features. Finally, Sect. 5 concludes with plans of future development.

2 Background

2.1 Collective Adaptive Systems

Collective Adaptive Systems (CAS) are collections of intelligent agents able to
automatically change their internal structure (i.e., the connections between their
components) and/or their function in response to external inputs.

Due to such characteristics, programming CAS presents peculiar challenges,
that must be addressed in ways that depend on the given context and goals. At
a sufficient level of abstraction, the various approaches can be classified in four
categories [9]:

– methods that abstract devices and/or networks, such as TOTA [20] and
MapReduce [16];

– methods that provide geometrical or topological pattern languages, such as
the self-healing geometries in [18];

– methods that provide languages for information retrieval and routing, such
as TinyLime [15];

– general space-time computing models, such as StarLisp [19] and Aggregate
Programming [10].

2.2 Aggregate Programming

Among the approaches previously mentioned, in this paper we focus on Aggregate
Programming (AP). AP is characterized by the definition of a single program
that is executed asynchronously in each node of a whole network. The networked
system is thus modelled as a single aggregate machine, which manipulates col-
lections of distributed data called computational fields.

Communication between devices is realised at low level through proximity-
based broadcasts, which at a higher level generate neighbouring fields, i.e., maps
from neighbour device identifiers to their relative values. Neighbouring fields
cannot be accessed directly; instead, they are manipulated through “map” oper-
ations that produce a new field, and “fold” operations that synthesize a single
value from a field.

Such aggregate computations can be expressed using the Field Calculus (FC)
[8], which is a minimal universal language based on the functional paradigm.
FC provides the necessary mechanism to express and functionally compose
distributed computations neglecting low-level aspects such as synchronisation,
delivery of messages between devices, and even the number and physical posi-
tions of the devices in the network. An FC program P running on every device
δ of the network, executes the following steps periodically:

– the device perceives contextual information, i.e.:
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• data provided by local sensors,
• local (state) information stored in the previous round,
• messages received from neighbours after the previous round.

As said above, the latter are made available to the program P as a neighbouring
field φ;

– the device evaluates the program P considering as input the contextual infor-
mation gathered as described above. Note, therefore, that P is not only exe-
cuted by each device, but also at each round: when needed, different behaviors
are obtained by branching statements in P based on the input context;

– the result of the local computation is stored locally (as local state), sent to
neighbours and may produce outputs fed to local actuators.

The above steps, executed across space by different devices, and across time
at different rounds, give rise to a global behaviour at the overall network-level
[25] that can thus be viewed as a single aggregate machine.

While the neighbouring relation is usually based on physical spatial proxim-
ity, it is perfectly possible to define it as a logical relationship, for example as a
master-slave relationship among devices independently of their position.

2.3 FCPP

FCPP (FieldCalc++) is a library written in the C++ language that implements
the Field Calculus (FC). Given the goal of being able to deploy FCPP on as many
platforms as possible, C++ has been chosen as the implementation language not
only for its power and efficiency, but also because it can target most platforms,
from microcontrollers to GPUs. Beside providing an internal DSL for expressing
FC programs within C++, the library provides several features:

– a component-based software architecture, suitable to be extended and cus-
tomised for different application scenarios, such as deployments on IoT
devices, simulation, and HPC;

– an efficient implementation exploiting compile-time optimisations through
advanced template programming [1];

– support for parallel execution of a simulated system or self-organising cloud
application;

– tools for executing FC programs on simulations of distributed systems.

The only scenario that is currently fully supported by the implemented com-
ponents of FCPP is the simulation of distributed systems. Compared to the
alternative implementations of FC (Protelis [23] and Scafi [26]), it features addi-
tional simulation capabilities (3D environments, basic physics, probabilistic wire-
less connection models), with a significant reduction of the simulation cost, and
a corresponding speedup of the development and test of new distributed algo-
rithms. Moreover, thanks to the extensible architecture, it is much easier to
address additional scenarios than with previous FC implementations. Two such
scenarios are of particular practical interest:
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Fig. 1. Representation of the software architecture of FCPP as the combination of three
main layers: data structures for both other layers, and components which provide node
and network abstractions to aggregate functions. Components are categorized as general
purpose (cyan), used across different domains, and simulation-specific (violet), with
variations for different domains. The new displayer and simulated map (simulation-
specific) components are highlighted in magenta. Dependencies between them can be
either hard (solid), for which the pointed component is required as an ancestor of the
other; or soft (dotted), for which the pointed component is not required, but if present,
it should be an ancestor of the other component.

– deployments on microcontroller-based systems typically used in IoT applica-
tions, which have limited computing power and memory;

– deployments as self-organising cloud applications, which require fine-grained
parallelism in order to be able to scale with the resources allocated in the
cloud.

Prototype components addressing these scenarios are currently under develop-
ment, and are already available in the main FCPP distribution.

Figure 1 shows the architecture of the FCPP library, partitioned in three
main conceptual layers:

1. C++ data structures of general use. Some are needed by the components of
the second layer either for internal implementation or for the external speci-
fication of their options; other data structures are designed for implementing
the aggregate functions of the third layer.

2. components. They define the abstractions for representing single devices
(nodes) and the overall network (net), which is fundamental in scenarios
where there is no physical network, such as simulations and cloud-oriented
applications. It is worth noting that, in an application based on FCPP, the
two types node and net are obtained through template programming by com-
bining a chosen sequence of components [21], each of them providing a needed
functionality, in a mixin-like fashion [12,13]. The role of the component sys-
tem is thus that of enabling the reuse of specific functionalities across different
application scenarios.
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3. aggregate functions. Actual implementations of FC programs, as templated
functions with a node parameter; note that also these functions are partitioned
in several layers, starting from the built-ins that implement the core of FC,
up to the applications written by the users of the FCPP library.

Figure 1 shows the dependencies between components, i.e., whether a com-
ponent needs another component as its ancestor in the mixin composition. The
number of such dependencies has been kept as low as possible, and it is always
possible to substitute a “required” component for another offering an analogous
interface in the composition.

2.4 OpenGL

OpenGL is an API standard for the development and maintenance of real-time
graphical applications. As a standard, it defines the high-level output of a set of
functions with a given signature, related to graphical rendering and processing
of the relevant data structures. The implementations reside into the graphical
drivers, developed for a specific set of GPUs.

Internally, OpenGL is structured as a state machine whose state is called
context, and consists of a set of variables and settings influencing the rendering
output. The standard offers both functions for modifying the context, and others
relying on it. OpenGL applications can define and maintain multiple contexts,
possibly assigning them to different threads: one thread can be bound to only
one context at a time. Allocated resources can be bound to a context.

The rendering process in OpenGL is defined by a pipeline, with the main goals
of (i) transforming a set of vertex coordinates from a 3D space to a 2D one; and
(ii) transforming such 2D coordinates into actual pixels displayed on the screen.
The steps of the pipeline consist of small programs called shaders, which can
be executed in parallel SIMD4 steps on the GPU. The programmer can define
the behaviour of three shaders of the pipeline: (i) vertex shader; (ii) geometry
shader; (iii) fragment shader. The first and the third are crucial for defining the
behaviour of an OpenGL application, while the second one is optional. The ver-
tex shader transforms 3D vertex coordinates through several coordinate spaces
applying transformation matrices. The geometry shader processes a geometric
primitive to be rendered (e.g., a triangle) by injecting additional vertices into
it, generating additional primitives. Then, the rasterization process maps the
transformed vertices into pixels to display: such process generates fragments,
data collections representing the output of (part of) the associated pixels. The
fragment shader processes these generated fragments by calculating their output
colors, inducing the final colors of the corresponding pixels.

4 Acronym for Same Instruction, Multiple Data.
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Fig. 2. Screenshot of the “spreading-collection” case study.

3 Extending FCPP with a Graphical User Interface

3.1 Features

FCPP as presented in [2] already supported the execution of simulated net-
works with 3D physics and running aggregate programs. However, the simulation
results were only made available through statistical summaries of numerical val-
ues across the network, in the form of text data files, that could then be turned
into plots. This limited the possible user interactions with the system, making
tasks such as algorithm design and bug detection harder.

The introduction of the three-dimensional GUI drastically improves the inter-
action between the final user and FCPP’s simulation toolset. The interface allows
the user to visualize the simulated state of the network as a 3D scene (Fig. 2 and
3), that the user can navigate, zoom and rotate through. The 3D scene updates
in real-time with the progress of the simulation, always displaying its current
state. The GUI also allows for the tuning of the simulation speed, which can
be paused, sped up or slowed down. Additional information is displayed within
the main rendering window, such as the elapsed simulation time and the current
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Fig. 3. Screenshot of the “channel-broadcast” case study. The grid and the pins are
toggled off, while links to neighbours are displayed.

FPS 5 value. The three-dimensional scene displays two main actors: (i) the grid
plane; (ii) the nodes.

The grid plane is included to provide a reliable spatial reference, and consists
of a plane placed along the x and y axes with a grid pattern of lines, possibly
customized with a texture providing an additional spatial reference for the nodes
to be compared with.6 The texture information can also be accessed within the
simulated program, to model interaction with obstacles thereby depicted. The
grid is automatically calibrated so that the step represents a power of 10 and a
reasonable amount of lines are drawn, and can be toggled off (Fig. 3) in order to
suppress visual noise if needed.

The nodes are a graphical representation of the devices forming the dis-
tributed network, with an appearance that represents summary information on
the distributed computation, allowing to get a sense of the status of the whole
network in a single glance. Nodes are characterized by a position along the three

5 Acronym for Frames Per Second.
6 For instance, while simulating the flying patterns of a group of drones, a top-view

of a city could be applied on the grid plane in order to compare the positions of the
drones with the city blocks.
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Fig. 4. Screenshot of a monitoring window.

orthogonal axes, colored sections, a shape and a size. The position along the z
axis can be emphasized by a pin starting from the center of the node and end-
ing on the grid plane (Fig. 2). A node can support up to three colored sections
(Fig. 2), each displaying a custom color defined by the programmer, which can
change during the simulation. The node’s shape is taken from a predefined set
of three-dimensional models, which are scaled by the node’s size value, and also
both the shape and size can be set by the programmer and can change in real-
time. Additionally, the GUI allows to toggle the visualization of the links of a
node with its own neighbours (Fig. 3), explicating the network topology induced
by message exchanges among devices.

The summary information given by the grid and nodes is complemented
by the possibility of accessing detailed information for any particular node. By
clicking on a node of choice, the user opens a new monitoring window (Fig. 4)
displaying a customizable list of values for the selected node (defined through
the storage component of FCPP). The list updates in real-time, allowing the
user to monitor the evolution of such values together with the overall graphical
representation. Hovered or selected nodes are emphasized, and any number of
nodes can be selected at once. Selection of nodes can be toggled off, informing
the user of the deactivation by changing the cursor’s shape.
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Overall, the presented features allow the programmer to better test and debug
distributed applications, therefore promoting a better design process through an
enhanced human-computer interaction. Furthermore, as we shall see in the next
section, the introduction of the GUI into FCPP projects comes with a minimal
cost for the end-user.

3.2 Architecture

The 3D GUI is managed by the displayer component, which is dedicated to
update the rendering window, to regulate simulation speed and to manage user’s
input and monitoring windows. As shown in Fig. 1, the displayer component
(violet) has hard dependencies with other simulation-specific components: (i)
positioner (to access positions to be represented); (ii) storage (to access detailed
values for nodes); (iii) timer (to access time information); (iv) identifier (to
access the nodes themselves). Just by adding a displayer component into an
FCPP project (a one-word edit), the GUI is immediately available and already
able to show the nodes’ positions, connections and detailed information. With
minimal effort, the representation can then be enhanced by adding a few lines to
regulate the colors, shape and sizes of nodes into the program run by the nodes.

In case interaction with obstacles depicted in the texture is needed, a further
simulated map component is provided, which provides nodes with information
on their surroundings (in terms of obstacle presence, closest obstacles and empty
spaces). This information can be used by library aggregate functions to mimic
repulsive elastic forces, preventing nodes from crossing obstacles.

During an FCPP simulation, simulated actions are processed as events issued
by the various components at given simulated times. The displayer follows the
general execution path, by defining periodic update events which first initialize
necessary attributes, and then handle: (i) finding the node under the cursor
through auxiliary raycast operations; (ii) rendering the nodes, the plane and
2D information text; (iii) managing input events; (iv) managing monitoring
windows; (v) swapping framebuffers.7 The displayer component makes use of a
few auxiliary classes: (i) renderer (abstraction of a rendering window which can
be invoked to render on the relative window); (ii) info window (abstraction of
a monitoring window); (iii) camera (needed to define and manipulate the point
of view from which the scene is rendered).

A renderer object has at its disposal both shared and window-specific
resources. Among the latter there are a camera object and the context related
to the window. The displayer owns an instance of the renderer and, since such
renderer is the first one to get created, it allocates all the shared resources.
Thus, such renderer is considered master, while other slave renderers will need
to access the shared resources through the master. When clicking on a node, the
displayer creates a new info window instance which is handled by a secondary
thread. An info window object owns a (slave) renderer as well, which accesses
the shared resources through the master renderer.
7 The framebuffer is a buffer storing frames to be rendered, and swapping such buffer

basically means to display its content on screen.
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3.3 Technical Challenges

While realising the GUI for FCPP, several challenges were identified that needed
to be addressed:

1. The graphic libraries used should be as portable as possible, in order not to
reduce the overall portability of the FCPP tool;

2. The graphical representation should be sufficiently performing, lightweight
and optimised to be able to process in real-time even large-scale simulated
networks, minimising the overhead on the simulation itself;

3. The GUI code should integrate into the FCPP component structure, so that
the mere addition and removal of a dedicated displayer component should
enable and disable the user interface, without further actions needed on user
code;

4. The representation should allow the recognition of high-level patterns in the
whole network, as well as detailed data on individual nodes;

5. The interface should allow interaction with the simulation flow;
6. The GUI should be compatible with 2D as well as 3D spaces, and be com-

patible with spaces with obstacles as well.

In order to address portability (1), efficiency (2) and 3D readiness (6), OpenGL
was chosen as reference graphical library, due to its low-level and portable nature
(through the CMake build tool, as well as WebGL-WebAssembly for browser
applications). Significant effort was spent on optimising the performances, with
a strong impact, using strategies such as adaptive frame-rates (for the main
window based on CPU availability, and for info windows based on the updates
of the corresponding node), multi-threading (between the main window and
info windows) and indexing/buffering of shapes of general use. Such fine-grained
optimisation would not have been possible with higher-level frameworks such as
the Unreal Engine. With the optimisations, the GUI feels responsive and efficient,
though still coming with a non-negligible overhead. On a reference computer,8

the GUI is able to smoothly process in real-time up to ≈ 20 rounds/sec of the
spreading collection case study; while a batch execution is able to process up to
≈ 45 rounds/sec of the same code.

In order to address integration (3), a displayer component was developed,
with a minimal node structure (caching node positions before draws, updating
some display information after rounds, managing node highlight, and offering
a draw method), and a more complex net structure (managing frame refreshes,
keyboard and mouse inputs, and auxiliary windows). The data to be displayed
was obtained through the existing positioner (for node positions) and storage (for
node data) components, in order to further the integration with existing code.
In order to allow the representation (4) requirements on whole networks, while
preserving integration (3), options were provided to specify storage fields where
node color, shape and size information could be written by aggregate programs
and then read by the displayer component. Similarly, for individual nodes a fully

8 MacBook Pro, 2.4GHz intel Core i9 8-core, 32GB RAM, Intel UHD Graphics 630.
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template-based introspection mechanism was written to automatically extract a
readable representation of all storage contents in info windows.

Finally, in order to address interaction (5), keyboard shortcuts were defined
to regulate the simulation flow, inspired from video playback applications, along
further shortcuts to regulate space navigation (also assisted by mouse input).
In order to address the presence of obstacles (6), we included the possibility
of loading a custom texture for the environment, while also providing an addi-
tional simulated map component to access texture information and detect nearby
obstacles.

3.4 Comparison with Protelis and Scafi

The other two languages for the development of AP systems, Protelis [23] and
Scafi [26], both rely on the external simulator Alchemist [22] for their simula-
tion capabilities. Alchemist supports a number of features similar to the ones
developed into the new graphical interface for FCPP: the control of the simula-
tion flow, a graphical visualization of the status of the overall network through
colors and shapes, and access to detailed information on nodes through sepa-
rate windows. However, Alchemist is only restricted to 2D simulations, and no
support for physics is available. Furthermore, the performance increase of FCPP
can be seen in the graphical interface as well: larger networks can be visualized
in real-time, given the performance limits of a machine at hand.

It is worth noting that several multi-robot simulators exist, that support fea-
tures such as the ones described here, and possibly more, e.g. [17,24]. Such tools,
however, lack the integration with the FCPP library that allows the simulation
of Aggregate Programming systems.

4 Case Studies

The FCPP distribution comes with a sample project,9 as a reference to ease
the setup of new projects. With the introduction of the GUI, the build system
had to be moved from Bazel to CMake, and two additional graphical simula-
tions were added to the sample project (which previously consisted of a single
batch simulation), described in the following. In both simulations, devices move
through waypoints randomly chosen in a parallelepiped area, and the connection
topology is driven by the physical distance between the devices.

4.1 Composition of Spreading and Collection Blocks

The first example is an implementation of a typical monitoring application
in aggregate computing. Such an application is designed by functionally combin-
ing few basic steps, which are provided by the FCPP coordination library: (i)

9 https://github.com/fcpp/fcpp-sample-project, non-retractable version evaluated
with this paper: https://doi.org/10.5281/zenodo.6480037.

https://github.com/fcpp/fcpp-sample-project
https://doi.org/10.5281/zenodo.6480037
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Fig. 5. Code snippet of the spreading collection case study.

distance computation from a selected source device; (ii) aggregation of the data
distributed across the network, through paths of communication descending the
distances previously computed; (iii) broadcasting the overall result computed in
the source device to the whole network. In this specific example, the aggregation
was set to approximate the network diameter. Figure 5 presents a code snippet
of this simple aggregate program.

In this example, a common header file defines the aggregate program,
together with general simulation settings. This same file is included by three
different execution targets: one running a single batch execution, another run-
ning a single GUI execution, and the last running a batch of multiple simulations.
In particular, the single GUI execution only differs from the batch execution by
substituting batch_simulator with interactive_simulator in line 14 of the rele-
vant cpp files, demonstrating how the GUI can be easily integrated into existing
FCPP projects.

Figure 2 presents a screenshot of this application. The source node is high-
lighted by representing it as a larger cube. Other nodes are displayed as spheres
with bands of color: the hue of the central band displays the distance approx-
imated at step (i), while the hue of the lateral bands displays the estimated
diameter resulting from step (iii). Note that central bands of the nodes closer
to the source are more reddish, becoming more yellowish (then greenish, etc.) as
they are farther.
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Fig. 6. Screenshot of the “message-dispatch” case study.

4.2 Broadcast Through a Self-organising Channel

The second example presents another typical aggregate routine: selection of a
communication channel between a source and a destination, and broadcast of
data through it. The channel is selected using the definition of ellipse as a locus of
points, so that: (i) distances dis, did from the source and destination devices are
computed in every device i; (ii) the distance dds between source and destination
is made available in the network through a broadcast; (iii) the channel area is
then defined as those devices i such that dis + did ≤ dds +w, where w is a width
parameter tuning the minor axis of the ellipse; (iv) data can then be broadcast
in this restricted selected area. As before, all of these basic steps are available in
the FCPP coordination library.

Figure 3 presents a screenshot of this application. The source and destination
devices are highlighted as larger tetrahedra. Devices outside of the communica-
tion channel are represented as white spheres, and the channel itself is visualised
as colored icosahedra, with the color hue tuned to represent their distance from
the source and destination.

4.3 Peer-to-peer Message Dispatch

The third example presents a further archetypal task in distributed systems:
peer-to-peer dispatch of messages. This is accomplished through aggregate pro-
cesses [14], that expand guided by an adaptive spanning tree structure. Figure 6
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Fig. 7. Screenshot of the “apartment-walk” case study.

presents a screenshot of this application. The root of the spanning tree is repre-
sented as a larger cube (top-left). Nodes are colored according to their distance
from the root in their central band. Nodes involved in message exchanges are
larger, and their sides are colored with a color generated from the message. Three
messages are currently being dispatched: one in light blue (right), another in red
(top), and a last one in dark blue (left).

4.4 Random Walk in an Apartment

The fourth and last example presents a minimal scenario with obstacle avoidance.
Figure 7 presents a screenshot of this application. In this scenario, 10 people (tan
pins) are randomly moving through rooms in an apartment, while bouncing off
walls (black areas), furniture (dark grey areas), and other people; being restricted
to the free floor area (light blue).

5 Conclusion

In this paper, we presented a graphical user interface for the FCPP simulator.
The GUI allows to control the simulation flow and to visualize both summary
information of the network, through colors and shapes, and detailed information
of individual devices, through auxiliary windows. The interface is implemented
as a component that can be added to the others already available in FCPP,
requiring minimal effort from the end user for its setup. Multiple case studies are
available as a sample project, to allow quick-start of several common aggregate
programming patterns. Further examples are available from published works
using the FCPP GUI in its preliminary versions [5–7,27].

Future work may enhance the GUI with additional customisation options,
support for loading general 3D models for nodes, and the support to multiple
simultaneous visualizations of the same network. The possibilities for the user
to affect the system under simulation may also be extended, by allowing to
modify the detailed information of a node, or to drag-and-drop nodes to different
locations. Also the possibility of filtering the displayed nodes based on their
properties could be useful for the exploration of the system behavior, especially
in 3D scenarios.
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