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Abstract. A recurrent task in coordinated systems is managing (esti-
mating, predicting, or controlling) signals that vary in space, such as
distributed sensed data or computation outcomes. Especially in large-
scale settings, the problem can be addressed through decentralised and
situated computing systems: nodes can locally sense, process, and act
upon signals, and coordinate with neighbours to implement collective
strategies. Accordingly, in this work we devise distributed coordination
strategies for the estimation of a spatial phenomenon through collabora-
tive adaptive sampling. Our design is based on the idea of dynamically
partitioning space into regions that compete and grow/shrink to pro-
vide accurate aggregate sampling. Such regions hence define a sort of
virtualised space that is “fluid”, since its structure adapts in response to
pressure forces exerted by the underlying phenomenon. We provide an
adaptive sampling algorithm in the field-based coordination framework.
Finally, we verify by simulation that the proposed algorithm effectively
carries out a spatially adaptive sampling.

Keywords: Field-based coordination · Distributed leader election ·
Aggregate processes · Fluidware · Space-fluid computation

1 Introduction

A recurrent problem in engineering is dealing with (e.g., estimating, predicting,
or controlling) phenomena that vary in space. Examples include the displace-
ment of waste in a city, the pollution in a geographical area, the temperature in
a large building. The problem can be addressed by deploying sensors and actu-
ators in space, processing collected data, and possibly planning actuations [31].
In many settings, the computational activity can (or have to) be performed in-
network [5] in a decentralised way: in such systems, nodes locally sense, process,
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and act upon the environment, and coordinate with neighbour nodes to collec-
tively self-organise their activity. However, in general there exists a trade-off
between performance and efficiency, that suggests to concentrate the activities
on few nodes, or to endow systems with the capability of autonomously adapt
the granularity of computation [32].

In this work, we focus on sampling signals that vary in space. Specifically, we
would like to sample a spatially distributed signal through device coordination
and self-organisation such that the samples accurately reflect the original signal
and the least amount of resources is used to do so. In particular, we push for-
ward a vision of space-fluid computations, namely computations that are fluid,
i.e. change seamlessly, in space and – like fluids – adapt in response to pres-
sure forces exerted by the underlying phenomenon. We reify the vision through
an algorithm that handles the shape and lifetime of leader-based “regional pro-
cesses” (cf. [21]), growing/shrinking as needed to sample a phenomenon of inter-
est with a (locally) maximum level of accuracy and minimum resource usage.
For instance, we would like to sample more densely those regions of space where
the spatial phenomenon under observation has high variance, to better reflect
its spatial dynamics. On the contrary, in regions where variance is low, we would
like to sample the phenomenon more sparsely, so as to, e.g., save energy, com-
munication bandwidth, etc. while preserving the same level of accuracy.

Accordingly, we consider the field-based coordination framework of aggregate
computing [2,29], which has proven to be effective in modelling and program-
ming self-organising behaviour in situated networks of devices interacting asyn-
chronously. On top of it, we devise a solution that we call aggregate sampling,
inspired by the approaches of self-stabilisation [28] and density-independence [3],
that maps an input field representing a signal to be sampled into a regional par-
tition field where each region provides a single sample; then, we characterise the
aggregate sampling error based on a distance defined between stable snapshots of
regional partition fields, and propose that an effective aggregate sampling is one
that is locally optimal w.r.t. an error threshold, meaning that the regional par-
tition cannot be improved simply by merging regions. In summary, we provide
the following contributions:

– we define a model for distributed collaborative adaptive sampling and charac-
terise the corresponding problem in the field-based coordination framework;

– we implement an algorithmic solution to the problem that leverages self-
organisation patterns like gradients [6,28] and coordination regions [21] as
well as aggregate processes [4];

– we experimentally validate the algorithm to verify interesting trade-offs
between sparseness of the sampling and its error.

The rest of the paper is organised as follows. Section 2 covers motivation and
related work. Section 3 provides a model for distributed sampling and the prob-
lem statement. Section 4 describes an algorithmic solution to the problem of sam-
pling a distributed signal using the framework of aggregate computing. Section 5
performs an experimental validation of the proposed approach. Finally, Sect. 6
provides conclusive thoughts and delineates directions for further research.
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Fig. 1. Air quality statistics map taken from https://archive.ph/dMJO2. There are
areas where the underlying phenomenon does not vary significantly in space (light-grey
oval), hence sampling could be “sparsified” with tolerable loss of accuracy in modelling
the observed phenomenon. In others (darker circle) variance is high, requiring a more
detailed spatial sampling.

2 Motivation and Related Work

Consider a wireless sensor network (WSN) of any topology deployed across a
geographical area to monitor a spatially-distributed phenomenon, such as, for
instance, air quality, as depicted in Fig. 1. We want to dynamically and adap-
tively find a partitioning that minimises the number and maximises the size of
regions, while preserving as much as possible the underlying information. Hence,
in areas with low variance, we want our regions to be larger, as many samples
will report similar values. Conversely, in areas with high spatial variance, smaller
regions are necessary as even proximal samples may have very different values.

There are several approaches in the literature that attempt to solve similar
problems, in different research areas and with different techniques. In adap-
tive sampling [17,27] the goal is to extend or reduce the set of samples drawn
depending on temporal dynamics or across space. There, most of the literature
is about designing fixed strategies for sensor placement (at design-time), sensor
selection (at run-time), or so-called sampling designs, that is, how the sampling
process may be adaptive to either network-level measures (energy consumption,
communication costs, sensor distance, etc.) or domain-level measures (informa-
tion gain, entropy, correlation, etc.). Our approach fundamentally differs in core
aspects, such as full distribution of computations, and full self-adaptiveness to
the observed phenomenon without any a-priori knowledge.

Other research focuses on mobile sensors, e.g., robots [7,8,15,25], hence the
goal is to move them to the most informative sensing locations. Some work
aims to adapt the sampling process to cope with spatial (and, often, temporal)
phenomena, preserving some spatial properties of the WSN or the phenomenon
under observation [9,12,26]. These pursue a goal similar to the one of this work,
but with different techniques: we leverage a programmable, adaptive, and self-
organising approach based on the field calculus and aggregate programming,
whereas they adopt heterogeneous tools rooted in geometric frameworks (such
as Voronoi tessellation), information theory, and optimisation.

https://archive.ph/dMJO2
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Finally, there are approaches explicitly relying on adaptive and spatial clus-
tering techniques [13,14,30], where device partitioning is meant to improve
energy efficiency or reduce communication costs by electing leaders that perform
sampling on behalf of the whole cluster. These approaches are mostly driven by
network-level metrics, whereas we rely on any arbitrary univariate statistics of
the phenomenon under observation.

In [30], the proposed approach combines distance measurements, connectiv-
ity, and density information of sensors (not the underlying phenomenon) to define
clusters with similar deployment density that group devices in close proximity.
The objective is to produce better deployments of sensors whose aggregate mea-
surements can benefit energy consumption. On the contrary, our objective is to
create irregularities in the device network to better represent the phenomenon
under observations, with a trade-off about not wasting resources while doing so.
Accordingly, we do clustering through leader election as in [30], but based on uni-
variate statistics of the observed phenomenon, rather than on network-related
information. With this respect, the work in [14] groups together sensors with
similar readings, hence is similar to ours in how clusters are formed. However,
the authors attempt to build clusters with minimal variance in size, that is con-
trary to our goal of adaptively shape clusters with different sizes so as to better
sample the underlying spatial phenomenon. Finally, the work in [12] is a rare
example of an adaptive algorithm that is also concerned with up-scaling sam-
pling when is needed, whereas most efforts go in the direction of down-scaling for
energy saving purposes. In this it is similar to our own proposal. However, they
exploit the assumption there measures coming from sensors in close proximity
are highly correlated, whereas we specifically focus on those domains where the
opposite may be true.

3 Distributed Aggregate Sampling: Model

In order to define the problem and characterise our approach, we leverage the
event structure framework [1].

3.1 Computational Model

We consider a computational model where a set of devices compute at discrete
steps called computation rounds and interact with neighbour devices by exchang-
ing messages. Executions of such systems can be modelled through event struc-
tures [18]. Following the general approach in [1], we enrich the event structure
with information about the devices where events occur.

Definition 1 (Situated event structure). A situated event structure (ES)
is a pair 〈E,�, d〉 where

– E is a countable set of events,
– � ⊆ E × E is a messaging relation from a sender event to a receiver

event (these are also called neighbour events),
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– d : E → Δ, where Δ is finite, maps an event to the device where it occurs,

such that:

– the transitive closure of � forms an irreflexive partial order < ⊆ E × E,
called causality relation (an event ε is in the past of another event ε′ if
ε < ε′, in the future if ε′ < ε, or concurrent otherwise);

– for any δ ∈ Δ, the projection of the ES to the set of events Eδ =
{ε ∈ E | d(ε) = δ} forms a well-order, i.e., a sequence ε0 � ε1 � ε2 � . . . ;

We also define:

– Notation recvs(ε) = {δ ∈ Δ | δ = d(ε′) =⇒ ε � ε′} to denote the set of
receivers of ε, i.e., the devices receiving a message from ε.

– Notation T−
ε0 = {ε : ε < ε0} to denote the past event cone of ε0 (finite set).

– Notation T+
ε0 = {ε : ε0 < ε} to denote the future event cone of ε0.

– Notation X|E′ to denote the projection of a set, function, or ES thereof X to
the set of events E′ ⊆ E. Note that the projection of an event structure to the
future event cone of an event is still a well-formed ES.

Fig. 2. Example of an event structure. In the node labels, superscripts denote device
identifiers, while subscripts are progressive numbers denoting subsequent rounds at the
same device. The blue (resp. green) background denotes the future (resp. past) of a
reference event denoted with a yellow background. (Color figure online)

An example of ES is given in Fig. 2, events denote computation rounds. Note that
self-messages (i.e., messages from an event to the next on the same device) model
persistence of state over time. In the computation model we consider, based
on [1], each event ε represents the execution of a program taking all incoming
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messages, and producing an outgoing message (sent to all neighbours) and a
result value associated with ε. Such “map” of result values across all events
defines a computational field, as follows.

Definition 2 (Computational field). Let E = 〈E,�, d〉 be an event struc-
ture. A computational field on E is a function f : E → V that maps every event
ε in E (also called the domain of the field) to some value in a value set V.

Computational fields are essentially the “distributed values” which our model
deals with; hence computation is captured by the following definition.

Definition 3 (Field computation). Let E = 〈E,�, d〉 be an event structure,
and FE,V be the set of fields on domain E with range V, i.e., FE,V = {fi : E →
V}. A field computation over E is a function ΦE : FE,V → FE,V mapping an
input field to an output field on the same domain of E.

This definition naturally extends to the case of zero or multiple input fields.

Definition 4 (Field operator). A field operator (or field program) is denoted
as the result of computation on any possible environment, hence it is a function
P taking an ES and yielding the field computation that would occur on it, namely
P (E) = ΦE.

3.2 Self-stabilisation

We now provide the definitions necessary to model self-stabilisation following
the approach in [28]. Namely, the following definitions capture the idea of adap-
tiveness whereby as the environment of computation stabilises, then the result
of computation stabilises too, and such a result does not depend on previous
transitory changes.

Definition 5 (Static environment). An event structure E = 〈E,�, d〉 is
said to be a static environment if it has stable topology, namely all events of a
given device always share the same set of receivers, i.e., ∀ε, ε′, d(ε) = d(ε′) ⇒
recvs(ε) = recvs(ε′).

Definition 6 (Stabilising environment). An event structure E = 〈E,�, d〉
is said to be a stabilising environment if it is eventually static, i.e., ∃ε0 ∈
E such that E|T+

ε0
= 〈E|T+

ε0
,� |T+

ε0
, d|T+

ε0
〉 is static. In this case we say it is

static since event ε0.

Definition 7 (Stabilising field). Let event structure E = 〈E,�, d〉 be a
stabilising environment, static since event ε0. A field f : E → V is said sta-
bilising if it eventually provides stable output, i.e., ∃ε > ε0 such that ∀ε′ >
ε it holds that d(ε) = d(ε′) =⇒ f(ε) = f(ε′).

Definition 8 (Stabilising computation). A field computation ΦE = FE,V →
FE,V is said stabilising if, when applied to a stabilising input field, it yields a
stabilising output field.
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Definition 9 (Self-stabilising operator). A field operator (or program) P
is said self-stabilising, if in any stabilising environment E it yields a stabilising
computation ΦE such that, for any pair of input fields f1, f2 eventually equal, i.e.
f1|T+

ε
= f2|T+

ε
for some event ε, their ouput is eventually equal too, i.e., there

exists a ε′ > ε such that ΦE(f1)|T+
ε′

= ΦE(f2)|T+
ε′

3.3 Problem Definition

We start by introducing the notion of regional partition, which is a finite set
of non-overlapping contiguous clusters of devices: a notion that prepares the
ground to that of an aggregate sampling which we introduce in this paper.

Definition 10 (Regional partition field). Let E = 〈E,�, d〉 be a stabilising
environment static since event ε0. A regional partition field is a stabilising field
f : E → V on E such that:

– (finiteness) the image Img(f) = {f(x) | x ∈ E} is a finite set of values;
– (eventual contiguity) there exists an event ε′

0 > ε0 such that for any pair of
events ε1, εn ∈ T+

ε′
0

with ε1 < εn, if f(ε1) = f(εn) then there exists a sequence
of events (εi) connecting ε1 to εn where f(εi) = f(ε1) = f(εn) ∀n.

Note that the set of domains of regions induced by f is defined by regions(f) =
{f−1(v) : v ∈ Img(f)}.
An example of a regional partition field is shown in Fig. 3. Notice that for any
pair of events in the same space-time region there exists a path of events entirely
contained in that region. Also notice that, by this definition, different disjoint
regions denoted by the same value r are not possible.

Definition 11 (Aggregate sampling). An aggregate sampling is a stabilis-
ing computation ΦS : FE,V → FE,V that, given in input a field to be sampled, it
outputs a regional partition field.

Once we have defined an aggregate sampling process in terms of its inputs,
outputs, and stabilising dynamics, we need a way to measure the error introduced
by the aggregate sampling. To this purpose, we introduce the notion of a stable
snapshot, namely a field consisting of a sample of one event per device from the
stable portion of a stabilising field.

Definition 12 (Stable snapshot). Let E = 〈E,�, d〉 be an event structure,
and f : E → V be a stabilising field on E which provides stable output from
ε0 ∈ E. We define a stable snapshot of field f as a field obtained by restricting
f to a subset of events in the future event cone of ε0 and with exactly one event
per device, i.e., a field fS : ES → V such that ES ⊆ T+

ε0 , and ∀ε, ε′ ∈ ES : d(ε) =
d(ε′) =⇒ ε = ε′, and ∀ε ∈ T+

ε0 ,∃ε′ ∈ ES : d(ε′) = d(ε).

Definition 13 (Spatial field distance). A spatial field distance μ : FE,V ×
FE,V → R

+
0 is a function from pairs of spatial fields with the same domain to

non-negative reals, such that:
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Fig. 3. Example of a regional partition field with regions rblue, rgreen, ryellow, rwhite

(the background is used to denote the output of the field). Notice that contiguity does
not hold everywhere and anytime but only since event ε32.

– (identity) μ(f, f ′) = 0 ⇐⇒ f = f ′;
– (additivity) μ(f, f ′) ≥ μ(f |E′ , f ′|E′) for any E′ ⊆ E.

Definition 14 (Aggregate sampling error). Let ΦE : FE,V → FE,V be an
aggregate sampling, and consider an input field fi : E → V and corresponding
output regional partition fo : E → V. We say that fo samples fi within error η
according to distance μ, if the distance of stable snapshots of fi and fo in any
region is not bigger then η, that is: let ε0 be an event from which E is static and
fi and fo are stable, let fs

i and fs
o be stable snapshots of fi and fo in the future

cone of ε0, then for any region E′ ∈ regions(fs
o ), we have μ(fs

i |E′ , fs
o |E′) ≤ η.

The aggregate sampling error provides a measure of accuracy, but in general
we are also interested in efficiency, namely, in the ability of a regional partition
to be accurate while relying on a small number of regions. Among the various
possible definitions, we introduce the following notion of local optimality, stating
that no region in the regional partition could be attached to an existing region
without exceeding the desired error.

Definition 15 (Local optimality of a regional partition). Let ΦE :
FE,V → FE,V be an aggregate sampling, and consider an input field fi and
corresponding output regional partition fo such that fo samples fi within
error η according to distance μ. We say that fo is locally optimal under
error η if for no pairs of contiguous regions E′, E′′ ∈ regions(fo) we have
μ(fs

i |E′∪E′′ , fs
o |E′∪E′′) ≤ η—with spatial fields fs

i and fs
o obtained as in Defi-

nition 14.

Notice that, since our goal is to deal with dynamic phenomena and large-scale
environments, we are not interested in finding globally optimal solutions, but
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rather heuristics for self-organising behaviour. So, we are now ready to define
the goal operator for this paper.

Definition 16 (Effective sampling operator). An effective sampling opera-
tor is a self-stabilising operator Pη, parametric in the error bound η, such that in
any stabilising environment E and stabilising input fi, a locally optimal regional
partition within error η is produced.

4 Aggregate Computing-Based Solution

In this section, we define an effective aggregate sampling within the framework
of Aggregate Computing [2,29]. The approach is rooted in the idea that a sys-
tem can be partitioned into regions by identifying leader devices (cf. algorithms
for sparse-choice leader election [16]) associated with a set of devices expand-
ing until the aggregate sampling error within the growing region is under some
threshold—while ensuring there is no overlap with other regions (i.e., each device
is associated with exactly one leader). More precisely:

1. each device announces its candidature for leader;
2. each device propagates to neighbours the candidature of the device it cur-

rently recognises as leader, fostering expansion of its corresponding region;
3. in a region, the aggregate sampling error is computed, which monotonically

increases with the hop-distance from the leader;
4. devices discard candidatures whose errors exceed a threshold;
5. in case multiple valid candidatures (i.e., whose error is under the threshold)

reach a device, one is selected based on a competition policy.

Competition and Leader Strength. Although competition among leaders could
be realised in several ways, many techniques may lead to non-self-stabilising
behaviour: for instance, if the winning leader is selected randomly in the set of
those whose error is under threshold, regions may keep changing even in a static
environment. In this work, we propose a simple strategy: every leader associates
its candidature with the local value of a field that we call leader strength; in case
of competing candidatures, the highest such value is selected as winner, breaking
the symmetry. The leader strength can be of any orderable type, and its choice
impacts the overall selection of the regions by imposing a selection priority over
leaders (hence on region-generation points).

Region Expansion and Error Metric. Inspired by previous work on distributed
systems whose computation is independent from device distribution [3], we accu-
mulate an error metric along the path from the leader device towards other
devices along a gradient [6], a distributed data structure proven to be self-
stabilising [28]. We thus have two major drivers: 1. the leader strength affects the
creation of the regions by influencing the positions of their source points; 2. the
error metric influences the expansion in space of the region across all directions,
mandating its size and (along with the interaction with other regions) its shape.
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For instance, a metric could be the absolute value of the difference in the per-
ceived signal between two devices: devices perceiving very different values would
tend not to cluster together (even if spatially close), as they would perceive each
other as farther away (leading to irregular shapes).

For the competition process to progress, we need that, in zones where mul-
tiple regions are expanding concurrently, multiple gradients run concurrently
and overlapping [19]. This requires special handling in the aggregate comput-
ing framework, hence we modeled the expansion of each region as a separate
aggregate process [4].

As the next section verifies through simulations, linking region expansion
with the error metric enables to find locally optimal sampling regions, in the
sense that all regions are necessary: be removing some region (e.g. merging it
with a nearby region) less resources will be used, indeed, but accuracy would be
compromised.

5 Evaluation

In this section, we validate the behaviour of the proposed effective aggregate
sampling algorithm. The goals of the evaluation are the following:

– stabilisation: we expect the algorithm to be self-stabilising, and thus to behave
in a self-stabilising way under different conditions (as per Definition 9);

– high information (entropy): we expect the algorithm to split areas with dif-
ferent measurements, namely, to dynamically increase the number of regions
on a per-need basis to minimise the aggregate sampling error (as per Defini-
tion 14);

– error-controlled upscaling : we expect the algorithm to not abuse of region
creation, but to keep the minimum number of regions (hence of the largest
size) required to maintain accuracy (as per Definition 15), intuitively, group-
ing together devices with similar measurements.

Clearly, upscaling and high information density are at odds: maximum informa-
tion is achieved by maximising the number of regions, and thus assigning each
device its unique region, but this would prevent any upscaling. On the other
hand, the maximum possible upscaling would be achieved when all devices belong
to the same region, thus minimising information. We want our regions to change
in space “fluidly” and opportunistically tracking the situation at hand, achieving
a trade-off between upscaling and amount of information (as per Definition 16).

5.1 Scenario

We challenge the proposed approach by letting the algorithm operate on dif-
ferent deployments of one thousand devices and different data sources. We
deploy devices into a square arena with different topologies: i) grid (regular
grid): devices are regularly located in a grid; ii) pgrid (perturbed/irregular grid):
starting from a grid, devices’ positions are perturbed randomly on both axes;
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iii) uniform: positions are generated with a uniform random distribution; iv)
exp (exponential random): positions are generated with a uniform random dis-
tribution on one axis and with an exponential distribution on the other, thus
challenging device-distribution sensitivity. In all cases, we avoid network seg-
mentation by forcing each device to communicate at least with the eight closest
devices.

We simulate the system when sampling the following phenomena: (i) Con-
stant : the signal is the same across the space, we expect the system to upscale
as much as possible; (ii) Uniform: the signal has maximum entropy, each point
in space has a random value, we thus expect the system to create many small
regions; (iii) Bivariate gaussian (gauss): the signal has higher value at the cen-
ter of the network, and lower towards the borders, producing a gaussian curve
whose expected value is located at the center of the network, we expect regions
to be smaller where the data changes more quickly; (iv) Multiple bivariate gaus-
sian (multi-gauss): similar to the previous case, but the signal value is built by
summing three bivariate gaussian whose expected value is one third of the pre-
vious gaussian, and whose expected values are located along the diagonal of the
network (bottom-left corner, center, top-right corner); (v) Dynamic: the system
cycles across the previous states, we use this configuration to investigate whether
and how the proposed solution adapts to changes in the structure of the signal.

5.2 Parameters

The proposed solution can be tuned using three major knobs: the leader strength,
the error tolerance, and the distance metric. In these experiments, we fix the error
tolerance to a constant value throughout the board, while we try three different
solutions for the leader strength and the distance metric.

For the former, we consider: (i) value: the local value of the tracked signal
s; (ii) mean: the neighborhood-mean value of the tracked signal s, assuming N
to be the set of neighbors (including the local device), and si to be the value of
the tracked signal at device i ∈ N , the value is computed as: M =

∑
i∈N si/|N |;

(iii) variance: the neighborhood-variance of the tracked signal s, assuming Mi

to be the neighborhood-mean computed at device i ∈ N , the value is computed
as:

∑
i∈N (Mi−si)

2
/|N |.

For the latter, we consider: (i) distance: the spatial distance is used as dis-
tance metric; (ii) diff : assuming that si is the value of the tracked signal at
device i, the distance between two neighboring devices a and b is measured as:
eab = eba = min(ε, |sa − sb|), where ε ∈ R+, ε = 0 iff a = b, 0 < ε  1 otherwise,
we bound the minimum value to preserve the triangle inequality; (iii) mix : we
mix the two previous metrics so that both error and physical distance concur in
the distance definition, assuming ab to be the spatial distance between devices
a and b, we measure the mix metric as: (iv) ab · eab.
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5.3 Metrics

We investigate the behaviour of the system through the following metrics, assum-
ing, at any given time, a set of devices D partitioned into a set of regions
R = R1 ∪ · · · ∪ R|R|, where each Rr is a set of devices {Dr

1, . . . , Dr
|Rr|}, and

each device Dr
d reads the local value of the tracked signal sr

d:

– Region count |R| (regions). Counting the regions provides an indication about
efficiency (Definition 15): more partitions should be present in contexts where
the sampled signal has higher entropy;

– Mean region size μR =
∑|R|

i=1 |Ri|/|R| (devices). Ancillary to the region count,
but density-sensitive: when devices are distributed irregularly (as in the exp
deployment, see Sect. 5.1), we expect this metric to be less predictable;

– Standard deviation of the mean of the signal in regions σ(μs) (same unit of the
signal). Proxy for inter-region difference, high values indicate large differences
between different regions. The mean signal inside region Rr is computed as:

Fig. 4. Region count (left column) and size (right column) across deployments and
scenarios. The system behaves very similarly regardless of the device disposition. As
expected, the higher information density leads to more smaller regions. The dynamic
scenario shows that the partitions change in response to changes in the signal.
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Fig. 5. Standard deviation of the mean region value (left) and mean standard deviation
(right) across deployments and scenarios, indicating respectively how much the regions
readings differ from each other (the higher the more different) and how the regions
are internally similar (the lower the more homogeneous are regions). The constant
and uniform random signals work as baselines: in the former case, very large areas
gets formed, while in the latter most regions count a single device (as expected). In the
other cases, inter-region differences is maximized (they get as high as the most extreme
case) keeping internal consistency under control.

μRr
s =

∑|Rr|
i=1 sr

i/|Rr|, the mean of the means of the signal is μR
s =

∑|R|
i=1 μ

Ri
s /|R|,

thus σ(μs) =
√

1
|R|

∑|R|
i=1(μ

Ri
s − μR

s )2;
– Mean standard deviation of the signal in regions μ(σs) (same unit of the

signal). Proxy for intra-region error. The lower this value, the more similar
are the signal readings inside regions, hence the lower the error induced by
the grouping (Definition 14). The standard deviation of a the tracked signal

inside region Rr is computed as: σRr
s =

√
1

|Rr|
∑|Rr|

i=1 (sr
i − μRr

s )2, thus μ(σs) =
∑|R|

i=1 σ
Ri
s /|R|;

– Standard deviation of the standard deviation of the signal in regions
σ(σs) (same unit of the signal). Proxy metric for the consistency of
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partitioning. Higher values indicate that partitions have different internal
error, hence behave differently (striving to satisfy Definition 16). Computed

as: σ(σs) =
√

1
|R|

∑|R|
i=1(σ

Rr
s − μ(σs))2.

5.4 Implementation and Reproducibility

We rely on a prototype implementation realised in the Protelis programming lan-
guage [23]. The simulations were realised using Alchemist [22], the data analysis
has been performed using Xarray [10] and matplotlib [11]. For each element in
the cartesian product of the device deployment type, signal form, leader strength,
and distance metric, an experiment was performed. Each simulation has been
repeated 100 times with a different random seed; random seeds control both the
evolution of the system (the order in which devices compute) and their position
on the arena (except for the regular grid deployment, which is not randomised);
the presented results are the average across all repetitions; when a chart does
not mention some of the parameters, then the results that are presented are also
averaged across all values the parameter may assume for the simulation set. The
experiment has been open sourced, publicly released1, documented, equipped
with a continuous integration system to guarantee replicability, and published
as a permanently available, reusable artifact [24].

5.5 Results

We present the major findings of our analysis, whose complete version counts 630
charts, available to the interested reader in the experiment repository. In Fig. 4,

Fig. 6. Intra-region partitioning homogeneity, measured as the standard deviation
across regions of the standard deviation of the signal inside regions. Higher values
indicate that different regions are more heterogeneous, namely that some have more
error than others.

1 https://github.com/DanySK/Experiment-2022-Coordination-Space-Fluid.

https://github.com/DanySK/Experiment-2022-Coordination-Space-Fluid
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Fig. 7. Effect of different leader selection policies. The behaviour of the system is
similar regardless of the way the region leader is selected.

Fig. 8. Effect of different error measurement metrics. The system is very sensible to the
metric used to accumulate error, which directly impacts the way distance is perceived,
thus determining the maximum size and number of areas.
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we show that our prototype implementation stabilises, as after a short transition
all values become stable. Of course, in the dynamic case, these transitions are
present throughout the experiment. As expected, the aggregate sampler defines a
number of regions that differs depending on the underlying phenomenon under
observation. From Fig. 5 and Fig. 6, we observe that the system tries indeed
to maximise inter-region differences and minimise intra-region differences, thus
effectively accounting or the tradeoff between high information (entropy) and
error-controlled upscaling (as per Definition 16). Finally, Fig. 7 and Fig. 8 show
how the algorithm responds to changing parameters. As expected, while mod-
ifying the leader selection policy has minimal impact on the behaviour of the
system, changing the error metric modifies its behaviour greatly. In all cases, we
observe that the driver signal with higher information entropy (uniform) gen-
erates more smaller regions than all other signals, while the one with lowest
information entropy (constant) always produces few (usually one) large regions.
The reason is that the leader selection impacts the originating point of a region,
but it is its expansion (driven by the metric) that in the end determines both
extension and shape.

6 Conclusions and Future Work

In this paper, we tackled the problem of defining an aggregate sampler sensitive
to the spatial dynamics of the phenomenon under observation. In particular, we
wanted to minimize the sampling error (minimum when all available sampling
devices are used) while also minimising the regions count, two contrasting needs.

We formalised the problem within the framework of field calculus and aggre-
gate computing, suitable to represent situated, large-scale, and dynamic com-
putations. We thus designed a spatial adaptive aggregate sampler based on a
leader election strategy that dynamically creates and grows/shrinks sampling
clusters (or regions) based on error metric and leader strength. Through simula-
tion, the sampler is shown to satisfy the mentioned tradeoff (effective sampling,
Definition 16).

As measuring performance and efficiency of such an adaptive algorithm is
far from trivial, we exploited several metrics to validate intended behaviour.
However, as a follow-up work we would like to synthesize a single indicator able
to measure both accuracy and efficiency, using information theory such as those
derived from entropy (e.g. mutual information). Also, we are analyizing openly
available air pollution datasets to design new simulations based on real-world
data, so as to better emphasize the impact that our aggregate sampler could
have for policy making based on spatial phenomena. Finally, future work will be
devoted to investigating how space-fluid sampling can integrate with time-fluid
aggregate computations [20].
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