
Formal Choreographic Languages

Franco Barbanera1, Ivan Lanese2,3, and Emilio Tuosto4(B)

1 Department of Mathematics and Computer Science, University of Catania,
Catania, Italy

barba@dmi.unict.it
2 Focus Team, University of Bologna, Bologna, Italy

ivan.lanese@gmail.com
3 Focus Team, INRIA, Sophia Antipolis, France
4 Gran Sasso Science Institute, L’Aquila, Italy

emilio.tuosto@gssi.it

Abstract. We introduce a meta-model based on formal languages, dub-
bed formal choreographic languages, to study message-passing systems.
Our main motivation is to establish a framework for the comparison
and generalisation of standard constructions and properties from the
literature. In particular, we consider notions such as global view, local
view, and projections from the former to the latter. The correctness of
local views projected from global views is characterised in terms of a
closure property. A condition is also devised to guarantee relevant com-
munication properties such as (dead)lock-freedom. Formal choreographic
languages capture existing formalisms for message-passing systems; we
detail the cases of multiparty session types and choreography automata.
Unlike many other models, formal choreographic languages can naturally
model systems exhibiting non-regular behaviour.

1 Introduction

Choreographic models of message-passing systems are gaining momentum both
in academia [8,12,13] and industry [10,27,34]. These models envisage the so-
called global and local views of communicating systems. The former can be
thought of as holistic descriptions of protocols that a number of participants
should realise through some communication actions, the latter as descriptions of
the contribution of single participants.

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No 778233. Work partially funded by MIUR project
PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart Sys-
tems). The first and second authors have also been partially supported by INdAM as
members of GNCS (Gruppo Nazionale per il Calcolo Scientifico). The first author has
also been partially supported by Progetto di Ateneo UNICT PIACERI. The authors
thank the anonymous reviewers for their helpful comments, in particular one reviewer of
a previous submission for suggesting the relation with Galois connections. The authors
also thank Mariangiola Dezani-Ciancaglini for her support.

c© IFIP International Federation for Information Processing 2022
M. H. ter Beek and M. Sirjani (Eds.): COORDINATION 2022, LNCS 13271, pp. 121–139, 2022.
https://doi.org/10.1007/978-3-031-08143-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08143-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-08143-9_8

122 F. Barbanera et al.

We propose formal choreographic languages (FCL) as a general framework to
formalise message-passing systems; existing choreographic models can be con-
ceived as specifications of FCLs. Specifically, we introduce global and local lan-
guages. Global languages (g-languages for short) are made of words built out of
interactions of the form A−→B:m, representing the fact that participant A sends
message m to participant B, and participant B receives it. Local languages (l-
languages for short) consist of words of actions of the forms AB?m and AB!m,
respectively representing that participant B receives message m from A and that
participant A sends message m to B.

Abstractly such languages consist of runs of a system described in terms
of sequences of interactions at the global level and executed through message-
passing at the local level. A word w in a global language represents then a
possible run expected of a communicating system inducing an expected “local”
behaviour on each participant A: the projection of w on A yields the sequence
of output or input actions performed by A along the run w.

Our language-theoretic treatment is motivated mainly by the need for a gen-
eral setting immune to syntactic restrictions. This naturally leads us to consider
e.g., context-free choreographies (cf. Example 3.11). In fact, we strive for gen-
erality; basically prefix-closure is the only requirement we impose on FCL. The
gist is that, if a sequence of interactions or of communications is an observable
behaviour of a system, any prefix of the sequence should be observable as well.
(We discuss some implications of relaxing prefix-closure in Sect. 8.) This allows
us to consider partial executions as well as “complete” ones. We admit infi-
nite words to account for diverging computations, ubiquitous in communication
protocols.

Some g-languages cannot be faithfully executed by distributed components;
consider { A−→B:m, A−→B:m·C−→D:n } that specifies a system where, if occurring, the
interaction between C and D has to follow the one between A and B. Clearly,
this is not possible if the participants act concurrently because C and D are not
aware of when the interaction between A and B takes place.

Contributions and Structure. We summarise below our main contributions.
(Proofs and further material can be found in [7].)

Section 2 introduces FCL (g-languages in Definition 2.1, l-languages in Def-
inition 2.2) and adapts standard constructions from the literature. We consider
synchronous interactions; the asynchronous case, albeit interesting, is scope for
future work (cf. Sect. 8). In particular, we render communicating systems as sets
of l-languages (Definition 2.3), while we borrow projections from choreographies
and multiparty session types.

Section 3 considers correctness and completeness. An immediate consequence
of our constructions is the completeness of systems projected from g-languages
(Corollary 3.2). Correctness is more tricky; for it, Definition 3.3 introduces clo-
sure under unknown information (CUI). Intuitively, a g-language is CUI if it
contains extensions of words with a single interaction whose participants cannot
distinguish the extended word from other words of the language. Theorem3.7
characterises correctness of projected systems in terms of CUI.

Formal Choreographic Languages 123

Section 4 shows how FCLs capture many relevant communication properties
in a fairly uniform way.

Section 5 proposes branch-awareness (Definition 5.3) to ensure the communi-
cation properties defined in Sect. 4 (Theorem 5.6). Intuitively, branch-awareness
requires each participant to “distinguish” words where its behaviour differs.
Notably, we separate the conditions for correctness from the ones for commu-
nication properties. Most approaches in the literature instead combine them
into a single condition, which takes names such as well-branchedness or pro-
jectability [25]. Thus, these single conditions are stronger than each of CUI and
branch-awareness.

Sections 6 and 7 illustrate the generality of FCLs on two case studies, respec-
tively taken from multiparty session types [37] and choreography automata [6].
We remark that FCL can capture protocols that cannot be represented by reg-
ular g-languages such as the “task dispatching” protocol in Example 3.11. To
the best of our knowledge this kind of protocols cannot be formalised in other
approaches.

Section 8 draws some conclusions and discusses future work.

2 Formal Choreographic Languages

We briefly recall a few notions used through the paper. The sets of finite and
infinite words on a given alphabet Σ are, respectively, denoted by Σ� and Σω,
where an infinite word on Σ is a map from natural numbers to Σ (aka ω-
word [38]). Let · be the concatenation operator on words and ε its neutral
element. We write a0 ·a1 ·a2 ·. . . for the word mapping i to ai ∈ Σ for all natural
numbers i. A language L on Σ is a subset of Σ∞ = Σ� ∪ Σω. The prefix-closure
of L ⊆ Σ∞ is pref(L) = { z ∈ Σ∞ ∣

∣ ∃z′ ∈ L : z � z′ }, where � is the prefix
relation; L is prefix-closed if L = pref(L). A word z is maximal in a language
L ⊆ Σ∞ if z � z′ for z′ ∈ L implies z′ = z. As usual we shall write z ≺ z′

whenever z � z′ and z 	= z′.
We shall deal with languages on particular alphabets, namely the alphabets

of interactions Σint and of actions Σact whose definitions, borrowed from [6], are
as follows1

Σint = { A−→B:m
∣
∣ A 	= B ∈ P,m ∈ M } ranged over by α, β, . . .

Σact = { AB!m, AB?m
∣
∣ A 	= B ∈ P,m ∈ M } ranged over by a, b, . . .

where P is a fixed set of participants (or roles, ranged over by A, B, X, etc.)
and M is a fixed set of messages (ranged over by m, x, etc.); we take P and
M disjoint. Let msg(A−→B:m) = msg(AB!m) = msg(AB?m) = m and ptp(A−→B:m) =
ptp(AB!m) = ptp(AB?m) = {A,B }. These functions extend homomorphically to
(sets of) words. The subject of AB!m is the sender A and the subject of AB?m is
the receiver B. Words on Σ∞

int (ranged over by w,w′, ...) are called interaction
1 These sets may be infinite; formal languages over infinite alphabets have been stud-

ied, e.g., in [4].

124 F. Barbanera et al.

words while those on Σ∞
act (ranged over by v, v′, ...) are called words of actions.

Hereafter z, z′, ... range over Σ∞
int∪Σ∞

act and we use L and L to range over subsets
of, respectively, Σ∞

int and Σ∞
act.

A global language specifies the expected interactions of a system while a local
language specifies the communication behaviour of participants.

Definition 2.1 (Global language). A global language (g-language for short)
is a prefix-closed language L on Σ∞

int such that ptp(L) is finite.

Definition 2.2 (Local language). A local language (l-language for short) is
a prefix-closed language L on Σact such that ptp(L) is finite. An l-language is
A-local if its words have all actions with subject A.

As discussed in Sect. 1, l-languages give rise to communicating systems.

Definition 2.3 (Communicating system). Let P ⊆ P be a finite set of par-
ticipants. A (communicating) system over P is a map S = (LA)A∈P assigning an
A-local language LA 	= { ε } such that ptp(LA) ⊆ P to each participant A ∈ P.

By projecting a g-language L on a participant A we obtain the A-local lan-
guage describing the sequence of actions performed by A in the interactions
involving A in the words of L.

Definition 2.4 (Projection). The projection on A of an interaction B−→C:m is
computed by the function ↓ : Σint × P → Σact ∪ { ε } defined by:

(A−→B:m)↓A= AB!m (A−→B:m)↓B= AB?m (A−→B:m)↓C= ε

and extended homomorphically to interaction words and g-languages. The pro-
jection of a g-language L, written L↓, is the communicating system (L↓A)A∈ptp(L).

Definition 2.4 recasts in our setting the notion of projection used, e.g., in [13,24].

Example 2.5. Let L = pref({ C−→A:m·A−→B:m, C−→B:m·A−→B:m, C−→A:m·C−→B:m }).
By Definition 2.4, we have L ↓= (L ↓X)X∈{ A,B,C } where L ↓A=
{ ε, CA?m, CA?m ·AB!m, AB!m }, L ↓B= { ε, AB?m, CB?m, CB?m ·AB?m }, and L ↓C=
{ ε, CA!m, CB!m, CA!m·CB!m }. �

We consider a synchronous semantics of communicating systems, similarly
to other choreographic approaches such as [12,13,15,37]. Intuitively, a choreo-
graphic word is in the semantics iff its projection on each participant A yields a
word in the local language of A.

Definition 2.6 (Semantics). Given a system S over P, the set

�S� = {w ∈ Σ∞
int

∣
∣ ptp(w) ⊆ P ∧ ∀A ∈ P : w↓A∈ S(A) }

is the (synchronous) semantics of S.

Formal Choreographic Languages 125

Notice that the above definition coincides with the join operation in [18], used
in realisability conditions for an asynchronous setting.

Example 2.7. The semantics �L↓� of the system L↓ in Example 2.5 is the prefix
closure of { C−→A:m·A−→B:m, C−→B:m·A−→B:m, C−→A:m·C−→B:m·A−→B:m }. �

Two interactions α and β are independent (in symbols α ‖ β) when
ptp(α) ∩ ptp(β) = ∅. Informally, independent interactions can be swapped.
The concurrency closure on infinite words is delicate. One in fact has to allow
infinitely many swaps while avoiding that they make an interaction disappear by
pushing it infinitely far away. Technically, we consider Mazurkiewicz’s traces [33]
on Σint with independence relation α ‖ β:

Definition 2.8 (Concurrency closure). Let ∼ be the reflexive and transi-
tive closure of the relation ≡ on finite interaction words defined by w α β w′ ≡
w β α w′ where α ‖ β. Following [Def. 2.1][19], ∼ extends to Σω

int by defining

for all w,w′ ∈ Σω
int : w ∼ w′ ⇐⇒ w � w′ and w′ � w

where w � w′ iff for each finite prefix w1 of w there are a finite prefix w′
1 of

w′ and a g-word ŵ ∈ Σ�
int such that w1 ·ŵ ∼ w′

1. A g-language L is concurrency
closed (c-closed for short) if it coincides with its concurrency closure, namely
L = {w ∈ Σ∞

int

∣
∣ ∃w′ ∈ L : w ∼ w′ }.

Semantics of systems are naturally c-closed since in a distributed setting
independent events can occur in any order. Indeed

Proposition 2.9. Let S be a system. Then �S� is c-closed.

The intuition that g-languages, equipped with the projection and semantic
functions of Definition 2.4 and Definition 2.6, do correspond to a natural syntax
and semantics for the abstract notion of choreography, can be strengthened by
showing that these functions form a Galois connection.

Let us define G = {L ∣
∣ L is a g-language } and S = {S

∣
∣ S is a system }.

Moreover, given S, S′ ∈ S, we define S ⊆ S′ if S(A) ⊆ S′(A) for each A.

Proposition 2.10. The functions ↓ and � � form a (monotone) Galois con-
nection between the posets (G,⊆) and (S,⊆), namely, ↓ and � � are monotone
functions such that, given L ∈ G and S ∈ S:

L↓⊆ S ⇐⇒ L ⊆ �S�

Notice that, by Proposition 2.10, L ↓⊆ S can be understood as “L can be
realized by S” according to the notion of realisability frequently used in the
literature, namely that all behaviours of the choreography are possible for the
system.

It is well-known that, given a Galois connection (f�, f
�) the function cl =

f� ◦ f� is a closure operator namely, it is monotone (x ≤ y =⇒ cl(x) ≤ cl(y)),
extensive (x ≤ cl(x)), and idempotent (cl(x) = cl(cl(x))). In our setting cl() =
� ↓�, hence the above boils down to the following corollary:

126 F. Barbanera et al.

Corollary 2.11. For all g-languages L,L′ ∈ G,

monotonicity: L ⊆ L′ =⇒ �L↓� ⊆ �L′ ↓�,
extensiveness: L ⊆ �L↓�,
idempotency: �L↓� = ��L↓�↓�.

As we shall see, extensiveness coincides with completeness (Definition 3.1)
and, together with monotonicity, implies harmonicity (Definition 4.1).

3 Correctness and Completeness

A g-language specifies the expected communication behaviour of a system made
of several components. We now define properties relating a communicating sys-
tem (i.e., a set of l-languages) with a specification (i.e., a g-language).

Definition 3.1 (Correctness and completeness). A system S is correct
(resp. complete) w.r.t. a g-language L if �S� ⊆ L (resp. �S� ⊇ L).

Correctness and completeness are related to existing notions. For instance, in
the literature on multiparty session types (see, e.g., the survey [25]) correctness
is analogous to subject reduction and completeness to session fidelity. Notice
that by Proposition 2.10, we can interpret L ↓⊆ S as a characterisation for
completeness of S w.r.t. L.

We discuss now how to ensure correctness and completeness “by construc-
tion”. Completeness is trivial: it holds for any projected system and coincides
with the extensiveness property of the closure operator associated to the Galois
connection defined in Sect. 2.

Corollary 3.2. The projection of a g-language L is complete w.r.t. L.

We show now how correctness can be characterised as a closure property.

Definition 3.3 (CUI). A g-language L is closed under unknown information
(in symbols cui(L)) if, for all finite words w1 ·α,w2 ·α ∈ L with the same final
interaction α = A−→B:m ∈ Σint, w·α ∈ L for all w ∈ L such that w ↓A= w1 ↓A and
w ↓B= w2 ↓B.

Intuitively, participants cannot distinguish words with the same projection on
their role. Hence, if two participants A and B find words w1 and w2 compatible
with another word w, and interaction A−→B:m can occur after both w1 and w2,
then it should be enabled also after w. Indeed, A (resp. B) cannot know whether
the current word is w or w1 (resp. w2), hence A and B are willing to take A−→B:m,
which can thus happen at the system level. Closure under unknown information
(CUI for short) lifts this requirement at the level of g-language.

Example 3.4. The language L in Example 2.5 is not CUI because it contains the
words

w1 ·α = C−→A:m·A−→B:m w2 ·α = C−→B:m·A−→B:m and w = C−→A:m·C−→B:m

Formal Choreographic Languages 127

and A cannot distinguish between w1 and w while B cannot distinguish between
w2 and w; nonetheless w·A−→B:m = C−→A:m·C−→B:m·A−→B:m 	∈ L. Notice that w·A−→B:m ∈
�L↓�, hence L 	⊇ �L↓�. �

The language in Example 3.4 is not the semantics of any system, in fact
languages obtained as semantics of a communicating system are always CUI.

Proposition 3.5 (Semantics is CUI). For all systems S, �S� is CUI.

The next property connects finite and infinite words in a language; it cor-
responds to the closure under the limit operation used in ω-languages [17,38].

Definition 3.6 (Continuity). A language L on an alphabet Σ is continuous
if z ∈ L for all z ∈ Σω such that pref(z) ∩ L is infinite.

This notion of continuity, besides being quite natural, is the most suitable for
our purposes among the possible ones [36]. Intuitively, a language L is continuous
if an ω-word is in L when infinitely many of its approximants (i.e., finite prefixes)
are in L. A g-language L is standard or continuous (sc-language, for short) if
either L ⊆ Σ�

int or L is continuous. Notice that for prefix-closed languages for all
z ∈ Lω we have that pref(z) ∩ L is infinite iff pref(z) ⊆ L.

Closure under unknown information characterises correct projected systems.

Theorem 3.7 (Characterisation of correctness). If L↓ is correct w.r.t. L
then cui(L) holds. If L is an sc-language and cui(L) then L↓ is correct w.r.t. L.

Notice that CUI is defined in terms of g-languages only, hence checking CUI
does not require to build the corresponding system. Also, strengthening the
precondition of Definition 3.3 with the additional requirement w1 = w2 would
invalidate Theorem 3.7. Indeed, the language in Example 2.5 would become CUI
but not correct. The next example shows that the continuity condition in The-
orem 3.7 is necessary for languages containing infinite g-words.

Example 3.8 (Continuity matters). The CUI language

L = pref(
⋃

i≥0

{ A−→B:l·B−→C:n·(C−→D:n)i } ∪ { A−→B:r·B−→C:n·(C−→D:n)ω })

does contain an infinite word but it is not continuous. The projection of L is
not correct because its semantics contains the g-word A−→B:l·B−→C:n·(C−→D:n)ω 	∈ L
since the projections of C and D can exchange infinitely many messages n due
to the infinite g-word of L regardless whether A and B exchange l or r. �

Notice that, since L ⊆ �L↓� always holds, Theorem3.7 implies that cui(L)
characterises the languages L such that L = �L↓�. Besides, the following corol-
lary descends from Theorem 3.7.

Corollary 3.9. For each sc-language L, cl(L) is the smallest CUI sc-language
containing L.

128 F. Barbanera et al.

CUI ensures that continuous g-languages are c-closed.

Proposition 3.10. If L is an sc-language and cui(L), then L is c-closed.

Hence, an sc-language cannot be CUI unless it is c-closed.
As recalled before, in many choreographic formalisms (such as [5,9,14,18,25])

the correctness and completeness of a projected system, namely L = �L↓�
(together with some forms of liveness and deadlock-freedom properties), is guar-
anteed by well-branchedness conditions. Most of such conditions guarantee, infor-
mally, that participants reach consensus on which branch to take when choices
arise. For instance, a well-branchedness condition could be that, at each choice,
there is a unique participant deciding the branch to follow during a computa-
tion and that such participant informs each other participant. Such a condition
is actually not needed to prove L = �L↓�. In fact the g-language obtained by
adding the word w of Example 3.4 to the language of Example 2.5 is CUI, with-
out being well-branched in the above sense. Indeed, after the interaction C−→A:m,
there is a branching in the projected system, since both the interactions C−→B:m
and A−→B:m can be performed. However, these interactions do not have the same
sender.

The next example exhibits a non-regular CUI g-language of finite words. By
Theorem 3.7 and Corollary 3.2, the projected system is correct and complete.

Example 3.11 (Task dispatching). As soon as a server (S) communicates its avail-
ability (a), a dispatcher (D) sends a task (t) to S. The server either processes
the task directly and sends back the resulting data (d) to D or sends the task to
participant H for some pre-processing, aiming at resuming it later on. Indeed,
after communicating a result to D, the server can resume (r) a previous task (if
any) from H, process it, and send the result to D. The server eventually stops
by sending s to both D and H; this can happen only when all dispatched tasks
have been processed.

This protocol corresponds to the g-language L = pref(L), where L is the
(non-regular) language generated by the following context-free grammar.

S :: = S′ ·S−→D:s·S−→H:s S′ :: = S−→D:a·D−→S:t·S−→H:t·S′ ·S−→H:r·H−→S:r·S−→D:d·S′
∣
∣ S−→D:a·D−→S:t·S−→D:d·S′ ∣

∣ ε

Since S is involved in all the interactions of L, for each pair of words w,w′ ∈ L:
w ↓S= w′ ↓S iff w = w′. Now, if w1 α,w2 α,w ∈ L satisfy the required conditions
for CUI then either w1 ↓S= w ↓S or w2 ↓S= w ↓S, since S ∈ ptp(α). Hence cui(L)
trivially holds. �

The language in Example 3.11 is non-regular since it has the same structure
of a language of well-balanced parenthesis. Remarkably, this implies that the
g-language cannot be expressed in any other choreographic model we are aware
of. The argument used to show cui(L) in Example 3.11 proves the following.

Proposition 3.12. If there exists a participant involved in all the interactions
of a g-language L then cui(L) holds.

Formal Choreographic Languages 129

4 Communication Properties

Besides correctness and completeness, other properties could be of interest. For
instance, one would like to ensure that participants eventually interact, if they
are willing to. We consider a few properties, informally described as follows.

Harmonicity (HA): each sequence of communications that a participant is able
to perform can be executed in some computation of the system.

Lock-freedom (LF): if a participant has pending communications to make on
an ongoing computation, then there is a continuation of the computation
involving that participant.

Strong lock-freedom (SLF): if a participant has pending communications to
make on an ongoing computation, then each maximal continuation of the
computation involves that participant.

Starvation-freedom (SF): if a participant has pending communications to
make on an ongoing computation, then each infinite continuation of the com-
putation involves that participant.

Deadlock-freedom (DF): in all completed computations each participant has
no pending actions.

We now formalise the properties above.

Definition 4.1 (Communication properties). Let S be a system on P.

HA S is harmonic if S(A) ⊆ �S�↓A for each A ∈ P.
LF S is lock free if, for each finite word w ∈ �S� and participant A ∈ P, if w↓A

is not maximal in S(A) then there is a word w′ such that ww′ ∈ �S� and
w′ ↓A 	= ε.

SLF S is strongly lock free if, for each finite w ∈ �S� and participant A ∈ P, if
w↓A is not maximal in S(A) then for each word w′ such that ww′ is maximal
in �S� we have w′ ↓A 	= ε.

SF S is starvation free if, for each finite w ∈ �S� and participant A ∈ P, if w↓A

is not maximal in S(A) then w′ ↓A 	= ε for each infinite word w′ such that
ww′ ∈ �S�.

DF S is deadlock free if, for each finite and maximal word w ∈ �S� and partic-
ipant A ∈ P, w↓A is maximal in S(A).

Barred for harmonicity, these properties appear in the literature under dif-
ferent names in various contexts. For instance, the notion of lock-freedom in [5]
corresponds to ours, which in turn corresponds to the notion of liveness in [29,32]
in a channel-based synchronous communication setting. Likewise, the notion of
strong lock-freedom in [37] corresponds to ours and, under fair scheduling, to
the notion of lock-freedom in [28]. As a final example, the definition of deadlock-
freedom in its (equivalent) contrapositive form, coincides with the notion of
progress as defined for synchronous processes in [23,35]. Harmonicity, introduced
in the present paper, assures that no behaviour of a participant can be taken
out from a system without affecting the overall behaviour of the system itself.
Notice that the inverse of harmonicity, �S�↓A⊆ S(A), holds by construction.

The next proposition highlights the relations among our properties.

130 F. Barbanera et al.

Proposition 4.2. The following relations hold among the properties in Defini-
tion 4.1

LF DF

HA SF

where implication does
not hold in any direction
between properties con-
nected by dashed lines

Moreover, DF ∧ SF ⇔ SLF.

/

5 Communication Properties by Construction

Harmonicity is the only property in Definition 4.1 guaranteed by projection on
any system. This can be obtained as a simple consequence of Corollary 3.2.

Corollary 5.1. If L is a g-language then L↓ is harmonic.

The other properties require some conditions on systems to be enjoyed by
L↓. Basically, we will strengthen CUI which is too weak. For instance, cui(L)
does imply neither deadlock-freedom nor lock-freedom for L↓.

Example 5.2 (CUI � DF). Consider the following words

w = A−→C:l·A−→B:m·A−→C:m and w′ = A−→C:r·A−→B:m·B−→C:m

It is easy to check that the g-language L = pref({w,w′ }) is CUI. Informally,
cui(L) holds because C can ascertain which of its last actions to execute from the
first input. So, Corollary 3.2 and Theorem 3.7 ensure that L = �L↓�. However,
L↓ is not deadlock-free. In particular, w ∈ L = �L↓� is a deadlock since it is a
finite maximal word whose projection on B, namely w↓B= AB?m, is not maximal
in L↓B because w′ ↓B= AB?m·BC!m ∈ L↓B.

By Proposition 4.2, the system above is also non lock-free. �
In many models (cf. [25]) in order to ensure, besides other properties, also

the correctness of L↓, a condition called well-branchedness is required. We iden-
tify a notion weaker than well-branchedness, which by analogy we dub branch-
awareness (BA for short).

Definition 5.3 (Branch-awareness). A participant X distinguishes two g-
words w1, w2 ∈ Σ∞

int if

w1 ↓X 	= w2 ↓X and w1 ↓X 	≺ w2 ↓X and w2 ↓X 	≺ w1 ↓X .

A g-language L on P is branch-aware if each X ∈ P distinguishes all maximal
words in L whose projections on X differ.

Example 5.4. The language L = pref({w,w′ }) with w = A−→C:l·A−→B:m·A−→C:m and
w′ = A−→C:r·A−→B:m·B−→C:m from Example 5.2 is not branch-aware, since w↓B= AB?m
and w′ ↓B= AB?m·BC!m, hence w↓B 	= w′ ↓B but w↓B≺ w′ ↓B. �

Formal Choreographic Languages 131

Condition w1 ↓X 	= w2 ↓X in Definition 5.3 is not strictly needed to define BA,
but it makes the notion of ‘distinguishes’ more intuitive. Equivalently, as shown
in Proposition 5.5 below, a participant X distinguishes two branches if, after a
common prefix, X is actively involved in both branches, performing different
interactions.

Proposition 5.5. Participant X distinguishes two g-words w1, w2 ∈ Σ∞
int iff

there are w′
1 ·α1 � w1 and w′

2 ·α2 � w2 such that w′
1 ↓X= w′

2 ↓X and α1 ↓X 	= α2 ↓X.

The notions of well-branchedness in the literature [25] additionally impose
that α1 ↓X and α2 ↓X in the above proposition are input actions, but for a (unique)
participant (a.k.a., the selector) which is required to have different outputs.

In our case, BA is not needed for correctness, but it is nevertheless useful to
prove the communication properties presented in Sect. 4.

Theorem 5.6 (Consequences of BA). Let L be a branch-aware and CUI
sc-language. Then L↓ satisfies all the properties in Definition 4.1.

Example 5.7 (The task dispatching protocol is branch aware). In order to show
that the g-language L in Example 3.11 is branch-aware, we first notice that each
maximal word in L ends with the interactions S−→D:s·S−→H:s. If L were not branch-
aware, there should be two maximal words w·S−→D:s·S−→H:s and w′·S−→D:s·S−→H:s and
a participant X ∈ ptp(L) such that (w·S−→D:s·S−→H:s)↓X≺ (w′·S−→D:s·S−→H:s)↓X. This
is impossible, since w and w′ are both generated by the non terminal symbol S′

and hence cannot contain the message s. �
Proposition 4.2 refines as follows when restricting to projections of g-

languages.

Proposition 5.8 When considering only systems which are projections of g-
languages the following relations hold among the properties in Definition 4.1

LF DF

HA SF

where implication does
not hold in any direction
between properties con-
nected by dashed lines

Moreover, DF ∧ SF ⇔ SLF.

/

/

/
/

It is not difficult to show that branch-awareness actually characterises SLF for
systems obtained by projecting CUI languages.

Proposition 5.9 (Branch-awareness characterises SLF). A CUI g-
language L is branch-aware iff L↓ is strongly lock-free.

6 Global Types as Choreographic Languages

The global types of [37] are our first case study. We recall global types adapting
some of the notation in [37] to our setting. Informally, a global type A → B :

132 F. Barbanera et al.

{mi.Gi}1≤i≤n specifies a protocol where participant A must send to B a message
mi for some 1 ≤ i ≤ n and then, depending on which mi was chosen by A, the
protocol continues as Gi. Global types and multiparty sessions are defined in [37]
in terms of the following grammars:

G :: =co end
∣
∣ A → B : {mi.Gi}1≤i≤n

P :: =co 0
∣
∣ A?{mi.Pi}1≤i≤n
∣
∣ A!{mi.Pi}1≤i≤n

M :: = A � P
∣
∣ M ∣

∣ M

respectively for pre-global types, pre-processes, and pre-multiparty sessions. The
first two grammars are interpreted coinductively, that is their solutions are both
minimal and maximal fixpoints (the latter corresponding to infinite trees) and
all messages mi are pairwise different. A pre-global type G (resp. pre-process
P) is a global type (resp. process) if its tree representation is regular, namely it
has finitely many distinct sub-trees. A multiparty session (MPS for short) is a
pre-multiparty session such that (a) in A � P , participant A does not occur in
process P and (b) in A1 �P1 | . . . | An �Pn, participants Ai are pairwise different.

The semantics of global types is the LTS induced by

A → B : {mi.Gi}1≤i≤n

A→B:mi−−−−→ Gi R → S : {mi.Gi}1≤i≤n
A→B:m−−−−→ R → S : {mi.G

′
i}1≤i≤n

where in the latter rule {A,B }∩{R,S } = ∅ and for each 1 ≤ i ≤ n, Gi
A→B:m−−−−→ G′

i.
A branch is a set {mi.Pi}1≤i≤n where messages mi are pairwise distinct.

The semantics for MPSs is the LTS defined by the following rule

A � B!({m.P} � Λ)
∣
∣ B � A?({m.P ′} � Λ′)

∣
∣ M A→B:m−−−−→ A � P

∣
∣ B � P ′ ∣

∣ M (1)

where � is the union of branches defined only on branches with disjoint sets of
messages. Rule (1) applies only if the messages in Λ′ include those in Λ, which
is the case for MPSs obtained by projection, defined below.

Definition 6.1 (Projection [37, Definition 3.4]). The projection of G on
a participant X such that the depths of its occurrences in G are bounded is the
partial function G �X coinductively defined by end �X= 0 and, for a global type
G = A → B : {mi.Gi}1≤i≤n, by:

G�X=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if X is not a participant of G
B!{mi.Gi �X}1≤i≤n if X = A

A?{mi.Gi �X}1≤i≤n if X = B

G1 �X if X 	∈ {A,B} and n = 1
S?(Λ1 � . . . � Λn) if X 	∈ {A,B}, n > 1, and ∀1 ≤ i ≤ n : Gi �X= S?Λi

The global type G is projectable2 if G�X is defined for all participants X of G, in
which case G� denotes the corresponding MPS.

The g-language L(G) associated to a global type G is the concurrency and
prefix closure of L′(G), that is L(G) = pref({w ∈ Σ∞

int

∣
∣ ∃w′ ∈ L′(G) : w ∼ w′ })

where L′(G) is coinductively defined as follows:

L′(end) = { ε } and L′(A → B : {mi.Gi}1≤i≤n) =
⋃

1≤i≤n{ A−→B:mi ·w
∣
∣ w ∈ L′(Gi) }

2 In [37], projectability embeds well-branchedness.

Formal Choreographic Languages 133

We define the l-language L(B � P) associated to a named process B � P as the
prefix closure of L

′(B � P) which, letting 	 ∈ { ?, ! }, is defined by

L
′(B � 0) = { ε } and L

′(B � A	 {mi.Pi}1≤i≤n) =
⋃

1≤i≤n{AB� mi ·w
∣
∣ w ∈ L

′(Pi) }

The system associated to an MPS is defined as the following map:

S(A1 �P1 | . . . | An � Pn) = {Ai �→ L(Ai � Pi)
∣
∣ 1 ≤ i ≤ n }

Our constructions capture relevant properties of the global types in [37]. First,
we relate projectability (cf. Definition 6.1) and our properties.

Proposition 6.2. If G is a projectable global type then L(G) is a CUI and
branch-aware sc-language.

This yields the following correspondences between the two frameworks.

Proposition 6.3. Given a projectable global type G,

L(G) ={w
∣
∣ G

w−→} (2) �S(G�)� ={w
∣
∣ G� w−→ } (3)

Projectable global types are proved strongly lock-free in [37]. The following result
corresponds to [37, Theorem 4.7].

Corollary 6.4. S(G�) is strongly lock-free for any projectable G.

The symmetry between senders and receivers in CUI and branch-awareness
allows for an immediate generalisation of the projection in Definition 6.1 by
extending the last case with the clause:

S!(Λ1 � . . . � Λn) if X 	∈ {A,B}, n > 1, and ∀1 ≤ i ≤ n : Gi �X= S!Λi

Corollary 6.4 still holds for this generalised definition of projection.

7 Choreography Automata

Recently we introduced choreography automata (c-automata) [6] as an expressive
and flexible model of global specifications. A c-automaton CA = 〈S, q0, Σint,→〉
is a finite-state automaton whose transition relation is labelled in Σint, namely
→⊆ S × Σint × S (cf. [7, Def. 8.2]: for the sake of space most of the technical
details of this section are in [7]). Observe that the set P of participants of CA
is necessarily finite. We have some immediate connection between c-automata
and FCL by taking as the language L(CA) of CA the set of words obtained by
concatenating the labels on any of its paths (including infinite paths, cf. [7, Def.
8.3]). In fact L(CA) is a continuous g-language, that is it is prefix-closed (cf. [7,
Prop. 8.4]).

The local behaviour of a participant A ∈ P can be straightforwardly obtained
by projecting c-automata on communicating finite-state machines (CFSMs) [11].

134 F. Barbanera et al.

Basically, a CFSM is a finite-state automaton whose transitions are labelled in
Σact (cf. [7, Def. 8.1]). Formally, the projection of a c-automaton CA on A, written
CA↓A, is obtained by determinising up-to-language equivalence the intermediate
automaton

AA = 〈S, q0, Σact ∪ { ε }, { q
λ↓A−−→ q′ ∣

∣ q
λ−→ q′ }〉

Finally, CA↓= (CA↓A)A∈P is the projection of CA(cf. [7, Def. 8.5]).
By applying the definition of language of c-automaton to CFSMs we can

associate an l-language L(M) to each CFSM M (cf. [7, Def. 8.3]). Projections
of c-automata and of the corresponding g-languages are related: L(CA ↓A) =
L(CA)↓A (cf. [7, Prop. 8.8]).

The synchronous behaviour of a system of CFSMs (MA)A∈P can be given
as an LTS where states are maps assigning a state in MA to each A ∈ P and
transitions are labelled by interactions (or by ε). Intuitively, given a configuration

s, if MA and MB have respectively transitions s(A) AB!m−−−−→ q′
A and s(B) AB?m−−−−→ q′

B

then s
A−→B:m−−−−−→ s[A �→ q′

A,B �→ q′
B], where f [x �→ y] denotes the update of f on x

with y. Likewise, s(A) ε−→ q′
A in MA implies s

ε−→ s[A �→ q′
A]. Observing that CA↓

is ε-free, the LTS of CA↓ is a c-automaton and its language coincides with the
g-language of the system { L(CA↓X) }X∈P (cf. [7, Prop. 8.7]).

Fig. 1. Contributions of the paper

The communication properties of a system of CFSMs S on P considered
in [6] are liveness, lock-freedom, and deadlock-freedom. We give an intuition of
such properties (see [7, Def. 8.9] for a precise account).

– S is live when each reachable configuration where a participant A ∈ P can
execute a communication has a continuation where A is involved;

– S is lock-free when in all computations starting from a reachable configuration
where a participant A ∈ P can execute, A is involved;

– S is deadlock-free if in none of its reachable configurations s without outgoing
transitions there exists A ∈ P willing to communicate.

A system of CFSMs S = (MX)X∈P is abstractly represented by the system
Ŝ = (L(MX))X∈P . It is the case that lock-freedom, strong lock-freedom, and
deadlock-freedom of Ŝ (in the sense of Definition 4.1) respectively imply liveness,
lock-freedom, and deadlock-freedom of S (cf. [7, Prop. 8.12]).

Formal Choreographic Languages 135

The conditions on c-automata devised in [6] in order to guarantee the above
communication properties in the synchronous case turned out to be flawed. This
is shown in [7, Sec. 8.3] (cf. [7, Ex. 8.10]).

Fortunately, the conditions given in the present paper can be applied also in
the setting of c-automata. As shown in [7, Sec. 8.4], CUI and branch-awareness
are decidable.

8 Concluding Remarks

We developed a general and abstract theory of choreographies based on formal
languages, in which we recasted known properties and constructions such as
projections from global to local specifications. We briefly recap our main contri-
butions, synoptically depicted in Fig. 1.

One of our contributions is the characterisation of systems’ correctness in
terms of closure under unknown information (CUI). Other communication prop-
erties can be ensured by additionally requiring branch awareness (BA).

Finally, the versatility of FCL allows us to capture existing models. We con-
sidered two models chosen according to their “proximity” to FCL. The first
model, the variant of MPSTs presented in [37], being based on behavioural
types, radically differs from FCL. The second framework, the c-automata in [6],
is closer to FCL given that it retraces the connection between automata and
formal language theories.

Related Work. The use of formal language theories for the modelling of con-
current systems dates back to the theory of traces [33]. A trace is an equivalence
class of words that differ only for swaps of independent symbols. Closure under
concurrency corresponds on finite words to form traces, as we noted after Defi-
nition 2.8. An extensive literature has explored a notion of realisability whereby
a language of traces is realisable if it is accepted by some class of finite-state
automata. Relevant results in this respect are the characterisations in [16,39]
(and the optimisation in [22]) for finite words and the ones in [19–21] for infi-
nite ones. A key difference of our framework w.r.t. this line of work is that we
aim to stricter notions of realisability: in our context it is not enough that the
runs of the language may be faithfully executed by a certain class of finite-state
automata. Rather we are interested in identifying conditions on the g-languages
that guarantee well-behaved executions in “natural” realisations.

Other abstract models of choreographies, e.g. [6,18], have some relation
with ours. Conversation protocols (CP) [18], probably the first automata-based
model of choreographies, are non-deterministic Büchi automata whose alphabet
resembles a constrained variant of our Σint. A comparison with the g-languages
accepted by CPs is not immediate as CPs are based on asynchronous communi-
cations (although some connections are evident as noted below Definition 2.6).

Other proposals ascribable to choreographic settings (cf. [25]) define global
views that can be seen as g-languages. We focus on synchronous approaches
because our current theory needs to be extended to cope with asynchrony.

136 F. Barbanera et al.

In [12,31] the correctness of implementations of choreographies (called chore-
ography conformance) is studied in a process algebraic setting. The other com-
munication properties we consider here are not discussed there.

The notion of choreography implementation in [12] corresponds to our cor-
rectness plus a form of existential termination. It is shown that one can decide
whether a system is an implementation of a given choreography, since both lan-
guages are generated by finite-state automata, hence language inclusion and
existential termination are decidable.

In [31] three syntactic conditions (connectedness, unique points of choice
and causality safety) ensure bisimilarity (hence trace equivalence) between a
choreography and its projection. Connectedness rules out systems which are not
c-closed, while we conjecture that unique points of choice and connectedness
together imply our CUI and BA. Causality safety, immaterial in our case, is
needed in [31] due to explicit parallel composition.

Many multiparty session type systems [25] have two levels of types (global
and local) and one implementation level (local processes). This is the case also
for synchronous session type systems such as [15,30]. Our approach, like the
session type systems in [5,37], considers only (two) abstract descriptions, g-
languages and l-languages. The literature offers several behavioural types fea-
turing correctness-by-construction principles through conditions (known as pro-
jectability or well-branchedness) more demanding than ours. For instance, rela-
tions similar to those in Sect. 6 can be devised for close formalisms, such as [5]
whose notion of projection is more general than the one in [37], yet its notion of
projectability still implies CUI and BA.

There is a connection between CUI and the closure property CC2 [3] on
message-sequence charts (MSCs) [26]. On finite words CC2 and CUI coincide.
Actually, CUI can be regarded as a step-by-step way to ensure CC2 on finite
words. The relations between our properties and CC3, also used in MSCs, are
still under scrutiny.

Future Work. Our investigation proposes a new point of view for choreography
formalisms and the related constructions. As such, a number of extensions and
improvements need to be analysed, to check how they may fit in our setting. We
list below the most relevant.

First, we need to extend our theory to cope with asynchronous communi-
cations. While the general approach should apply, it is not immediate how to
extend CUI in order to characterize correctness for an asynchronous semantics.
This is somehow confirmed by the results in [1,2] on the realisability of MSCs
showing that in the asynchronous setting this is a challenging problem.

A second direction is analysing how to drop prefix-closure, so allowing for
specifications where the system (and single participants) may stop their execu-
tion at some points but not at others; a word would hence represent a complete
computation, not only a partial one.

A further direction would unveil the correspondence between closure proper-
ties and subtyping relations used in many multiparty session types.

Formal Choreographic Languages 137

References

1. Alur, R.: The benefits of exposing calls and returns. In: Abadi, M., de Alfaro,
L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 2–3. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539452 2

2. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 797–808. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-48224-5 65

3. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Trans. Softw. Eng. 29(7), 623–633 (2003)

4. Autebert, J.-M., Beauquier, J., Boasson, L.: Langages sur des alphabets infinis.
Discrete Appl. Math. 2(1), 1–20 (1980). http://www.sciencedirect.com/science/
article/pii/0166218X80900505. https://doi.org/10.1016/0166-218X(80)90050-5

5. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., Tuosto, E.: Composition
and decomposition of multiparty sessions. J. Log. Algebraic Methods Pro-
gram. 119, 100620 (2021). http://www.sciencedirect.com/science/article/pii/
S235222082030105X. https://doi.org/10.1016/j.jlamp.2020.100620

6. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S.,
Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 6

7. Barbanera, F., Lanese, I., Tuosto, E.: Formal choreographic languages (extended
version). Technical report, GSSI (2022). https://emwww.github.io/home/tr/fcl.
pdf

8. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Srini-
vasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar,
R. (eds.) Proceedings of the 20th International Conference on World Wide Web,
WWW 2011, Hyderabad, India, 28 March–1 April 2011, pp. 795–804. ACM (2011).
https://doi.org/10.1145/1963405.1963516

9. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, 22–28 Jan-
uary 2012, pp. 191–202 (2012). https://doi.org/10.1145/2103656.2103680

10. Bonér, J.: Reactive Microsystems - The Evolution Of Microservices At Scale.
O’Reilly (2018)

11. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

12. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77351-1 4

13. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1–8:78
(2012). https://doi.org/10.1145/2220365.2220367

14. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

15. Dezani-Ciancaglini, M., Ghilezan, S., Jaksic, S., Pantovic, J., Yoshida, N.: Precise
subtyping for synchronous multiparty sessions. In: Gay, S., Alglave, J. (eds.) Pro-
ceedings Eighth International Workshop on Programming Language Approaches

https://doi.org/10.1007/11539452_2
https://doi.org/10.1007/3-540-48224-5_65
https://doi.org/10.1007/3-540-48224-5_65
http://www.sciencedirect.com/science/article/pii/0166218X80900505
http://www.sciencedirect.com/science/article/pii/0166218X80900505
https://doi.org/10.1016/0166-218X(80)90050-5
http://www.sciencedirect.com/science/article/pii/S235222082030105X
http://www.sciencedirect.com/science/article/pii/S235222082030105X
https://doi.org/10.1016/j.jlamp.2020.100620
https://doi.org/10.1007/978-3-030-50029-0_6
https://emwww.github.io/home/tr/fcl.pdf
https://emwww.github.io/home/tr/fcl.pdf
https://doi.org/10.1145/1963405.1963516
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1145/2220365.2220367

138 F. Barbanera et al.

to Concurrency- and Communication-cEntric Software, PLACES 2015, London,
UK, 18th April 2015, vol. 203. EPTCS, pp. 29–43 (2015). https://doi.org/10.4204/
EPTCS.203.3

16. Duboc, C.: Mixed product and asynchronous automata. TCS 48(3), 183–199
(1986). https://doi.org/10.1016/0304-3975(86)90094-0

17. Eilenberg, S.: Automata, Languages, and Machines., B. Pure and Applied Mathe-
matics. Academic Press (1976). https://www.worldcat.org/oclc/310535259

18. Xiang, F., Bultan, T., Jianwen, S.: Conversation protocols: a formalism for specifi-
cation and verification of reactive electronic services. TCS 328(1–2), 19–37 (2004)

19. Gastin, P.: Infinite traces. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp.
277–308. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 12

20. Gastin, P.: Recognizable and rational languages of finite and infinite traces. In:
Choffrut, C., Jantzen, M. (eds.) STACS 1991. LNCS, vol. 480, pp. 89–104. Springer,
Heidelberg (1991). https://doi.org/10.1007/BFb0020790

21. Gastin, P., Petit, A., Zielonka, W.: A Kleene theorem for infinite trace languages.
In: Albert, J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp.
254–266. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54233-7 139

22. Genest, B., Muscholl, A.: Constructing exponential-size deterministic Zielonka
automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 565–576. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 48

23. Ghilezan, S., Jaksic, S., Pantovic, J., Scalas, A., Yoshida, N.: Precise subtyping
for synchronous multiparty sessions. J. Log. Algebraic Methods Program. 104,
127–173 (2019). https://doi.org/10.1016/j.jlamp.2018.12.002

24. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). Extended version of a paper presented at POPL08.
https://doi.org/10.1145/2827695

25. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

26. ITU Telecommunication Standardization Sector. ITU-T recommendation Z.120.
Message Sequence Charts (MSC’96) (1996)

27. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.:
Web services choreography description language version 1.0. Technical report, W3C
(2005). http://www.w3.org/TR/ws-cdl-10/

28. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177, 122–159
(2002)

29. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst. 32(5), 16:1–16:49 (2010). https://
doi.org/10.1145/1745312.1745313

30. Kouzapas, D., Yoshida, N.: Globally governed session semantics. Log. Methods
Comput. Sci. 10(4) (2014). https://doi.org/10.2168/LMCS-10(4:20)2014

31. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: Software Engineering and For-
mal Methods, SEFM 2008, pp. 323–332 (2008)

32. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, 18–20 January 2017, pp. 748–761. ACM (2017). http://
dl.acm.org/citation.cfm?id=3009847

https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.1016/0304-3975(86)90094-0
https://www.worldcat.org/oclc/310535259
https://doi.org/10.1007/3-540-53479-2_12
https://doi.org/10.1007/BFb0020790
https://doi.org/10.1007/3-540-54233-7_139
https://doi.org/10.1007/11787006_48
https://doi.org/10.1007/11787006_48
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1145/2827695
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.2168/LMCS-10(4:20)2014
http://dl.acm.org/citation.cfm?id=3009847
http://dl.acm.org/citation.cfm?id=3009847

Formal Choreographic Languages 139

33. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 30

34. OMG. Business Process Model and Notation (BPMN), Version 2.0, January 2011.
https://www.omg.org/spec/BPMN

35. Padovani, L.: From lock freedom to progress using session types. In: Yoshida, N.,
Vanderbauwhede, W. (eds.) Proceedings 6th Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software, PLACES 2013,
Rome, Italy, 23rd March 2013, vol. 137. EPTCS, pp. 3–19 (2013). https://doi.org/
10.4204/EPTCS.137.2

36. Redziejowski, R.R.: Infinite-word languages and continuous mappings. TCS 43,
59–79 (1986). https://doi.org/10.1016/0304-3975(86)90166-0

37. Severi, P., Dezani-Ciancaglini, M.: Observational equivalence for multiparty ses-
sions. Fundam. Informaticae 170(1–3), 267–305 (2019). https://doi.org/10.3233/
FI-2019-1863

38. Staiger, L.: ω-languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of For-
mal Languages, pp. 339–387. Springer, Heidelberg (1997). https://doi.org/10.1007/
978-3-642-59126-6 6

39. Zielonka, W.: Notes on finite asynchronous automata. RAIRO Theor. Informatics
Appl. 21(2), 99–135 (1987). https://doi.org/10.1051/ita/1987210200991

https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://www.omg.org/spec/BPMN
https://doi.org/10.4204/EPTCS.137.2
https://doi.org/10.4204/EPTCS.137.2
https://doi.org/10.1016/0304-3975(86)90166-0
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.1007/978-3-642-59126-6_6
https://doi.org/10.1007/978-3-642-59126-6_6
https://doi.org/10.1051/ita/1987210200991

	Formal Choreographic Languages
	1 Introduction
	2 Formal Choreographic Languages
	3 Correctness and Completeness
	4 Communication Properties
	5 Communication Properties by Construction
	6 Global Types as Choreographic Languages
	7 Choreography Automata
	8 Concluding Remarks
	References

