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Abstract. Existing models for the analysis of concurrent processes tend
to focus on fail-stop failures, where processes are either working or per-
manently stopped, and their state (working/stopped) is known. In fact,
systems are often affected by grey failures: failures that are latent, possi-
bly transient, and may affect the system in subtle ways that later lead to
major issues (such as crashes, limited availability, overload). We intro-
duce a model of actor-based systems with grey failures, based on two
interlinked layers: an actor model, given as an asynchronous process cal-
culus with discrete time, and a failure model that represents failure pat-
terns to inject in the system. Our failure model captures not only fail-stop
node and link failures, but also grey failures (e.g., partial, transient). We
give a behavioural equivalence relation based on weak barbed bisimu-
lation to compare systems on the basis of their ability to recover from
failures, and on this basis we define some desirable properties of reli-
able systems. By doing so, we reduce the problem of checking reliability
properties of systems to the problem of checking bisimulation.

1 Introduction

Many real-world computing systems are affected by non-negligible degrees of
unpredictability, such as unexpected delays and failures, which are not straight-
forward to accurately capture. Several works contribute towards a better account
of unpredictability, for example in the context of process calculi (also including
session types) by extending calculi to model node failures [19,41], link failures [2],
a combination of link and node failures [6], as well as programmatic constructs
to deal with failures like escapes [15], interrupts [27], exceptions [20], and time-
outs [7,31,32]. Most existing models assume a fail-stop model of failure, where
processes are either working or permanently stopped, and their state either work-
ing or stopped is known. In fact, systems are often affected by grey failures:
failures that are latent, possibly transient, and may affect the system in subtle
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ways that later lead to major issues (such as crashes, limited availability, over-
load). Several kinds of grey failure have been studied in the last decade such as
transient failure (e.g., a component is down at periodic intervals), partial fail-
ure (only some sub-components are affected), or slowdown [24]. The symptoms
of grey failure tend to be ambiguous. In a distributed system, processes may
have different perceptions as to the state of health of the system (aka differen-
tial observation) [28]. Grey failures tend to be behind many service incidents in
cloud systems and traditional fault tolerance mechanisms tend to be ineffective
or counterproductive [28]. Diagnosis is challenging and lengthy, for example the
work in [33] estimates a median time for the diagnosis of partial failures to be
6 days and 5 h. One of the main causes of late diagnosis is ambiguity of the
symptoms and hence difficulty in correlating failures with their effects.

In this paper we make a first step towards a better understanding of the
correlation between failures and symptoms via static formal analysis. We focus
on the distributed actor model of Erlang [45], which is known for its effectiveness
in handling failures and has been emulated in many other languages, e.g., the
popular Akka framework for Scala [48].

We define a formal model of actor-based systems with grey failures, which
we call ‘cursed systems’. More precisely, we introduce two interlinked models:
(1) a model of systems, which are networks of distributed actors; (2) a model of
(grey) failures that allows us to characterise ‘curses’ as patterns of grey failures
to inject in the system. To capture the ambiguity of symptoms of grey failure we
assume actors have no knowledge on the state of health of other actors. However,
actors can observe the presence (or absence) of messages in their own mailboxes
and hence the effects of failure in terms of missed communications. In Erlang, a
key mechanism for detecting failure is the use of timeouts, which are one of the
main ingredients of our system model.

Modelling failures as a separate layer allows us to compare systems recovery
strategies with respect to specific failure patterns. This is a first step towards
analysing the resilience of systems to failures, and assessing its effects on dif-
ferent parts of the system. We introduce a behavioural equivalence, based on
weak barbed bisimulation, to compare systems affected by failures. We show
that reliability properties of interest, namely resilience and recoverability, can
be reduced to the problem of checking weak barbed bisimulation between sys-
tems with failures. Furthermore, we introduce a notion of augmentation, based
on weak barbed bisimulation, to model and analyse the improvement of a system
with respect to its recoverability against certain kinds of failure.

The paper is structured as follows. In Sect. 2, we give an informal overview
of the system model, and compare it with related work. Next we introduce the
models of failure (Sect. 3) and systems (Sect. 4). In Sect. 5 we give a behavioural
equivalence between systems with failures, and show how it is used to model
properties of interest. Section 6 discusses conclusions and related work.

2 Informal Overview

Actor-based systems are modelled using a process calculus with three key ele-
ments, following the actor model of Erlang: (1) time and timeouts, (2) asyn-
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chronous communication based on mailboxes with pattern-matching, and (3)
actor nodes and injected failures.

Time and Timeouts. Timeouts are essential for an actor to decide when to trigger
a recovery action. Time is also crucial to observe the effects of failure patterns
including quantified delays or down-times of nodes and links. We based our
model of time on the Temporal Process Language (TPL) [25], a well understood
extension of CCS with discrete time and timeouts. Delays are processes of the
form sleep.P that behave as P after one time unit. Timeouts are modelled after
the idiomatic receive..after pattern in Erlang. Concretely, the Erlang pattern
below (left) is modelled as the process below (right):

receive

Pattern1 -> P1;

...

PatternN -> PN

after

m -> Q

end

?{p1.P1, . . . , pN .PN} after m Q

where p1, . . . , pN is a set of patterns, each associated with a continuation
Pi, with i ∈ {1, . . . , N}, and Q is the timeout handler, executed if none of
the patterns can be matched with a message in the mailbox within m time
units. Following TPL, an action can be either a time action or an instantaneous
communication action, and time actions can happen only when communication
actions are not possible (maximal progress [25]). Concretely, we define the sys-
tems behaviour as a reduction relation with two kinds of actions: communication
actions −⇀ and time actions ∼∼� . While TPL is synchronous and only prioritises
synchronisations over delays, we model asynchronous communications and pri-
oritise any send or receive action over time actions. Thus, in our model, by
maximal progress, communications have priority over delays.

The state of an actor at a time t is modelled as n[P ](M)(t), where n is the
actor identifier (unique in the system), M the mailbox, and P the process run
by that actor. System Rt below is the parallel composition of actors n1 and n2:

Rt = n1[ sleep.!n2 a.0 ](∅)(t) ‖ n2[ ?a.P after 1 Q ](∅)(t)

Although each actor in Rt has its own local time t explicitly represented, which
makes it easy to inject failures compositionally, our semantics keeps the time of
parallel components synchronized (as in TPL). In Rt, node n1 is deliberately
idling and n2 is temporarily blocked on a receive/timeout action, so no com-
munication can happen, and thus only a time action is possible, updating both
actors’ times and triggering the timeout in n2:

Rt ∼∼� n1[ !n2 a.0 ](∅)(t + 1) ‖ n2[Q ](∅)(t + 1)
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Mailboxes. Each pair of actors can communicate via two unidirectional links. For
example, (n1, n2) denotes the link for communications from n1 to n2. An interac-
tion involve three steps: (I) the sending actor sends the message by placing it in
the appropriate link, (II) the message reaches the receiver’s mailbox, and (III) the
receiving actor processes the message. These three steps allows us to capture e.g.,
effects of failures in senders versus receivers, on nodes versus links, and to model
latency. Consider the system Rc = n1[ !a.0 ](∅)(t) ‖ n2[ ?a.P after 2 Q ](b)(t).
Step (I), the sending of a message, is illustrated below on Rc:

Rc −⇀ n1[ 0 ](∅)(t) ‖ 1.(n1, n2, a) ‖ n2[ ?a.P after 2 Q ](∅)(t) = R′
c (1)

1.(n1, n2, a) models a latent message in link (n1, n2) with content a. Prefix 1
is the average network latency (assumed to be a constant). Due to latency, the
message can only be added to the receiver’s mailbox after one time step:

R′
c ∼∼� n1[ 0 ](∅)(t + 1) ‖ (n1, n2, a) ‖ n2[ ?a.P after 1 Q ](∅)(t + 1) (2)

These floating messages (n1, n2, a) with no latency are similar to messages in
the ether [47], in the global mailbox [29], or to the floating messages in [30].

Step (II) is the reception of the message, and happens as illustrated below
(omitting the idle actor n1), where message a is added to the mailbox of n2:

(n1, n2, a) ‖ n2[ ?a.P after 1 Q ](∅)(t + 1) −⇀ n2[ ?a.P afterQ ](a)(t + 1)

Step (III) is the processing of the message, as illustrated below:

n2[ ?a.P after 1 Q ](a)(t + 1) −⇀ n2[P ](∅)(t + 1)

where message a in the mailbox matches the receive pattern (made up of a sin-
gle atom a) and is therefore processed. Mailboxes give us an expressive model
of communication for modern real-world systems. An alternative model of com-
munication is peer-to-peer communication, used e.g., in Communicating Finite
State Machines (CFSM) [13] and Multiparty Session Types [18,26], where a
receiver must specify from whom the message is expected. This makes it difficult
to accurately capture interactions with public servers, or patterns like multiple
producers-one consumer. Note that, in the interaction above, n2 processes mes-
sage a because it matches pattern a, although an older message b is present
in the mailbox. Alternative models, like Mailbox CFSMs [5,10], typically do
not model the selective receive pattern (e.g., pattern-matching in Erlang) shown
above. Without selective receive, participants can easily get stuck if messages
are received in an unexpected order. One can encode peer-to-peer communica-
tion over FIFO unidirectional channels by using pattern matching with selective
receive: using the sender’s identifier in the message and in the receive pattern.
A similar communication model to ours was proposed in [38].
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Localities and Failures. The actor construct is similar to that used to model
locality for processes [16], and also studied in relation to failures [6,21,22,42]
but using a fail-stop untimed model. We use actor nodes to model the effects of
injected failures on specific nodes and links.

Referring to system R′
c in (1), by placing floating messages into a link with

latency before they reach the receiver’s mailbox we can observe the effects of
link failure as message loss. Assume link (n1, n2) is down at time t:

R′
c −⇀ n1[ 0 ](∅)(t) ‖ n2[ ?a.P after 2 Q ](∅)(t)

the floating message gets lost which in turn would end up causing a timeout in
n2. Similarly, in case of node failure, node n1 in system Rc, seen earlier in (1),
would go into a crashed node state before sending the message, hence triggering
a timeout in n2:

Rc −⇀ n1[ ↓ ](∅)(t) ‖ n2[ ?a.P after 2 Q ](∅)(t)

Assumptions. When a node crashes and comes back up again later on, it will
come up with the same node identifier. We assume the behaviour within a node is
sequential: actors can be composed in parallel but processes cannot, hence limit-
ing communication to distributed communications between nodes. We choose to
focus on inter-node communication on its own, because there already exist good
strategies (e.g., in Erlang and Elixir) for dealing with in-node failure through the
use of supervision hierarchy, supervision strategies, and let-it-crash philosophy.
Messages in transit when a node goes down remain in transit and may enter
the mailbox after this node is resumed. We allow a restricted (external) version
of choice, based on the communication patterns found in Erlang. Free, or com-
pletely unrestricted choice, while central to many process algebras, for example
CCS, tends to be less used in practice. For simplicity, we assume nodes are not
created at run-time, focussing on fixed topologies. Extending the language with
the capability of creating new nodes is relatively straightforward, and can be
done in a similar way to π-calculus restriction.

3 A Model of Failures

Let N be the set of node identifiers in a system. The model of failures is defined
to be the Δ function:

Δ : N × (N ∪ (N × N )) �→ { ↓ , ↑ , � }

mapping each discrete time t ∈ N, node n ∈ N , and link (n1, n2) ∈ N × N to
a value representing the state of health of that node or link, at that time. The
symbol ↑ denotes the “healthy” state, ↓ identifies the failure of a node or link,
and � indicates a node or link slowdown. The failure scenarios covered by Δ
include node crash, message loss, slow processes or slow networks. If node n is
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Fig. 1. Syntax

down at time t, written Δ(t)(n) = ↓ , then it will perform no action until it is
resumed, if ever. If n is resumed at time t′, then its state at time t′ will be set
to the initial state (see Definition 5 for the formal definition). If link (n1, n2) is
down at time t, written Δ(t)(n1, n2) = ↓ , then any message in transit on that
link at time t will be lost. If node n is slow at time t, written Δ(t)(n) =� , then
any actions of the process running in n are delayed for one time step, and may
resume at time t + 1 if Δ(t + 1)(n) = ↑ . If link (n1, n2) is slow at time t, written
Δ(t)(n1, n2) =� , then the delivery of any message in transit on that link at time
t will not happen at that time, and so will be delayed by at least one time unit.
The delay is in effect added to the average network latency, which we model as a
constant. Failures can be permanent or transient, as shown below by examples.

Example 1 (Permanent failures). Permanent node failure after a certain point
in time, say t = 10, can be modelled by the Δ1 definition below. Function Δ2

shows a transient periodic structural failure of node n, with each period having
100 time units of healthy state and 100 of down state. One could similarly model
transient degrading failure by setting uptimes when t = n2 for (n ∈ N).

Δ1(n)(t) =

{
↑ if t < 10
↓ otherwise

Δ2(n)(t) =

{
↑ if t div 100 mod 2 = 0
↓ otherwise

4 Calculus for Cursed Systems

This section presents the model for actor based systems. The syntax of the
calculus is given in Fig. 1.

Systems are nodes n[P ](M)(t), messages (floating or latent), crashed nodes
n[ ↓ ](∅)(t), empty systems ∅, and parallel compositions of systems R ||R. Term
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n[P ](M)(t) denotes the state of node n ∈ N where P is the process running in
n, and M is the mailbox of n. A mailbox is a (possibly empty) list of messages. A
message m is a tuple of values, which can be atoms a, node ids n or variables X.
Messages are read from a mailbox via pattern matching. We define the pattern
matching function in the style of [38] through the derivations in Fig. 2.

Fig. 2. Matching rules

Given a pattern Ẽ and a message (tuple) Ṽ , (Ẽ, Ṽ ) 
match σ the match
function returns a substitution σ. Note that the matching is only defined if Ẽ
and Ṽ have the same size, and if the pattern and message match. We write
(E,m) �
match when message m does not match pattern E.

A floating message (n1, n2,m)(t) represents a message m in link (n1, n2).
Latent messages u.(n1, n2,m)(t) are floating messages which can only reach the
receiver’s mailbox after a latency u. We assume all sent messages have a latency
defined as a constant L, which abstracts the average network latency.

Looking at processes, a term of the form !{ni mi.Pi}i∈I chooses to send to
node ni a message mi and continues as Pi. Term ?{pi.Pi}i∈I afterP tries to
pattern match a message from the mailbox against one of the patterns pi, and
continues as Pi given that the matching succeeds for pi, timing out after one
time unit if no message matches and executing P . Process sleep.P consumes
a time unit and then continues as P . Process μt.P is for recursion, and t is
recursion call. Finally, 0 is the idle process.

Remark 1. We use notation ?{pi.Pi}i∈I after uP as syntactic sugar for nest-
ing u timeouts1 and sleepu.P for the sequential composition of u delays with
continuation P .

Recall (Sect. 3) that we fix the set of system’s nodes N , and the domain of
Δ is N ∪ (N × N ), that is the set of nodes and links between pairs of nodes.
Our unit of analysis is a cursed system defined below.

Definition 1 (Cursed system). A cursed system is a pair (R,Δ) where R is
a system, Δ is a curse.

The semantics of cursed systems is given in Definition 2 as a reduction rela-
tion over systems that is parametric on Δ. We write R1 ≡ R2 to mean that the
1 As Q(u) where Q(0) = ?{pi.Pi}i∈I afterP and Q(i + 1) = ?{pi.Pi}i∈I afterQ(i).
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systems R1 and R2 are the same up-to associativity and commutativity of ||,
plus 0.(n1, n2,m)(t) ≡ (n1, n2,m)(t) and R ‖ ∅ ≡ R.

Definition 2 (Operational semantics for cursed systems). Reduction is
the smallest relation on cursed systems over communication actions denoted by
−⇀, and time actions denoted by ∼∼� , that satisfies the rules in Fig. 3. We use
−→ when −→∈ {−⇀, ∼∼� }. For readability, in the rules we assume Δ fixed and
write R −→ R′ instead of (R,Δ) −→ (R′,Δ).

The first set of rules in Fig. 3a is for actors actions, happening at a time t,
when the nodes and links are in a healthy state i.e. Δ(t)(n) = ↑ . In rule [Snd],
n chooses to send a message mj to node nj , and continues as Pj . Modelling
asynchronous communication, a latent message L.(n, nj,mj)(t) is introduced in
the system, where L is the network latency constant. Rule [Sched] delivers a
floating message to the receiver’s mailbox. Rule [Rcv], retrieves the first message
m in the mailbox that matches one of the receive patterns pj . The match function
returns a substitution σ that is applied to the continuation process Pj associated
with pattern pj ; and m is removed from the mailbox. Finally, Rule [Rec] allows a
node with a recursive process to proceed with a communication or a time action.

The second set of rules, in Fig. 3b, is for time-passing reduction in absence
of failures. Rules [Sleep] and [Timeout] model reduction of time consuming and
receiving with timeout processes, respectively. Rule [Timeout] can only be applied
if none of the messages in the mailbox is matching any of the patterns {pi}i∈I

yielding an urgent receive semantics [39] reflecting the receive primitive in
Erlang. Rule [Latency] allows time passing for latent messages. Note that, by
setting u′ = max(u − 1, 0), if a receiver node crashes, all latent/floating mes-
sages remain in the link until the node is able to receive them, i.e. in a healthy
state. We omit the rules for state-preserving time passing for idle nodes and
n[0 ](M)(t).

The third set of rules, in Fig. 3c, models the effects of failures injected at
time t. Rule [NLate] models a delay, injected by Δ(t)(n) =� , in the execution
of the process P in a node n: a time unit elapses without any action in P .
Rule [MsgLoss] models a lossy link at time t, injected by Δ(t)(n1, n2) = ↓ , and
permanently deletes a message u.(n1, n2,m)(t) in transit. Rule [MsgLate] models
a slow link, injected by Δ(t)(n1, n2) =� , by allowing time to pass but without
decreasing the latency u of the message. Rule [NDown] models an instantaneous
node that crash injected by Δ(t)(n) = ↓ , and erases the process and mailbox of
the node. Rule [DownLate] allows time to pass for a crashed node. In rule [NUp]

a crashed node is restarted with its initial process P and empty mailbox. Σ is a
mapping from N to processes, that gives the initial process of each actor node.
We assume that the node identifier is unchanged when restarting the node.

The last set of rules given in Fig. 3d models system actions. In rule [ParCom]

a communication action of system part R1 is reflected in the composite system
R1 ||R2. In rule [ParTime] time actions need to be reflected in all the parts of a
system. A whole system can have a time action only if all parts of the system
have no communication or failure actions to perform at the current time (Ri −⇀− ).
[Str] is for communication and time actions of structurally equivalent systems.
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Fig. 3. Reduction and structural equivalence
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4.1 Basic Properties of Systems Reductions

In the remainder of this section we discuss two properties of cursed systems: time-
coherence (the semantics keeps clocks synchronized) and non-zenoness. We start
by defining the time of a system. All definitions below apply straightforwardly
to cursed systems by fixing a Δ.

Definition 3 (Time of a system). Let t range over N ∪ {∗}. We define the
synchronization (partial) function δ:

δ(∗, t) = δ(t, ∗) = t δ(∗, ∗) = ∗ δ(t, t) = t

δ(t1, t2) returns a time or a wildcard ∗, and is undefined if t1 �= t2 and neither
t1 nor t2 is a wildcard. We define time(R) as a partial function over systems:

time(R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∗ R = ∅
t R = n[P ](M)(t) or R = n[ ↓ ](M)(t) or

R = (n1, n2,m)(t) or R = u.(n1, n2,m)(t)

δ(time(R1), time(R2)) R = R1 ||R2

We can now define time-coherence of a system, holding when all its compo-
nents have the same time.

Definition 4 (Time coherence). R is time coherent if time(R) is defined.

For example, system n1[P ](M)(t) ‖ (n1, n2,m)(t) ‖ ∅ is time-coherent, while
system n1[P ](M)(t) ‖ (n1, n2,m)(t + 1) ‖ ∅ is not.

The time function is also useful to characterise systems where all actors are
coherently at time 0 and in their initial state.

Definition 5 (Initial system). Let Σ be a mapping from N to processes such
that Σ(n) is the initial process of n. A system R is initial if time(R) = 0 and

R ≡ n1[Σ(n1) ](∅)(0) || . . . || nm[Σ(nm) ](∅)(0)

with {1, . . . , m} = N . A cursed system (R,Δ) is initial if R is initial.

Next we show that the reduction over systems preserves time-coherence,
hence all reachable systems are coherent.

Lemma 1 (Time-coherence invariant) If R is time-coherent and R −→ R′

then R′ is time-coherent.

The proof of the lemma is straightforward, by induction on the derivation. In
fact, the only rule that updates the time of a parallel composition is [ParTime]

which requires time passing for all parallel processes. The fact that if R is initial
then time(R) is defined (as 0) yields the following property. We let −→∗ be the
transitive closure of the reduction relation.
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Property 1. Let R be initial, if R −→∗ R′ then R′ is time-coherent.

We assume any system R to start off as initial and hence, by Property 1, to be
time-coherent.

Next, we give a desirable property for timed models: non-zenoness. This
prevents an infinite number of communication actions at any given time (Zeno
behaviours). Besides yielding a more natural abstraction of a real world system,
non-zenoness simplifies analysis, for example, we can assume the set of reachable
states from system to be finite. We start by defining a non-instantaneous process.

Definition 6 (Non-instantaneous process). We define function ninst(P )
inductively as follows:

ninst(P )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∧
i∈I ninst(Pi) ifP = !{ni mi.Pi}i∈I orP = ?{pi.Pi}i∈I after Q

ninst(Q) ifP = μX.Q

true ifP = sleep .Q

false ifP = X orP = 0

We say that P is non-instantaneous if ninst(P ) = true. We say that R is
non-instantaneous if all nodes in R run non-instantaneous processes.

Property 2 (Non-zenoness). Let R be non-instantaneous. If R −→∗ R′ then there
is a finite number of R′′ such that R′ −⇀ R′′.

The proof is straightforward by induction on the structure of R′. Hereafter we
assume systems to be non-instantaneous, and hence non-Zeno.

5 Properties of Cursed Systems

In this section we define a behavioural relation between cursed systems, as a weak
barbed bisimulation [44]. The aim is to compare the systems’ abilities to preserve
‘normal’ functionality when they are affected by failures. We abstract from the
fact that some parts of the system may be deadlocked, as long as healthy actors
keep receiving the messages they expect. Mailbox-based (rather than point-to-
point) communication and pattern matching allow us to capture e.g., multiple-
producers scenarios where a consumer can receive the expected feeds as long as
some producers are healthy. Our behavioural relation also abstracts from time,
to disregard the delays introduced by recovering actions, and only observe the
effects of such delays (we do not focus on efficiency). Essentially, two systems
are equivalent when actors receive the same messages, abstracting from senders,
in a time-abstract way. On the basis of this equivalence we define recoverability
and augmentation.

We start by defining weak barbed bisimulation for cursed systems.
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Definition 7 (Barb). The ready actions of P are defined inductively as follows:

rdy(!{ni mi.Pi}i∈I = {! ni mi}i∈I rdy?{pi.Pi}i∈I after P ) = {? pi}i∈I

rdy(0) = rdy(t) = rdy(sleep.P ) = ∅ rdy(μt.P) = rdy(P )

Let R ↓ x be the least relation satisfying the rules below.

n[P ](M)(t) ↓ x if ! n′m ∈ rdy(P ) ∧ x = ! n′m ∨ ? p ∈ rdy(P ) ∧ x = ? n p
(n1, n2,m) ↓ ! n2 m
(R1 ‖ R2) ↓ x if R1 ↓ x or R2 ↓ x

If R ↓ x we say that R has a barb on x.

Barbs abstract from the sender of a message. This allows us to disregard the
identity of the senders, following mailbox-based communications in actor-based
systems. Scenarios where the identity of the sender is important can be encoded
by using node identifiers as message content. We observe m and p to retain
expressiveness with respect to channel-based scenarios, as discussed in Sect. 5.3.

Definition 8 (Weak barbed bisimulation). Recall −→∈ {−⇀, ∼∼� }. A weak
(time-abstract) barbed bisimulation is a symmetric binary relation S between
cursed systems such that (R1,Δ1)S(R2,Δ2) implies:

1. If (R1,Δ1) −→ (R′
1,Δ1) then (R2,Δ2) −→∗ (R′

2,Δ2) and (R′
1,Δ1)S(R′

2,Δ2).
2. If R1 ↓ x for some x, then (R2,Δ2) −→∗ (R′

2,Δ2) and R′
2 ↓ x.

and the symmetric of (1) and (2). (R1,Δ1) is barbed bisimilar to (R2,Δ2),
written (R1,Δ1) ≈ (R2,Δ2), if there exists some weak barbed bisimulation S
such that (R1,Δ1)S(R2,Δ2).

5.1 Resilience and Recoverability

We define resilience as the ability of a system to behave ‘normally’ despite failures
injection. Let ↑ be the function that assigns ↑ to all nodes and links at any time.

Definition 9 (Resilience). Initial (R,Δ) is resilient if (R, ↑) ≈ (R,Δ).

The definition of resilience sets the behaviour of a system without curses
as a model of the expected behaviour. In some cases, e.g. when looking at retry
strategies, while the system may be affected by failures, one may want to observe
that it eventually recovers. To this aim, we define n-recoverability as the ability
of a system to display the expected behaviour after time n.

Definition 10 (n-Recoverability). Let n ∈ N and (R,Δ) initial. (R,Δ) is
n-recoverable if (R,Δ) −→∗ (R′,Δ) and time(R′) = n implies (R, ↑) ≈ (R′,Δ).

Basically, a system is resilient if it is 0-recoverable. We give some examples of
resilience and n-recoverability, where we fix the latency L = 1.
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Example 2 (Resilience). Consider the cursed system (R,Δ) with:

R = n1[ sleep. ! n2 a.0 ](∅)(0) || n2[ ? a.sleep.0 after 5 0 ](∅)(0)

and Δ(n1, n2) injecting network delays at time 1 and 2 and ↑ otherwise. (R,Δ)
is resilient; the timeout of 5 is good for networks delays of 2 time units. However,
(R,Δ) would not be resilient for longer networks delays.

Example 3 (n-recoverability). Consider cursed system (R,Δ) with:

R = n1[ sleep.!n2 a.0 ](∅)(0) || n2[μt.?a.sleep.0 after 4 t ](∅)(0)

and Δ(n1, n2) injecting network delays at time 1, 2, and 3 (and ↑ otherwise).
(R,Δ) is 5-resilient. Note that any behaviour by n1 before 5 is disregarded, even
in cases where some communication occurred.

By Definition 10, checking resilience and n-recoverability is reduced to the
problem of checking weak barbed bisimulation. Note that, in Definition 10, the
number of R′ that can be reached from R is finite, because the execution up to
R′ lasts for n time units and, by Property 2, a system can perform only a finite
number of actions at any given time.

5.2 Augmentation of Cursed Systems

Augmentation of a cursed system is the result of adding or modifying some
behaviour in the initial system to improve the system’s ability of handling fail-
ures.

Definition 11 (Augmentation). System RI is an augmentation of R if
time(RI) = time(R) and: (i) (R, ↑) ≈ (RI, ↑) (transparency); (ii) there exist
Δ and n such that (RI,Δ) is n-recoverable and (R,Δ) is not n-recoverable
(improvement). Moreover, we say that an augmentation is preserving if, for
all n and Δ, (R,Δ) is n-recoverable implies (RI,Δ) is n-recoverable.

Example 4 (Augmentation). Consider the small producer-consumer system R
below, composed of a producer node np, a queue node nq, and a consumer node
nc. The producer recursively sends items to the queue and sleeps for a time unit.
The queue expects to receive an item within three time units that then gets sent
to the consumer. In case of a timeout the queue loops back to the beginning and
awaits an item from the producer. The consumer recursively receives items from
the queue. We fix the latency of the system to L = 1.

R = nq[μt. ? item.sleep. ! nc item.t after 3 t](∅)(0) ||
np[μt. ! nq item.sleep.t ](∅)(0) || nc[μt. ? item.sleep.t after 4 t ](∅)(0)

RI =R || np′ [μt. ! nq item.sleep.t ](∅)(0)
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The augmented producer-consumer RI adds behaviour to the system by having
a second producer node np′ . RI improves the resilience to a producer node or its
link failing or being slow. For example the curse function Δ(np) injecting node
delay for the producer node between time 1 and 3 and ↑ otherwise impacts the
first system R but not its augmented counterpart RI. R is 4-recoverable while
RI is 0-recoverable. Moreover, RI preserving augmentation of system R.

5.3 Augmentation with Scoped Barbs

Augmentations often need to introduce additional behaviour into actors. One
may want to disregard part of ‘behind the scenes’ augmentation when com-
paring the behaviour of cursed systems using the relation in Definition 8. For
simplicity, instead of adding scope restriction to the calculus, we extend barbs
with scopes to hide behaviour of some nodes or links. With mailboxes, all inter-
actions to a node are directed to the one mailbox. Defining scope restriction
only on node identifiers would be less expressive than scope restriction based
on channels, e.g., it would not be possible to hide specific communications to
a node, while in channel-based calculi one can use ad-hoc hidden channels. To
retain expressiveness, we define scope restriction that takes into account patterns
in the communication between nodes.

Definition 12 (Scoped barb). Let N be a finite set of elements of the form
! n p or ? n p where n ∈ N and p is a pattern. R ↓N x if: (1) R ↓ x, (2) x �∈ N ,
and (3) if x = ! nm then for all ! n p ∈ N , (p,m) �
match. If R ↓N x we say that
R has a N -scoped barb on x.

We extend Definition 8 using ↓N instead of ↓ , obtaining scoped weak-
barbed bisimulation ≈N , and Definition 11 to use ≈N . This setting allow us
to analyse producer consumer scenarios, or more complex ones, like the Circuit
Breaker pattern [40] widely used in distributed systems.

Example 5 (Circuit breaker). Consider system (R,Δ) with a client nc and a
service ns, and its augmentation RI with a circuit breaker running on node ns:

R = nc[μt. ! ns request. ? reply.sleep.t after 40 ](∅)(0) ||
ns[μt. ? request.sleep. ! nc reply.t after 4 t ](∅)(0)

RI = nc[μt. ! ns request. ?{reply.sleep.t, ko.Pf} after 80 ](∅)(0) ||
ns[μt. ? X1.!n1 X1. ? X2.!nc X2.t after 4P ′

f after 4 t ](∅)(0) ||
n1[μt. ?{request.sleep.!ns reply.t, ruok.sleep.!ns imok.t} after 6 t ](∅)(0)

Pf = μt′. ? retry.sleep.t after 5 t′

P ′
f = ! nc ko.sleep.μt′. ! ns ruok. ? imok.sleep. ! nc retry.t after 3 t′

with a Δ(nc, ns) injecting link slow � at times 1, 2, and 3 and healthy otherwise,
and latency to L = 1. The impact of failure on the R makes it unrecoverable,
as the link delay cascades to node nc. We augment R with a circuit breaker
process which runs on the previous server node ns that monitors for failure,
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prevents faults in one part of the system and controls the retries to the ser-
vice node now n1. The node ns forwards messages between nodes nc and n1,
and in case of a timeout checks the health of ns and tells node nc when it can
safely retry the request. When comparing R and RI for resilience, recoverabil-
ity or transparency we wish to abstract from the additional behaviour intro-
duced by the circuit breaker pattern for which we use Definition 12 with: N =
{! ns ruok, ? ns imok, ? ns reply, ? n1 request, ! ns reply, ? n1 ruok, ! ns imok,
! nc ko, ! nc retry, ? nc ko, ? nc retry}. This effectively hides the entire behaviour
of n1 and node ns’s health checking behaviour. Using the extended definition we
find that for the same curse function system RI is 0-recoverable. Similarly, for
the curse function delays link (ns, n1) at times 1, 2, and 3, RI is 0-recoverable.

6 Conclusion and Related Work

We introduced a model for actor-based systems with grey failures and inves-
tigated the definition of behavioural equivalence for it. We used weak barbed
bisimulation to compare systems on the basis of their ability to recover from
faults, and defined properties of resilience, recoverability and augmentation. We
reduced the problem of checking reliability properties of systems to a problem of
checking bisimulation. We introduced scope restriction for mailboxes based on
patterns, which allows us to model relatively complex real-world scenarios like
the Circuit Breaker.

As further work we plan to extend the recovery function Σ to model check-
pointing of intermediate node states. Note that Σ can already be set as an
arbitrary process, but a more meaningful extension would account for the way
in which checkpoints are saved. Moreover, we plan to add a notion of intermittent
correctness, to model recovery with partial checkpoints rather than re-starting
from the initial state, or intermittent expected/unexpected behaviour. Another
area of future work is to use the characteristic formulae approach [23,46], a
method to compute simulation-like relations in process algebras, to generate
formulae for the properties introduced and reduce them to a model checking
problem that can be offloaded to a model checker.

A related formalism to our model is Timed Rebeca [1], which is actor-based
and features similar constructs for deadlines and delays. Timed Rebeca actors
can also use a ‘now ’ function to get their local times. Extending our calculus with
‘now ’ and allowing messages to have time as data sort, would allow us to model
scenarios e.g., where a node calculates the return-trip time to another node and
changes its behaviour accordingly. While Timed Rebeca can encode network
delays (adding delays to receive actions – using a construct called ‘after ’), it
does not model links explicitly. Explicit links and separation between curses
and systems make it easier in our calculus to compare systems with respect to
recoverability. Rebeca was encoded in McErlang [1] and Real-Time Maude [43]
for verification. We have ongoing work on encoding our model in UPPAAL. Our
main challenge in this respect is to formalise a meaningful and manageable set
of curses to verify the model against.
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In [21], Francalanza and Hennessy introduced a behavioural theory for DπF,
a distributed π-calculus with with nodes and links failures. For a subset of
DπF, they also developed a notion of fault-tolerance up to n-faults [22], which
is preserved by contexts, and which is related to our notion of resilience. The
behavioural theory in [21] is based on reduction barbed congruence. The idea is to
use a contextual relation to abstract from the behaviour of hidden nodes/links,
while still observing their effects on the network, e.g., as to accessibility and
reachability of other nodes. The scoped barbs in Sect. 5.3 have the similar pur-
pose of hiding augmentations while observing their effects on recoverability.
However, because of asynchronous communication over mailboxes (while DπF is
based on synchronous message passing), our notion of hiding is less structural
(i.e., based on nodes and links) and more application-dependent (i.e., based on
patterns). At present, we have left pattern hiding out of the semantics, but fur-
ther investigation towards a contextual relation that works for hidden patterns
is promising future work. DπF studies partial failures but does not consider
transient failures and time. On the other hand, DπF features mobility which
we do not support. In fact, we rely on the assumption of fixed networks: since
our observation is based on patterns (and ignores senders) we opted for rely-
ing on a stable structure to simplify our reasoning on what augmentation vs
recoverability means, leaving mobility issues for future investigation.

Most ingredients of the given model (e.g., timeouts [7,31,32], mailboxes [38],
localities [6,16,41]) have been studied in literature, often in isolation. We investi-
gated the inter-play of these ingredients, focussing on reliability properties. One
of the first papers dealing with asynchronous communication in process algebra
is by de Boer et al. [9], where different observation criteria are studied (bisimula-
tion, traces and abstract traces) following the axiomatic approach typical of the
process algebra ACP [8]. An alternative approach has been followed by Amadio
et al. [4] who defined asynchronous bisimulation for the π-calculus [36]. They
started from operational semantics (expressed as a standard labelled transition
system), and then considered the largest bisimulation defined on internal steps
that equates processes only when they have the same observables, and which is
closed under contexts. The equivalence obtained in this way is called barbed con-
gruence [37]. Notably, when asynchronous communication is considered, barbed
congruence is defined assuming as observables the messages that are ready to be
delivered to a potential external observer. Merro and Sangiorgi [34] have subse-
quently studied barbed congruence in the context of the Asynchronous Localised
π-calculus (ALπ), a fragment of the asynchronous π-calculus in which only out-
put capabilities can be transmitted, i.e., when a process receives the name of a
channel, it can only send messages along it, but cannot receive on it. Another line
of research deals with applying the testing approach to asynchronous communi-
cation; this has been investigated by Castellani and Hennessy [17] and by Boreale
et al. [11,12]. These papers consider an asynchronous variant of CCS [35]. Testing
discriminates less than our equivalence, concerning choice, and observes diver-
gent behaviours which we abstract from. Lanese et al. [30] look at bisimulation for
Erlang, focussing on the management of process ids. Besides the aforementioned
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work by Francalanza and Hennessy [21,22], several works look at distributed
process algebras with unreliable communication due to faults in the underlying
network. Riely and Hennessy [41] study behavioural equivalence over process
calculi with locations. Amadio [3] extends the π-calculus with located actions,
in the context of a higher-order distributed programming language. Fournet et
al. [19] look at locations, mobility and the possibility of location failure in the
distributed join calculus. The failure of a location can be detected and recovered
from. Berger and Honda [6] augment the asynchronous π-calculus with a timer,
locations, message-loss, location failure and the ability to save process state.
They define a notion of weak bisimulation over networks. Their model however
does not include timeout, link delays, or a way of injecting faults. Cano et al. [14]
develop a calculus and type system for multiparty reactive systems that models
time dependent interactions. Their setting is synchronous and their focus is on
proving properties as types safety or input timeliness, while ours is comparing
asynchronous systems with faults.

References

1. Aceto, L., Cimini, M., Ingolfsdottir, A., Reynisson, A.H., Sigurdarson, S.H., Sir-
jani, M.: Modelling and simulation of asynchronous real-time systems using timed
Rebeca. EPTCS 58, 1–19 (2011). https://doi.org/10.4204/eptcs.58.1

2. Adameit, M., Peters, K., Nestmann, U.: Session types for link failures. In: Bouaj-
jani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 1–16. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-60225-7 1

3. Amadio, R.M.: An asynchronous model of locality, failure, and process mobility. In:
Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp.
374–391. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63383-9 92

4. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
pi-calculus. Theor. Comput. Sci. 195(2), 291–324 (1998). https://doi.org/10.1016/
S0304-3975(97)00223-5

5. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. Proc. ACM
Program. Lang. 47(POPL), 191–202 (2012). https://doi.org/10.1145/2103656.
2103680

6. Berger, M., Honda, K.: The two-phase commitment protocol in an extended
π-calculus. ENTCS 39(1), 21–46 (2003). https://doi.org/10.1016/S1571-
0661(05)82502-2

7. Berger, M., Yoshida, N.: Timed, distributed, probabilistic, typed processes. In:
Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 158–174. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76637-7 11

8. Bergstra, J.A.,Klop,J.W.:Processalgebra for synchronouscommunication. Inf.Con-
trol. 60(1–3), 109–137 (1984). https://doi.org/10.1016/S0019-9958(84)80025-X

9. de Boer, F.S., Klop, J.W., Palamidessi, C.: Asynchronous communication in pro-
cess algebra. In: Proceedings LICS, pp. 137–147. IEEE Computer Society (1992).
https://doi.org/10.1109/LICS.1992.185528

10. Bollig, B., Giusto, C.D., Finkel, A., Laversa, L., Lozes, É., Suresh, A.: A unifying
framework for deciding synchronizability. In: Proceedings CONCUR. LIPIcs, vol.
203, pp. 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14

https://doi.org/10.4204/eptcs.58.1
https://doi.org/10.1007/978-3-319-60225-7_1
https://doi.org/10.1007/3-540-63383-9_92
https://doi.org/10.1016/S0304-3975(97)00223-5
https://doi.org/10.1016/S0304-3975(97)00223-5
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1016/S1571-0661(05)82502-2
https://doi.org/10.1016/S1571-0661(05)82502-2
https://doi.org/10.1007/978-3-540-76637-7_11
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1109/LICS.1992.185528
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14


A Model of Actors and Grey Failures 157

11. Boreale, M., De Nicola, R., Pugliese, R.: A theory of “May” testing for asyn-
chronous languages. In: Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp.
165–179. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49019-1 12

12. Boreale, M., Nicola, R.D., Pugliese, R.: Trace and testing equivalence on asyn-
chronous processes. Inf. Comput. 172(2), 139–164 (2002). https://doi.org/10.1006/
inco.2001.3080

13. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

14. Cano, M., Castellani, I., Di Giusto, C., Pérez, J.A.: Multiparty Reactive Sessions.
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