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Abstract—Grant-free access has been identified by 3GPP as a
potential solution for Industrial Internet-of-Things applications
in 5G networks. It allows to decrease overhead and delay,
but it is also prone to collisions in the high-load regime. To
reduce the effects of collisions, Non-Orthogonal Multiple Access
or other Successive Interference Cancellation (SIC) protocols
can be applied, allowing to partially recover collisions. In this
paper, we abstract the grant-free access protocols with SIC
with a K-Multipacket Reception (K-MPR) model. Based on
this abstraction, we analyze its one-frame and steady-state
throughput, delay and failure probability under different back-
off schemes. Furthermore, we propose a reinforcement learning
approach to allocate grant-free resources dynamically in order
to maximize the normalized throughput of the protocol. Monte-
Carlo simulations are employed to confirm the accuracy of
analytical results and to evaluate the throughput, delay, and
reliability of the proposed resource allocation approach.

I. INTRODUCTION

5G networks are expected to satisfy diverse requirements
of upcoming Internet of Things (IoT) applications. Especially
challenging requirements come from a subset of Industial
IoT (IIoT) applications, where ultra-reliable and low-latency
communication (URLLC) is needed [1]. [loT communication
patterns are typically sporadic and consist of occasional small
packet transmissions. For such communication patterns, purely
grant-based communication inherited from LTE becomes in-
efficient due to high overhead and delays associated with
acquisition of a scheduling grant [2]. To overcome this issue,
grant-free and hybrid operation modes are considered by 3GPP
as potential enablers for low-latency IIoT [3]. In a grant-free
mode, User Equipments (UEs) are allowed to use a certain
fraction of resources for direct transmissions to the next Gen-
eration Node B (gNB) without requesting the scheduling grant
prior to transmission [4]. Grant-free mode further considers
two options: dedicated mode (semi-persistent scheduling), or
shared mode (random access). The applications with sporadic
communication, such as IIoT, are expected to use shared mode
to prevent resource waste.

In essence, grant-free protocols with shared resources are
partially coordinated random access protocols, where collisions
between UEs on the same grant-free resources might occur.
Therefore, grant-free protocols only work well in low to mod-
erate load scenarios. If load rises above a certain level, collision
probability becomes high and the delay rapidly grows. To
reduce the effects of collisions and provide higher throughput,
novel random access protocols based on Successive Interfer-
ence Cancellation (SIC) have been proposed, including Non-
Orthogonal Multiple Access (NOMA). SIC-based grant-free
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access allows to go beyond the ALOHA-like performance
by applying interference cancellation or joint decoding to
recover some of the collisions [5], [6]. Analysis of SIC-
based protocols is highly complex and often not generalizable,
as it depends heavily on the power control, channel and
propagation effects, and physical layer techniques in use. A
useful Medium Access Control (MAC) layer abstraction of SIC
or NOMA physical layer is K-multipacket reception (K-MPR)
model: A generalization of the collision channel, assuming
that up to K collided users can be decoded on a single
resource. The model is well-known in the literature on Radio
Frequency Identification (RFID) and satellite communication
networks [7], only recently gaining attention in the context of
5G networks.

In this paper, we analyze and optimize the grant-free
access in 5G by modeling it as a K-MPR protocol. Our
novel contributions are twofold. (i) First, we provide analytical
results on the throughput, delay, and reliability of a generic
grant-free protocol with K-MPR. We combine the single-
frame and steady-state analysis using Markov chain approach
to derive performance metrics under different back-off and re-
transmission policies. (ii) Second, we propose a reinforcement
learning approach to dimension grant-free resources, where
the number of resources is chosen to maximize expected
normalized throughput. We show that reinforcement learning
provides close to optimal results with reasonable convergence
time, and hence it can be used for dynamic on-line adjustment
of grant-free resources.

The structure of the paper is as follows. We review related
work in Sec. II, and present the system model in Sec. III.
Performance analysis is presented in Sec. IV, and performance
optimization in Sec. V. Evaluation and simulation results
are provided in Sec. VI. Finally, the paper is concluded in
Sec. VIL

II. RELATED WORK

3GPP has suggested grant-free (GF) access to reduce the
delay and improve efficiency for IIoT scenarios [3]. As a
candidate technology, GF protocols have been actively studied
for 5G RAN and its URLLC communication. Complementary
to GF access, NOMA and other SIC-based protocols enabling
mutlipacket reception capabilities (MPR, also referred to as
multi-user detection - MUD - in some works) can be applied
for performance boost.

Reliability of transmissions via shared grant-free resources
with different re-transmission strategies is simulatively studied
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Fig. 1: Tllustration of the system model with K = 2-MPR. In the first frame
i, L; = 6 RBs are available for grant-free access and 6 UEs are contending
for it. RBs A, B, C are chosen by 2, 3, and 1 UEs respectively, resulting
it three successfully decoded UEs (with A and C), and one collision on B.
Collided UEs re-transmit in the next frame, choosing RBs A and B. Since
both RBs are occupied by < K = 2 UEs, all are decoded successfully.

in [8], [4]. Both articles compare GF with grant-based proto-
cols, pointing out operating regimens and conditions where
GF mode becomes beneficial compared to grant-based. In [9],
grant-free protocol is analyzed for short packet communication
scenario, to achieve low-delay and low-consumption. As a way
to increase the reliability, the authors suggest transmissions
with packet replicas. Similar to [9], the authors in [10] are op-
timizing the amount of replicas to meet reliability requirement
with a given probability of multi-user detection.

Multi-packet reception has been extensively studied in a
parallel line of work [6]. Compressive sensing for MUD in
multi-carrier systems have been analyzed in [5]. In [11], the au-
thors study with K-MPR for inhomogeneous CSMA networks.
They use K-MPR for analysis and assess performance of such
techniques such as SIC and compute-and-forward. In [12],
the authors propose a cross-layer (PHY/MAC) decentralized
Medium Access Control to coordinate access of UEs, assuming
K-MPR. The authors in [13] use K-MPR to analyze the
successful reception of a packet from UEs in far-field regions,
depending on the channel transmission properties. Slotted
ALOHA and its more advanced versions have been studied
under K-MPR model in [7] and the references therein.

III. SYSTEM MODEL

We consider a gNB serving one cell with N IIoT UEs,
where the set of all UEs is denoted by A/. IloT UEs operate
in a designated part of the cell’s time-frequency resources
(depicted as IIoT slice in Fig. 1). IIoT slice is further sub-
divided into shared grant-free (GF) and grant-based/dedicated
GF part, where the second part can be used for re-transmissions
or for applications with periodic schedule [8]. In the following,
we concentrate solely on shared GF resources. We assume
framed time, where a frame also denotes the periodicity of GF
resources. As depicted in Fig. 1, each UE contends for L; GF
resources (RBs). The amount of resources L; is decided prior
to frame 7 by the gNB and is communicated to the UEs via
the system information broadcast. Each UE becomes active
in a given frame with probability p (i.e., a packet from the
application layer arrives into the buffer).
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Fig. 2: Network-level illustration of the system model. B; denotes the set of
ready-to-transmit UEs in the sth frame (after back-off, or newly activated), and
B; denotes the set of non-barred UEs in the ith frame. One-frame analysis
in Sec. IV-A concerns only with the states and transitions depicted in black,
whereas steady-state analysis in Sec. IV-B covers full performance assessment.

UEs contend for GF resources using a generic K-MPR
protocol. We assume that the protocol allows to recover up to
K collisions!, where K is known in advance. Le., assuming k
UEs choose the same RB, all UEs’ transmissions are success-
fully decoded whenever k& < K, whereas all the £ UEs are
not decoded (collided) whenever k£ > K. To control the load,
gNB might use access barring, where the UEs skip current
frame with probability p,. Collided and barred UEs re-transmit
in another frame according to a certain back-off policy. We
choose to consider two back-off policies. (1) Barring-based
back-off, geometric-distributed (denoted as BB): For every
frame, UE independently randomly decides whether to skip
with probability py, or to contend with probability 1 —p;. This
back-off scheme is used for overload control during random
access procedure in LTE and NR as a part of the Access
Class Barring [14]. (2) Fixed back-off (denoted as FB): After
a collided transmission, UE waits fixed number of W frames
before re-transmitting. This scheme is considered by 3GPP as
a possible scheme for grant-free access in 5G [3], [8]. For
stability reasons, number of transmission attempts is limited
to M. If UE is not successful after M attempts, the packet is
considered dropped and UE goes into inactive mode.

Fig. 2 illustrates queuing point of view on the system.
At every frame 4, we have a set B; C N of back-logged
UEs ready to transmit, consisting of re-transmitting and newly
activating UEs. If barring is applied, the set B; is further
reduced to B; C B; with back-logged UEs which pass the
barring. After the contention, UEs from the set B; are either
successful and become inactive again, or go for the back-off.
In the next section, we present analytical results, where we
first describe single-frame performance (relations between B;,
B;, and success probability) in Sec. IV-A, and then extend
the analysis towards steady-state in Sec. IV-B, considering
activation and back-off schemes.

! Although our system model assumptions are common in the literature [7],
for completeness, we must remark that the GF RBs do not necessary
correspond to the physical resources in the grid, and must be viewed as logical
RBs. Depending on the exact protocol in use, there might be multiple physical
RBs needed to form a logical RB to enable K-MPR capabilities.
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IV. PERFORMANCE ANALYSIS

In this section, we conduct the performance analysis based
on the system model. First, one frame analysis is presented,
and then it is extended to the steady-state analysis. The main
notations we use are summarized in Table I.

A. One Frame Performance

First, let us assume a frame ¢ with a set of back-logged UEs
which already passed access barring, B;, with 72; £ | B;|. Every
UE from the set chooses uniformly at random one of L; RBs
to transmit, thus, the number of UEs choosing the same RB is
a random variable k. We describe the probability distribution
of k conditioned on n;, L; by the following lemma.

Lemma 1: For a given RB, the probability p (k|7;, L;) =
Prlk = k|n;, L;] that exactly k& UEs choose it, is expressed as:
n;

plblin ) = (ka0

A
where p;, = %

Proof: For given k UEs, the probability of choosing the

k -
RBis (£ ) (1— 2)"~*, where the first term reflects the

probability that k UEs choose the RB, and the second term —
the probability that other 7; — k UEs do not choose the RB.

As there are (")') ways to pick k UEs from the set, resulting

probability is expressed as p (k|n;, L;) = (i’)pf(l —pr)hi Tk,
|

Lemma 1 defines per-RB load given n;. On the other hand,
n; is a function of n; and barring probability p,. We consider
this relationship in the following corollary.

Corollary 1: For a given RB, the probability
q (klpy, Liyn;) = Prlk = kln;, L;,pp] that exactly k
UEs choose it given n;, barring probability p, and L;
available RBs is:

i i~
¢ (lpy, Li, ni) = (k ) (1—po)"Pi (1 = pr — popr)"*(2)

Proof: The proof follows the same logic as in Lemma 1.
|

TABLE I: Summary of main analysis and system model notations.

Notation Description ‘

N, N Set and number of UEs in the cell

Bi. B; Sets of back-logged and non-barred UEs in i frame

N, Mg Number of back-logged and non-barred UEs in i frame

P, Pb Activation / barring probability of a UE

L; Number of available grant-free RBs at time %

K Maximum coll'ision size wh?ch can bg 'r.ecovered by the
protocol (multipacket reception capabilities)

T F Expecteq throughput and expected normalized throughput

’ per RB in one frame

Pu; Pe Unsuccessful transmission and collision probabilities

M Maximum number of transmission attempts

w Back-off window size (frames)

bs Steady-state probability of a UE being in the state s

R, D Average per-packet reliability / delay (steady-state)
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We further define the throughput per frame as the number
of successfully decoded UEs. Throughput T; and normalized
throughput per RB T; are random variable with expectations
TE2E[T;]and T2 E [Ti], respectively.

The results of Lemma 1 and its Corollary 1 can be directly
applied to obtain the throughput expectations.

Corollary 2: The expected throughput per frame normal-
ized per RB T'(n;, pp, L;, K) and the expected total through-
put per frame T'(n;, py, L;, K) given n;, py, L; and K are
expressed as:

K

T(ni,po, Li, K) = > kq (klpy, Li,n;) 3)
k=1

T(nl,pb,L“K) :L'LT(n’vavahK) (4)

Proof: Note that, in a given RB, throughput equals to
the amount of UEs choosing the RB if 0 < £ < K and 0
otherwise. So, the normalized throughput expectation Ej [T}
conditioned on k, is defined as:

k, if0<k<K,

B 7] = { )

otherwise.

The probability distribution of %k is given by Corollary 1.
Applying law of total probability to Eqns. (5) and (2), we
obtain the result in Eqn. (3). Since the expectation of a sum is
equal to the sum of expectations, the Eqn. (4) readily follows
from (3). ]

An illustration of Corollary 2 is presented in Fig. 3, where
throughput and normalized throughput are plotted against
L; for different multipacket reception capability K. We ob-
serve that analytical results (denoted “ana’) closely match the
Monte-Carlo simulations (“sim”). The particular case K = 1 is
the legacy collision channel model that considers any collision
as unrecoverable. The analysis shows that T'(n;, pp, L;, K)
asymptotically goes to n;p, with increasing L;, for any K.
On the contrary, normalized throughput 7" achieves a different
maximum value depending on K and it holds that 7" < K. The
number of available RBs maximizing normalized throughput
Ly = argmaxy, T is inversely dependent on K: L7 is
decreasing with increasing K, for a given back-log n;. This
directly suggests that dynamic adaptation of L; according to
the back-log can be used to keep the throughput at maximum.
We will return to the question of throughput maximization
problem later in Sec. V.

B. Steady-State Analysis

In the previous section, we studied single-frame perfor-
mance. This analysis does not allow to predict expected delay
and reliability of the protocols, since the amount of back-
logged UEs in a frame depends on the new arrivals and on
the respective back-off or re-transmission scheme. To account
for these, we study the steady-state performance by the means
of Markov-chain analysis [15], for barring-based back-off (BB)
and fixed back-off (FB), and described in Sec. III.

The Markov chain depicted in Fig. 4 represents all possible
states of any UE. A UE starts in the inactive state OFF, and
with probability p becomes active in the subsequent frame. The
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Fig. 3: Results of the Corollary 2. Evolution of T and T as a function of L;
for n; = 100, p, = 0.5, K € {1, 3,5}. The case with K = 1 represents the
legacy collision channel without multipacket reception.

probability p can be used to approximate any packet generation
pattern by a Bernoulli process. Upon activation, UE is placed
directly in a back-off stage ¢ = 1 and state (i,z), where x
depends on the back-off scheme used (x = 0 for BB, and
xz = W — 1 for FB). We denote the back-off stage ¢ with j
frames to wait as (i,7) state. For FB, UE waits for W slots
before preforming a transmission. Once UE is in state (i,0),
it can attempt a transmission. For barring-based BO (BB), no
back-off window is considered, i.e., W = (. At every back-off
stage, UE attempts a transmission with probability 1 —p;, and it
is barred with probability p,. If the transmission is successful,
UE goes in the successful state “SUCC” and then goes to
the inactive state “OFF”. We denote the probability 1 — p,,
of a transmission to be successful as 1 — p,,. In case of an
unsuccessful or barred transmission, UE goes to the next back-
off stage ¢ + 1. If the transmission is unsuccessful after M
attempts, the UE goes into the FAIL state and the packet is
dropped. For the notations, we refer the reader to Table 1.

The probability of a transmission to be unsuccessful p,
depends on the collision probability p. and barring probability
pp. For FB, p, = 0, hence:

fixed BO (FB),

barring-based BO (BB). ©)

Do = {pc
“ po(1 = pe) + pe

Transition probabilities between the states are depicted in
Fig. 4. The steady-state probabilities bs,Vs € S, where S is
the set of all states, are expressed as a function of byg using
the global balance equations:

bon = p boft (7a)

bio =Py Tbp  Vi€[l, M], (7b)

bi’j = bi—1,07 ViE[Q,M],VjG[O,W— 1] (70)

brait = P ot Py’ (7d)
M

bsuce = (1_pu)zbi,0 :pboff(l_py) (7e)
i=1
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Fig. 4: Markov chain depicting states of a UE and the transition probabilities
between them. Both back-off schemes are illustrated here: for barring-based
back-off (BB) W = 0, and for fixed back-off (FB) p, = pe.

Finally, by employing the identity condition ) _sbs =1 we

obtain:
pM -1\
bott = (1 +p 1+W41 (®)

u

C. Probability of a successful transmission pg

Considering any frame ¢, the probability of collision p.
is approximated using the total throughput 7', divided by the
average effective number of transmitting users A = E [n,]:

T\ Li, K
pc:1*¥ 9)

On the other hand, A is expressed via Markov chain analysis
as the expected number of UEs in the states b; o Vi:

A N sz\il bio=Np bojf% for FB,
— c B N
N(1—ps) Zi‘il bi=N(1—py)p bgﬁ'll_l;z for BB.
(10)

Equations (9) and (10) form a system of two independent
equations with two unknowns p. and A. The solution is
obtained by any non-linear numerical solver based on root
finding.

D. Performance Metrics

Having obtained A and p. from the Markov chain anal-
ysis, we can now use them to predict average steady-state
performance of the protocols in terms of throughput, delay,
and reliability. We define the steady state reliability R as
the probability that a packet is successfully decoded at gNB
within < M transmission attempts. Using the global balance
equations (7), we obtain reliability as:

R = bsucc

— s M, 11
bsucc + bfail Pu ( )
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The expected steady-state delay D is expressed as:
M .
Z£421 plkt_l
1+ (M —1)pM — MpM-1
W (m + ( )Py el
(1 =pu)(1 = py")

D=W

+ 1) . (12)

Average throughput per RB T is given by Eqn. (3) where
n; is substituted by its expectation A, obtained from Markov
chain analysis.

The results of the steady-state analysis are displayed in
Fig. 5: failure probability, delay, and throughput per RB for
two BO schemes. We compare Monte-Carlo simulations with
Markov-chain analysis. We observe that the simulations largely
match the analytical results, with the exception of throughput
and delay for small L; under FB policy. We expect the
results to match, if the simulations were to be run longer:
Since FB policy causes large delays in the low L, regime,
same simulation runs produce less samples, and therefore
less accuracy. Additionally, analysis and simulation results are
shown for two values of K: K =1 corresponds to the legacy
case of collision channel model, and K = 4 to the protocols
with high MPR capabilities. As expected, K-MPR outperforms
the case K = 1 in terms of throughput per preamble, delay
and reliability. FB presents a higher delay than BB. We also
remark from Eqn .(11), that the failure probability (1 — R) of
FB does not depend on W, but only on p.. The case FB with
W =1 is thus equivalent to BB with p;, = 0. Therefore, the
failure probability of FB is the same as BB with p, = 0, and
the delay is W times larger.

We note that the presented methodology can be applied to
obtain expected reliability for URLLC applications with strict
deadlines. That is, if the back-off policy is configured such that
MW equals to the application deadline, reliability R directly
reflects expected probability of deadline violation.

V. PERFORMANCE OPTIMIZATION

As we observe from the analysis, performance of GF access
is heavily dependent on the configuration parameters: back-
off scheme, back-off setting, and, above all, on the number of
allocated resources L;. We also observe that the delay is low
and the reliability stays high as long as the amount of allocated
resources is sufficient to maximize the normalized throughput.
Further increasing the number of resources behind this point
decreases the efficiency of the protocol. Thus, the question is:
What number of RBs is necessary to maximize the normalized
throughput? It can be formalized as an optimization problem:

maxLimize T(L;) (13a)
subject to W, M, py (13b)
p7N7ni7K (13C)

The constraints (13b) represent chosen back-off policy and
its configuration?, whereas the constraints (13c) are given sys-
tem parameters: multipacket reception capabilities K, number

2Clearly, back-off policy configuration can be an optimization variable as
well. Nevertheless, we restrict ourselves by only optimizing the number of
RBs, and leave joint optimization for future work.
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Fig. 5: Steady-state (a) T'(n;,pp, Li, K), (b) reliability, and (c) delay for
N—=40,p=0,8 K =4, M =8, W =5 for FB and p, = 0.3.

of UEs and their activation pattern. The optimization problem
can be approached as a static (off-line) allocation problem,
where steady-state throughput is maximized given the estimate
of the expected back-log A as input, or as a dynamic (on-line)
allocation problem, where expected throughput is optimized
given estimate of the current back-log n; as input.

Given the back-log estimates, the solution to the static
allocation problem can be obtained via the Markov chain
analysis. For dynamic allocation, we can obtain L} =
argmaxy,, T'(n;, py, L;, K) using numerical root-finding algo-
rithm for maximization of the Eqn. (3). While the function
T(L;|n;,py, Li, K) seems to have one maximum (from the
plots), it is non-concave and it is not proven that there is
only single maximum, therefore, the worst-case complexity
of maximization is not guaranteed to be polynomial. We plot
the numerically obtained L7 as a function of n; for different
K in Fig. 6. We observe that for large enough n; > 4
the dependency becomes linear. Interestingly, corresponding
maximum throughput is the largest at the moment where the
dependency becomes linear, and saturates to a lower value with
increasing ;.

Note that neither n; nor 7; are known to the gNB, thus, we
cannot explicitly use it to maximize T'(n;, py, L;, K) given by
Eqgn. (3). Thus, an additional step of estimation algorithm is
needed, which will inherently introduce extra computational
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Fig. 6: Evolution of L} and max T(fi, Li, K) = T(n;, LY, K) against the

number of active UEs 7n;, for N = 400, p = 0.5 and K = {3,5}.

time and inaccuracy. The problem of back-log estimation is
already a complex task for collision channel model [16],
and the complexity is clearly higher for K-MPR model. To
circumvent the estimation and complexity issues, we propose
a reinforcement learning approach as the main solution to the
dynamic allocation problem (13) in the next section.

A. Dynamic Resource Allocation with Q-Learning

Given a fixed back-off policy, the system can be viewed
as a Markov Decision Process (MDP), where the system state
comprises current states of all UEs and the amount of available
resources. The actions in MDP are decisions for the amount
of RBs to be allocated in the next frame, and the reward is
the normalized throughput achieved. Transition probabilities
between the states are dependent on the back-off policy and
activity pattern of the UEs. The resulting MDP, however, is not
fully observable: gNB cannot directly know the state of every
UE, moreover, it cannot even directly observe current back-log.
Typically, gNB can only observe outcomes of the contention

in previous frame: the number of RBs with collisions LEC) and
)

the number of successful UEs N*).

Therefore, we approximate the original MDP with its
simplified version based on the contention outcome. The ap-
proximation can be viewed as state aggregation technique [17].
Contention outcome is implicitly reflecting the current back-
log and it is typically used as a basis of back-log estimation
algorithms [16] in the literature on random access. We thus
define the state space of the MDP as:

si€S2{L, N L}, (14)

Action space corresponds to the optimization variable L;,
a; € A2 {L;|0 < L; < Lyax}. The reward is the quantity
that we want to optimize, i.e. the normalized throughput in a
given frame r; = T;. We apply off-policy temporal-difference
learning based on the computation of the value function of a
state-action pair Q(s;, a;):

Q(si,a;) =E [ri + yriy1 + V2rigo 4 ..|ss, a;l . (15)

where «y € [0, 1) is the discount factor for future rewards.

Temporal-difference learning is iteratively updating the
value function Q(-), by taking actions and observing rewards.
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Algorithm 1 Dynamic Allocation via Q-Learning.

I: Initialize L1 € N randomly, and get N\*) and L

2: Observe current state: s; < [L, N\*) L{)]

3: for each frame ¢ do

4:  Adjust o € [0,1], v € [0,1], and € € [0, 1].

5:  Choose an action a; according to the e-greedy pol-
icy (17)

6:  Set and broadcast L;;; corresponding to action a; to
all UEs

7:  Observe contention results: s;,1 [Li+1,NZ.(j)1,LEi)1]

8:  Observe the reward r; = Ni(j)l Yo
9:  Update Q table according to (16)

10:  Adjust L.« (if needed)

11: end for

The values in the table are updated as [17]:
Q™" (si,a;) = (16)
=(1-a)Q"(s;,a;) + (HH + WIgIaXQ(SHl, ai+1)> .
i1

where o € [0,1] is the learning rate. We choose to apply
Q-learning method for updating the value function: using
immediate updates after observing the reward.

The policy is a strategy used by the agent (gNB) to
take actions. We use the e-greedy policy. Being in state s;,
upon a decision to take, the gNB either chooses a random
action (denoted rand) with probability € (to explore the state-
action space), or chooses action a; maximizing Q(s;, a;) with
probability 1 — e (“to exploit” the reward):

_ frand {a; € A}
@i = arg max,, Q(s;,a;)

The value of € must decay over time, in such a way that
there is an exploration phase while the state-action space is
not yet know, and a performance phase, where the obtained
knowledge is exploited. To get better convergence, o and -y
also needs to decrease and increase over time, respectively
[18]. The pseudocode of the resulting learning algorithm is
summarized in Algorithm 1.

with probability e, (17
with probability 1 —e.

Since the size of state and action space is very large,
we apply a form of guided exploration based on constraint
restriction. For that, we use a heuristic to compute a bound
on possible optimal L.x > L; as follow. It is clear that
current back-log is bounded by 7; > N'* + (K + 1)L,
Also, L} > fi;/K, so L* > (N 4+ (K + 1)L{”)/K. Let
us call Ley = (N + (K + 1)L'))/K, we can then take
Liax = pLegy, where p is a constraint reduction coefficient.
In our algorithm, we take ;1 = 4 to be sure that Ly, >> L7.
The value of L.« is updated every 1000 steps. By using L ax
we limit the action space by filtering out values of L; which
are not likely to be relevant.

VI. EVALUATION RESULTS
A. Evaluation Set-up

In this section, we present the performance evaluation of
the proposed algorithm. Algorithm 1 has been implemented
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Fig. 7: Evolution of the relative difference ey, and throughput per RB over the
learning steps, for different exploration phase duration, texp, with N = 100,
K =7 p = 0.5 and geometric back-off parameters p, = 0.3 and M = 8.
The results have been smoothed with a window of 2000 steps for the purpose
of readability. The error to the benchmark throughput, e is referred.

with progression composed of two phases: an exploration
phase where € = 1, i.e. actions are taken completely randomly,
and a performance phase where ¢ = 0, i.e. actions are taken
to maximize the expected cumulative reward Q(s;,a;), see
Eqn. (17). The duration of the exploration phase is further de-
noted texp. The performance of learning algorithms is generally
very sensitive to the evolution of €, o and y over the learning
steps. In our implementation, we take an polynomial evolution
as in [18]. The evaluation set-up has been implemented for
N =100,p=05 K =17,p, =03, M =8.

B. Benchmarks

The performance of learning algorithm is compared with
two idealistic benchmarks, dynamic (DA) and static (SA)
allocation. DA chooses the optimal number of GF resources L}
at every frame, by numerically solving T'(n;, ps, L;, K) given
by (3), and assuming that the amount of transmitting UEs 7,
is known. The second benchmark, SA, statically assigns the
amount of resources based on the known A, where L7 is chosen
to maximize the steady-state throughput per RB.

Note that both DA and SA are idealistic and serve only
as a reference point for the QL performance. They can only
be implemented together with estimation for n; and n;. Es-
timation will introduce certain performance penalty because
of estimation error, and run-time penalty because of high
complexity. The run-time for DA and SA is further increased
due to numerical computation of L}, and might be infeasible
for short frame length. Therefore, we leave load estimation
under K-MPR model as a future work.

To quantify the performance of the algorithms, we define
relative error in the choice of L; between the optimal (chosen
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Fig. 8: Average delay and failure probability obtained with Q-learning algo-
rithm with Zexp = 80000 steps, in comparison with DA and SA, for N = 100
and p = 0.5, and different values of p; and M.

by DA benchmark) L7, and by the Q-learning algorithm,
L9 as ep = |LF — LI*?|/L*, and its evolution over
the learning steps, where one step is equal to one frame. The
lower ey, the closer is the learning algorithm to the optimum.
In addition, we observe the normalized throughput compared
with the SA and DA benchmarks and its relative throughput

difference er.
C. Simulation Results

The results are presented in Fig. 7 for different exploration
phase durations. The length of a learning step (i.e., periodicity
of GF access) can vary in 5G: Assuming a standard LTE
frame of 10 ms, the exploration phase is varied between
texp € {100, 500,800} s. From Fig. 7b, we observe that as we
increase the exploration phase, the error ey, for QL decreases
from 0.5 (for tep, = 10* frames) to =~ 0.3 (for texp = 108
frames). In terms of throughput, QL achieves 16% lower
throughput than DA after around 130 s, and 7% after 830 s,
matching the SA performance in the latter case. Evidently,
there is a trade-off been performance and exploration time,
which needs to be taken into account: For more static systems,
where the traffic pattern and number of UEs does not change
often, longer exploration phases are advised; For dynamic
systems, shorter exploration is recommended. In any case, to
account for possible traffic changes, exploration phase can be
re-initiated again every now and then.

Delay and failure probability are depicted in Fig. 8 as a
function of K for the same configuration setup and varying
values of M and p,. For Q-learning, only performance phase
is considered. When M = 8 and p, = 0, the delay is
less than 4 frames and failure probability is less than 107°.
Interestingly, we observe that the delay and reliability of Q-
learning is slightly higher than the benchmarks, despite the
lower throughput. A possible explanation is that the guided
exploration makes the algorithm prone to over-provision the
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resources (see Fig. 7), allocating more RBs than needed. This
hints to an important observation that normalized throughput
maximization might not be optimal strategy choice, if lloT
application requires strict deadline and reliability.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we studied the performance of grant-free
access in 5G under K-MPR model, which is a generalization
of the conventional collision channel, accounting for advanced
receiver techniques, such as successive interference cancella-
tion or joint decoding. We analyzed the one frame throughput
for arbitrary access barring probability, and then extended the
analysis to obtain average steady-state throughput, delay, and
reliability via Markov-chain analysis. Furthermore, we have
formulated dynamic adaptation of the grant-free resources to
maximize the normalized throughput as an optimization prob-
lem, and proposed a reinforcement learning algorithm based
on Q-learning to solve it. The evaluation results demonstrate
that Q-learning approach delivers high throughput with low
penalty compared to optimal yet unfeasible benchmarks, at the
expense of sub-optimal throughput during exploration phase.
The results we provided here can be viewed as first steps, both
for optimization of K-MPR protocols, and for applications of
reinforcement learning for MAC. They raise multiple questions
and discussions point, which we leave for future work.

Back-log estimation. We have provided here the per-
formance analysis, and suggested idealistic optimization ap-
proaches for static and dynamic allocation. Making idealistic
protocols feasible and load-adaptive requires precise and effi-
cient back-log estimation algorithms, which are not yet avail-
able in the literature for MPR. Potentially, collision channel
results [16] can be adjusted to account for MPR capabilities.

The choice of objective function. As the results in
Sec. V and in particular Fig. 8 suggest, normalized throughput
might not be the best choice of the objective function: Sub-
optimal throughput can still have higher reliability and lower
delays, if the system is over-provisioned. For IIoT applications,
reliability and delay play an important role, therefore, choosing
reliability as an objective can increase the application perfor-
mance at the cost of extra resources. The trade-off between
performance and resource consumption should also be studied
as a multi-objective optimization [19].

Reinforcement learning for MAC. The amount of states
and actions in the underlying Markov Decision Process makes
the exploration phase duration critical, and convergence of
the algorithms long. We have presented here results with
relatively small action space, where only amount of resources
is adjusted. The action space can be extended, and the back-off
configuration can be set as additional optimization variable.
In that case, however, convergence times explode, and on-
line application of the algorithm becomes hardly feasible.
A potential solution here would be to partially pre-train the
algorithm off-line, to reduce the search space for on-line
application. An additional problem is that the true MDP of the
system is not fully observable and has to represent all different
back-off stages of a UEs. In the paper, we approximate
this process with the observed states, which leads to sub-
optimality. For more precise approximation, especially if back-
off configuration is also dynamic, deep reinforcement learning
with recurrent neural networks [20] can be applied, to capture
the memory hidden in the approximation.
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