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Abstract— Effectively utilizing very small energy sources, like
ambient thermal gradients, in a Wireless Sensor Network (WSN)
offers great potential for novel applications. Further, without
over provisioning the energy source or storage of an Energy
Harvesting-WSN, it can be operated more ecologic.

We reduce the overhead associated with peripheral initial-
ization by dynamically adapting the boot process of sensor
nodes operating in a burst style operation from micro energy
sources. For the evaluation, we implement a framework that
allows reproduction of real-world conditions for Thermoelectric
Generator energy harvesters. Based on real-world data our study
shows an improvement of 27% in the number of tasks executed
with only half the energy required for certain tasks. Finally, we
discuss the factors influencing the effectiveness of our dynamic
boot approach w.r.t application scenario.

Index Terms—energy harvesting, wireless sensor network,
thermal electric generator

I. INTRODUCTION

The power supply for low power devices is an important
problem for WSNs operating in harsh outdoor environments.
Since batteries would limit network lifetime and compli-
cate maintenance, energy harvesting provides a promising
approach. Potentially allowing indefinite, maintenance-free
operation, using ambient energy sources in WSNs comes with
great opportunities but also presents a unique set of challenges.
One of the main problems when using energy harvesting is the
generally hard to predict amount and temporal characteristic
of power available for an application [5]. This issue is most
commonly addressed by over provisioning [4]: Dimensioning
the energy source so that the average energy production far
exceeds the expected requirement of the application and using
an energy storage that is big enough to bridge the longest
periods of power outage expected.

However, keeping all efforts to conserve resources in WSNs
in mind, this approach is wasteful. Moreover, given the wide
range of different usage scenarios, a sufficiently large ambient
energy source might not be present in many cases. To allow
the use of ambient energy sources, such as thermal gradients
and vibrations, many of which usually deliver a low amount
of power compared to the application requirements, an inter-
mittent operation of the nodes is required.

As a result of extensive research in this area, for many as-
pects of an Energy Harvesting (EH) system, specific, advanced
protocols and solutions are readily available in special Operat-
ing Systems (OSs), such as RIOT-OS [2]. However, using an

operating system inevitably comes with some overhead, which
given the limited and complex power supply in EH-WSNs, has
to be seen critically. The boot process represents a significant
portion of this overhead, as devices and peripherals need to be
initialized. In battery-powered systems that do not use energy
harvesting, a given amount of energy is available at the time of
deployment, which does not get replenished over the lifetime.
In these systems, the overhead resulting from the boot process
can be minimized by sleeping in between tasks and avoiding
the boot process before the next task execution. However,
in energy EH-WSNs which are designed to allow usage of
very small energy sources, reboots in between tasks are to
be expected [1]. While many OSs provide a modular design,
allowing selection of components during compile time, in an
intermittently powered system not all tasks might be executed
before the next loss of energy. Thus, not all components and
peripherals might be needed at each boot, as different tasks
often utilize different subsets of peripherals. Dynamic adaption
of the components of an OS during boot can reduce the
overhead in such systems.

The contribution of this paper is twofold. First, we analyze
the possibilities of conserving energy during boot by dynam-
ically adapting the peripheral initialization in the widespread
WSN-OS RIOT. Second, we present an evaluation based on the
emulation of real-world data and outline factors that influence
whether the approach of a dynamic boot can be an asset in
conserving energy in EH-WSNs.

II. RELATED WORK

Many systems exist that utilize micro energy sources such as
thermal gradients, e.g., between the air and rock [18], concrete
[14], soil [6], [9], [11], [15], [19] or even the human body [13]
to power WSN nodes. All these have to face the challenge
of efficiently utilizing an energy source that is comparatively
small in magnitude, as well as difficult to predict.

For testing and evaluation purposes, being able to recreate
real-world conditions repeatably in a lab is useful. Hence, test-
beds such as in [17] are widely used in this research area.
The authors present a test-bed that allows the reproduction of
both thermal gradients and visible light conditions in a lab
setup. Additionally, an electronic load emulation allows the
emulation of different load scenarios.



A framework to emulate energy harvesting applications is
presented in [8]. It is capable of the emulation of visible
light, Radio-Frequency (RF) and kinetic energy using data
collected from the real world. While the approach applies to
the evaluation of the dynamic boot approach presented here,
the framework lacks the capability of reproducing thermal
gradients.

Another framework for recording energy traces from real-
world harvesters and replaying them to nodes in a repeatable
fashion is in [7]. Instead of emulating the physical conditions
at the harvester in a lab, the electrical output is measured,
logged and then reproduced.Yet, during the recording the en-
ergy is not used by a sensor node, but rather by a dummy load.
Hence, dedicated data recording is required which impedes
using data from real-world deployments of EH-WSNs.

While sleeping in between task executions will reduce the
number of boots and, thus, the overhead resulting from the
boot process, this approach might not always be viable in real-
world deployments. In the deployments in [1], in most cases,
the energy was not sufficient to sustain sleep between tasks.
For energy sources, such as Thermoelectric Generators (TEGs)
or piezo-electronic harvesters, the sleep current could amount
to a significant portion of the harvested energy.

[12] outlines that the comparatively large start up time of
crystal oscillators presents a source of large overhead during
start up of wireless Internet of Things (IoT) devices. Albeit
using a different approach, the authors tackle a similar problem
to the one presented in our work, the overhead resulting from
state transitions when using duty cycling to conserve energy.
A hardware approach for minimizing the start-up energy of a
crystal oscillator is presented and evaluated.

An approach that allows for the execution of long-running
tasks on platforms that suffer from frequent loss of power
by using checkpoints is presented in [16]. Yet, the creation
of checkpoints presents an overhead. Hence, WSNs that only
perform short-running tasks, such as collecting sensor data,
can benefit from a solution that minimizes overhead. Further,
skipping the initialization of peripherals that are not needed
during a burst could offer additional energy savings.

While checkpoints can restore the program state in case of
a power loss, peripherals may need to be handled separately,
as restoring the state prior to the power loss might require
additional steps. In [3] a kernel is presented addressing this
challenge. Still, the problem of the significant overhead of
peripheral initialization remains. The authors state that the
initialization of the peripherals accounts for a large portion
of the time spent during boot.

In order to effectively utilize small energy sources in WSNs,
checkpointing systems such as [3], [10], [16] will not cover all
use cases, as they fail to address the problem of the significant
overhead during boot.

III. DYNAMIC BOOTING

Using small temperature deltas as the power source of a
sensor node can result in very limited energy, even sleeping
in between the execution of tasks may not be possible. Using a
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Fig. 1. Typical energy harvesting system for burst style operation from low-
power sources such as TEGs. Energy conversion, storage and switching can
be integrated into a single device such as the LTC3109

small energy storage, which very small energy sources can fill,
often results in depletion of the energy after the execution of
very few tasks. In such systems, it is possible that a different
task needs to be performed at each boot. To keep track of the
task schedule but turn the main processor on and off, a low
power Microcontroller Unit (MCU) can be used which is kept
active whenever possible, albeit with a lower operating voltage
and possibly a reduced sleep current.

A. Background: peripheral initialization approaches

A straightforward approach to peripheral initialization is to
initialize all peripherals during boot. This has the risk of higher
overhead as there might be peripherals that are initialized but
are not used before the depletion of the available energy.
To avoid this, peripherals could be initialized the first time
they are used. However, it can be beneficial to perform the
initialization during boot in certain scenarios. An example of
such a case can be an Analog to Digital Converter (ADC), as
these peripherals can influence the choice of clock source for
the platform. For instance, a low-power RC oscillator might
be used as a clock source for the system clock whenever the
ADC is not used. However, when the ADC is used, which
achieves greater accuracy with a more accurate clock source,
a crystal oscillator is used, which then can also be used as the
system clock source. Further, when initializing on first use, the
first access to the peripheral might take longer. This might be
unwanted for applications that rely on the timing. In addition
to this, because of the latency on first use, additional care has
to be taken so that all running components are in a low-power
state while waiting for the initialization to finish. Indeed,
ensuring this is more straightforward during boot by carefully
designing the initialization order, while doing this during
run-time might be significantly more complex. Initializing
peripherals each time they are used and de-initializing them
after use is a third approach, which solves the problem of
varying access times. However, in short-lived applications,
the overhead originating from the frequent initialization can
quickly become a significant contributor to the overall energy
consumption.

B. Use case TEG harvester

A typical harvester utilizing a main and a low-power MCU
is shown in Figure 1. Energy is collected from the TEG and
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Fig. 2. Voltage level in the reservoir capacitor during burst style operation
of the MCU in a real-world deployment

stored in the reservoir capacitor. Once the reservoir is filled
sufficiently, the main MCU can be turned on, and a task can
be executed. Whenever the reservoir is filled, and energy is
collected from the TEG, this excess energy can be stored in
a storage capacitor. Handling of the voltage conversion and
management of the storage and reservoir capacitors can be
done by specialized chips, such as the widely used LTC3109
by Analog Devices. In order to use small energy sources, the
reservoir should be kept as small as possible, i.e. sufficient
for a single task execution, as this reduces the time required
to charge before a task can be executed. In an ideal world,
the storage capacitor would be infinitely large, as this avoids
wasting energy in case both the reservoir and storage capacitor
are full. However, the storage capacitor in this system is
used to fill the reservoir without additional voltage conversion
whenever there is not enough energy available from the TEG.
For this to be possible, the voltage level in the storage
capacitor needs to be greater than in the reservoir. To allow
this, the ratio between the storage and the reservoir capacitor
has to be selected based on the amount of energy expected in
the deployment.

The voltage level in the reservoir capacitor in a real-world
deployment is shown in Figure 2. Once the capacitor is
charged to a defined voltage, in this case 3 V, the main MCU
is activated and executes a task. After the task execution, the
main MCU gives a signal to the low-power MCU and is turned
off, and the reservoir capacitor is recharged. The next task is
then executed after a minimum wait time, which allows setting
a maximum duty cycle, and once the reservoir is recharged.
Turning the main MCU off in between tasks executions allows
to save energy, as no sleep current is present. As the recharge
time is large compared to the task execution time, sleeping
in between tasks would consume a considerable share of
the energy available, even with very low power consumption
during sleep.

The main MCU initializes the peripherals during boot, such
as sensors and the radio. However, not all peripherals might
be needed depending on the task to be executed. During the
execution of the next task, after the next boot, a different set of
peripherals might be needed, and others might not be required.

C. Proposed dynamic boot approach

Here we propose a dynamic boot approach that extends
RIOT [2], a popular operating system for WSNs, so that only

those modules required for the current task are initialized.
During boot, the operating system core is initialized before
the initialization of peripherals and modules. This initialization
is not modified in our dynamic boot approach. It will take
a set amount of time and therefore a set amount of energy,
depending on the MCU in use. The energy required for this
core initialization, in the following Ecore, is independent of
the modules. After this, in case of the standard, unmodified
boot approach, the modules and peripherals are initialized. In
our dynamic boot approach, a check is performed for each
module prior to the initialization. If the module is not needed
for the task, its initialization is skipped. For this approach,
knowledge of the required modules, and therefore the current
task, are required during the boot. Utilizing the low-power
MCU, this information can be delivered. With a static schema
of tasks, defined during compile time, the modules required
for each task are known.

Using the setup in Figure 1, the low-power MCU can inform
the main MCU about the task to be executed, i.e., by using IO-
Pins, which can be read with minimal overhead. An alternative
to using a low-power MCU could be using a simple real-
time clock (RTC) with a calendar to facilitate task execution
depending on the time and date. Even without an additional
device for advanced scheduling, this approach can be used.
Each time the reservoir capacitor is filled, a burst can be
executed, and the last executed task could be stored in non-
volatile memory. For ease of use during the implementation
the modules to be skipped are given in a blacklist rather than
the modules required.

Depending on the nature of the peripheral, skipping the
initialization might save a considerable amount of execution
time and therefore energy. Of course, not all peripherals take
equal amounts of time during initialization. Given a set of N
modules included during compile time, each of the modules
n ∈ N will require a set amount of energy (En) during
initialization.

With a set of M different tasks executed by the sensor node,
each task t ∈M will require a subset of the N modules. In the
standard, static boot approach, which initializes all modules
regardless of whether or not they are required, the energy used
during boot can be given as:

Eboot,static = Ecore +

N∑
n=0

En

Now, since there are |M | different tasks, the energy required
during boot for executing all these tasks with the sensor node
being turned off in between task execution can be given as:

Etasks,static = |M | ·

(
Ecore +

N∑
n=0

En

)
For the dynamic boot approach the energy required during

boot changes depending on the current task (t ∈ M ). Let
an,t = 1 if module n is required for executing task t and
an,t = 0 otherwise. There is some energy required for
checking whether the module is required for the given task



(Echeck) based on the static schema, independent of an,t.
In addition to this, the task needs to be known before the
initialization, which takes energy Eschedule, depending on the
method of determining the next task. Therefore, the energy
required during the dynamic boot process for task t is:

Eboot,dynamic,t = Ecore + Eschedule +

N∑
n=0

Echeck + En · an,t

With this, the energy required for executing all t ∈M tasks
using the dynamic boot approach is:

Etasks,dynamic =
M∑
t=0

(
Ecore + Eschedule +

N∑
n=0

Echeck + En · an,t

)

The first part of the overhead, Eschedule, introduced by the
dynamic boot approach results from obtaining the next task
during boot, in order to know the required peripherals. This
overhead will vary depending on the method of scheduling. If,
for instance, an RTC is used for determining the next task, a
bus access is required and causes overhead during boot. In our
setup, the low-power MCU handles the scheduling. Therefore,
during the boot of the main MCU, only minimal overhead is
introduced by reading the IO-Pins set by the low-power MCU.

The second part of the overhead, Echeck, results from
checking whether the peripheral is required for the current
task. Checking for each peripheral whether or not it is in the
blacklist can be achieved with very little overhead, as this is a
simple list lookup. The size of the list is limited by the number
of modules and peripherals used and will, in many cases, be
significantly smaller when only energy-intensive initializations
are skipped.

It is possible that there are modules for which Echeck is
greater than En. If a module requires only a few simple
initializations, such as configuring IO-Pins, the lookup in the
blacklist might require more energy. In these cases, there
might be a task t with (a0,t...an,t) such that Eboot,dynamic,t >
Eboot,static. Therefore, using the dynamic boot will result in a
higher energy consumption on this task. However, a different
task will likely require different modules, possibly resulting
in significantly reduced energy consumption during boot com-
pared to the static boot. The higher energy consumption in one
task would then be compensated for by the energy-saving in
another, allowing an overall lower energy consumption.

Thus, the dynamic boot approach is expected to be most
effective if the application matches any of two cases. First, if
a module exists with En > m · (Eschedule + nEcheck), which
is not required by all tasks, using the dynamic boot approach
will save energy based on this single module alone. Second,
consider an application with many modules, most of which
require En that is at least somewhat larger than Echeck. If most
tasks only use a small subset of the modules, the dynamic boot
approach can reduce the energy required during boot.

Fig. 3. Setup for repeatably emulating a real-world TEG harvester

IV. EVALUATION FRAMEWORK

The evaluation aims at comparing the proposed dynamic
boot approach with the standard static boot approach using
a real harvester with a sensor node in a realistic real-world
scenario. Measuring the system in a real-world deployment
has a significant limitation for comparing the dynamic boot ap-
proach with a static boot. Since the temperature changes from
day to day, the temperature difference presented at the TEG
will change as well, and measurements made on successive
days will produce different amounts of energy. Using multiple
harvesters to compare the two approaches simultaneously is
possible, but hardware tolerances and differences in the place-
ment of the harvesters will reduce the accuracy of the acquired
results. To overcome these limitations, a dedicated lab setup
that emulates previously recorded real-world conditions in a
lab setup is beneficial for this evaluation. As the main point
of the evaluation is the comparison of the two approaches in
a realistic scenario, the emulation should be able to reproduce
the conditions with minimal deviation in between runs.

A. Temperature gradient emulation

Since a TEG harvesting setup converts a temperature gradi-
ent into electrical energy, see Section III, this energy’s amount
and temporal characteristic is the determining factor for the
performance and lifetime of the sensor node connected to
the harvester. Hence, a possible approach for the emulation
of the real-world conditions is to reproduce the voltage and
current produced by the TEG in the real-world. An essential
requirement is the availability of this data from a real-world
deployment, which requires current and voltage measurements
at the input of the harvester. This measurement can be chal-
lenging, given that losses, i.e. due to shut resistors used for
current measurement, at the output of the peltier element
should be minimized. Additionally, emulating the real-world
conditions based on the voltage and current output, which
changes depending on the TEG and harvester in use, limits
the flexibility of the setup when it comes to comparing dif-
ferent harvesting hardware. To overcome these limitations, the
temperature difference can be emulated instead. This approach
allows for changes in the harvesting hardware, which might be
required for evaluating different setups. Further, measuring the
temperature at the TEG is minimally invasive to the real-world
harvester compared to measuring the voltage and current.

To allow realistic, reliable results, an emulator is designed
to reproduce temperature differences observed at a real-world
TEG harvester in the lab. The components of the emulator are



presented in Figure 3. A harvester, identical to the ones used in
the real world, is connected to a TEG of type PKE 127 A 0020.
In a real-world usage scenario, the temperature difference
(∆T ) at this TEG would be collected from the environment.
The real-world data used in this emulation was recorded using
a harvester with one TEG thermally coupled to the soil and
the other to the ambient air. In the emulator setup, two
temperature sensors, coupled with two additional, identical
TEGs are placed at each side of the TEG used by the
harvester. The sensors used are TSic-506F sensors with an
accuracy of 0.1 K. The two additional TEGs are connected
to remotely controllable power supplies, which are used in
combination with temperature sensors to allow regulation of
the temperatures at each side of the harvesting TEG using
a proportional–integral–derivative (PID) controller. Using this
setup, data from a real-world harvester fitted with temperature
sensors in a similar setup can be recreated in a lab. Thus,
a realistic and repeatable ∆T can be presented to the TEG
harvester.

B. Performance data recording

The emulator can accept arbitrary temperature setpoints to
be emulated at both sides of the harvesting TEG. Hence, it is
possible to emulate various different scenarios like a constant
∆T of a given magnitude and polarity over an extended
period or the reproduction of temperatures observed in a real-
world harvester. During the emulation, all data relevant to
the performance of both the emulator and the harvester and
the sensor node are recorded. The data collected from the
emulator includes the setpoints and the actual temperatures
at both sides of the harvesting TEG, as well as the current
set at the power supply. The voltages at the reservoir and
storage capacitor are recorded at the harvester. Additionally,
the supply voltage of the low power MCU and the current of
the main MCU are logged. For the sensor node, the status of
the main MCU, the execution and duration of tasks and the
transmitted wireless messages are logged. This comprehensive
data set is subsequently used to evaluate both the emulator and
the dynamic boot approach.

V. EVALUATION

A TEG harvester, as presented in Section III is now used
to evaluate the presented approach. This shows the energy
saving achieved by the dynamic adaptation of the boot process
to reduce the time required for booting. With the framework
described in Section IV, the harvester is used in a lab with
conditions representing a real-world deployment. Before ana-
lyzing the effect of the dynamic boot approach on the energy
consumption, the performance of the ∆T emulation during the
two test runs is evaluated.

Figure 4 shows temperatures recorded by a real-world TEG
harvester during a time span of 24 h. During the 24 h span,
which corresponds to the time from midnight to midnight
the following day in the real-world data, the temperatures at
both sides of the harvester vary with the ambient temperature.
This period is emulated twice for the evaluation, and the
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Fig. 4. Temperatures measured by a real-world TEG harvester (top) and
resulting temperature delta at the TEG (middle). Error in the temperature
delta, which was reproduced in the lab (bottom)

harvester is used to convert the energy and allow the sensor
node to perform a number of tasks. The sensor node performs
the same tasks with the same application code, once with
the standard, static boot approach and one using the newly
proposed dynamic boot. The 24 h period of real-world data,
which is presented in Figure 4 at the top, contains spans of
low and high ∆T , as well as slow and fast changes in the
temperature gradient.

This 24 h period is emulated twice in real-time for the
evaluation in two successive runs. The setup during both runs
is identical, the only difference being the boot process in the
operating system on the main MCU on the sensor node. During
the two evaluation runs, the data on the performance of the
emulator, the harvester and the sensor node is collected by the
framework, as described in Section IV-B. In the following,
the performance of the emulation of the real-world data
is analyzed regarding accuracy and repeatability before the
performance of the two boot approaches during the runs is
presented.

A. Emulation accuracy

One side of the real-world harvester is thermally coupled
to the ambient air, whereas the other side is coupled to the
soil. The recorded temperatures are fed to the emulator for the
evaluation, which recreates them in the lab. In the emulation
setup, the left TEG is used to emulate the ambient air side,
whereas the right TEG emulates the soil temperature side
of the real-world data. Keep in mind that these temperatures
are not simply the air and soil temperatures observed in the
real world but rather the temperatures measured directly at
the TEG in the real-world deployment. Figure 4 shows the
performance of the emulator w.r.t the real-world measurement
data during the first of the two emulation runs. In the top in



0 5 10 15 20 25

Time [h]

−0.02

0.00

0.02
D

iff
er

en
ce

[°
C

]

5

10

15

T
em

p
er

a
tu

re
[°

C
]

∆T1 −∆T2

Left TEG

Fig. 5. Difference in the emulated ∆T between two sequential runs of the
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Figure 4, the real-world measurement data for both sides of
the harvesting element, used as the setpoint for the emulator
is shown. The resulting temperature delta at the harvesting
peltier element in the real-world harvester, which can be seen
in Figure 4 in the middle, varies from approx. −1.2 °C to
6.2 °C. A change in the polarity of the temperature difference
can also be observed. In the night hours from midnight to
approx.8 h and from approx. 20 h to midnight the following
day, the ∆T is negative, meaning the air side is colder than
the soil. While repeatability is more relevant than accuracy
to the evaluation presented here, an accurate emulation will
provide realistic conditions. The achieved error in the emulated
temperature delta, that is, the difference in the ∆T of the lab
setup and the ∆T measured in the real world, is presented in
Figure 4 at the bottom. As expected from a PID controller, the
error tends to be higher whenever there are more prominent
changes in the temperature. Overall, the accuracy is below
±0.01 °C for most of the emulation run, with some spikes
above and below this value to −0.0174 °C and 0.0168 °C.
Due to the fact that the errors produced during the run are
fairly symmetric around zero, the overall average error of only
2× 10−4 °C is comparatively low.

B. Emulation repeatability

While the high accuracy in reproducing the real-world
conditions achieved with the emulation setup is helpful in
the evaluation, the most important point in evaluating the
dynamic boot approach is the repeatability of the emulation.
As the goal of the emulation is to evaluate the dynamic and
static boot approaches in the same conditions, the framework
needs to be able to reproduce the ∆T in sequential runs
with as little deviation between the runs as possible. The
performance of the emulator with respect to repeatability is
presented in Figure 5 as the difference in the emulated ∆T
between the two emulation runs, with the static and dynamic
boot approach. For reference and to outline the times with fast
changes in the emulated temperature, the absolute temperature
of the left TEG is shown as well. As was the case with the
accuracy of a single run, presented in Figure 4, a quicker
change in the emulated temperature will increase the error.
The minimum and the maximum difference in ∆T between the
runs was −0.0264 °C and 0.0221 °C, respectively. Again, due
to the symmetric nature of the difference, the overall difference
between the runs is only 1× 10−5 °C.
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C. Application operation principle

During the evaluation, the main MCU performs four differ-
ent tasks representing typical tasks for a sensor node. The four
tasks consist of three measurements which are read and stored
in Ferroelectric Random Access Memory (FRAM), and one
transmission task, during which all measured values are read
from the storage and transmitted wirelessly. The measurements
are taken using an SHT21 temperature sensor, an ADC and a
simple IO Pin, to represent different complexities and usage
of peripherals. The low-power MCU turns on the main MCU
and instructs it to execute a task, whenever sufficient energy
is available. In between the measurement tasks, the MCU is
turned off for one second to allow the reservoir to be filled.
After the transmission task, a longer off period of 10 s limits
the sample rate, as it is typical for measuring values with low
dynamics in WSNs.

In the evaluation, all tasks are executed sequentially. The
MCU is booted once during each burst operation and exe-
cutes a single task. Whenever too little energy is available
to recharge the reservoir in the wait time of 1 s, or 10 s,
respectively, the next task is executed as soon as enough
energy is available. After completing the task, signalled by
the main MCU using an IO-Pin, the main MCU is turned off
by the low-power MCU, therefore conserving any remaining
energy in the reservoir.

D. Task execution time

For each task, the average execution time during the eval-
uation is shorter using the dynamic boot approach, as can be
seen in Figure 6. Therefore, the time savings achieved are
greater than the overhead introduced from reading the task
to be executed from the low-power MCU and checking the
modules to be skipped in the initialization.

Overall, measuring a value using the SHT21 temperature
and humidity sensor takes the most time of all the tasks. The
SHT21 measurement task is only marginally faster using the
dynamic approach. Therefore, skipping the initialization of the
IO-Pin, the ADC, and the radio is only a small improvement
in the execution time. Looking at the results of the ADC
measurement, the difference between the dynamic and static
approach is more pronounced. Performing the ADC task takes
approximately 34 ms without and 17 ms with the dynamic
boot, which is an improvement of 100 %. The same applies
to reading the IO-Pin, it takes a very similar amount of time,
and the improvement from using the dynamic boot approach
is almost identical. When performing the transmission task,
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the total time required is larger than for the ADC and IO-Pin
measurement. Lowering the execution time of the task from
44 ms to 31 ms, the dynamic boot offers an improvement of
70 % as a result of not initializing the unused peripherals.
In general, the improvement achieved by the dynamic boot
approach varies greatly depending on the executed task. While
the task of reading a value from the SHT21 sees only little im-
provement, the other tasks show a large reduction in execution
time. As described in Section III, this stems from the fact that
the module for the sensor has a very high overhead compared
to the other modules. Since it is used for a single task only,
all other tasks can benefit from skipping this module. For the
task requiring the SHT21, only a little time can be saved from
skipping other modules during boot.

E. Number of tasks executed

Figure 7 shows the number of tasks executed per hour by
the main MCU during the emulation. First, it can be seen
that the temperature gradient during the nighttime was not
large enough to generate enough energy to execute any tasks.
With greater ∆T , more energy is available to the harvester.
The harvester can use both polarities of the ∆T . Therefore it
can use temperature differences independent of which side of
the TEG is the warmer one. However, the harvester requires
the absolute value of the ∆T to be greater than approx. 1 °C
before being able to produce electrical energy. Consequently,
in the time span used in the evaluation, the MCU operates
during the day hours, not enough energy is harvested while
at night. While operation during the night hours is possible in
general and observed in the real-world harvester, in the 24 h
selected for the evaluation, the ∆T was not large enough.

Using the static boot, the main MCU was able to execute
a total of 4909 tasks during the 24 h run. Over the same
time span, in the run with the dynamic boot approach, 6235
tasks have been executed, therefore in the evaluation scenario,
the improvement was 27 %. Intuitively, the lower ∆T in the
morning hours results in fewer tasks than the afternoon hours
with greater ∆T . Looking at the difference in the number
of executed tasks between the two boot approaches, it is
evident that the improvement in the morning hours when using
the dynamic boot approach is much more significant than in
the afternoon hours. This concludes that the dynamic boot
approach is more effective in situations with lower ∆T and,
therefore, lower power. This effect, however, is not a result
of lower energy savings at higher ∆T , but rather an artefact
seen when using the number of tasks executed as a metric for
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a more efficient boot process. Since the application is limited
in the maximum duty cycle, the time between execution of the
tasks is determined by two factors: The minimum wait time
of 1 s for the measurement tasks and 10 s for the transmission
tasks and the time required to recharge the reservoir capacitor,
which depends on the ∆T at the TEG. Therefore, for growing
∆T , the maximum duty cycle becomes the limiting factor for
the number of tasks executed instead of the available energy.
Hence, the power saving achieved with the dynamic boot will
impact the number of tasks less for higher ∆T .

F. Artificial conditions scenario

To further evaluate this observation, a different test scenario
is used. Instead of real-world temperature data, the emulator
generates a ∆T from 0 °C to 4.5 °C at the TEG for equal
periods of 10 min. The two boot approaches are again used
in sequential runs. All capacitors are drained after every ∆T
step. The results of these runs are presented in Figure 8. The
number of tasks executed during the test periods for each ∆T
step is shown in the top left. Similar to the results of the real-
world runs, the dynamic boot outperforms the static boot by a
factor of over 1.5 for small ∆T , while the difference is smaller
for larger ∆T . For ∆T =4.5 °C the dynamic boot approach
results in the same number of tasks executed per time interval.
Therefore, the limiting factor is the maximum duty cycle of
the application.

From the average energy used per task, shown in Figure 8
in the bottom left, it can be seen that, although the dynamic
boot approach will not result in more tasks being executed
for ∆T =4.5 °C, the difference in the energy consumption
between the two approaches stays roughly constant. Therefore,



the boot approach does not get less effective with higher
amounts of energy available. Applications with a higher duty
cycle or higher energy requirement will benefit from this
approach even at higher ∆T . Another trend that can be seen
from the average energy used per task is that for higher ∆T the
energy used per task increases slightly, even though the tasks
are the same. This effect is a result of different voltage levels
in the reservoir capacitor. When there is little energy available,
and the subsequent task execution is due before the reservoir
capacitor is charged sufficiently, the task will be executed as
soon as the harvester signals a charged reservoir. This signal
is given slightly below the nominal output voltage of 3.3 V at
around 3.0 V. Because the main MCU is perfectly capable of
operating at voltages as low as 1.8 V, this behaviour is not a
problem. Therefore, whenever enough energy is available for
the reservoir to be filled to the nominal voltage, the energy
consumption will be slightly higher as the current consumption
does not change with a change in the voltage.

The average voltage in the storage capacitor in Figure 8 in
the top right indicates the amount of excess energy available
for each ∆T step. As the storage capacitor is only charged
whenever the reservoir is filled to the nominal voltage, it can be
seen that with increasing ∆T the application does not utilize
all energy available.

In the bottom right in Figure 8 the performance of the
dynamic boot approach w.r.t power consumption and tasks
executed is shown relative to the static approach. It can be seen
that the energy consumption is fairly constant. The dynamic
boot requires an average of just over 50 % of the energy
required in the static boot per task. In terms of tasks executed,
the dynamic boot approach allows executing more than 150 %
of the tasks for low ∆T . This advantage falls with higher ∆T ,
until it reaches 100 % at a ∆T of 4.5 °C.

VI. CONCLUSION

Effectively using very small energy sources, like ambi-
ent thermal gradients, enables a variety of novel WSN-
applications. Furthermore, it makes such WSNs both more
economical and ecologic by removing the need for over-
provisioning of the harvester and energy storage. A very
limited energy supply combined with minimal storage capacity
results in an intermittent, burst operation. Sleeping in between
tasks might not be possible in many applications due to a
lack of energy. Therefore, the boot process of a sensor node
becomes an important factor in the energy efficiency of the
node and the overall network. By dynamically adapting the
boot process depending on the task that needs to be executed,
we minimize the overhead resulting from initializing unused
peripherals. To evaluate the performance of approaches for
TEG energy harvesting in WSNs, we implemented a setup for
emulating realistic conditions from real-world measurements
both accurately and repeatably. In our evaluation, adapting
the boot process can improve the execution time up to 100 %
depending on the task and the peripherals used. Our example
application executed 27 % more tasks using the dynamic boot,
with a potential for an even greater improvement for different

applications with a higher duty cycle or power consumption.
Finally, we have outlined the factors influencing the effec-
tiveness of using the dynamic boot approach in a series of
artificially generated temperature scenarios.
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