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Abstract—Integrated Access and Backhaul (IAB) is a cost-
effective and adaptable solution for the deployment of ultra-
dense next-generation (5G and 6G) cellular networks to increase
the likelihood of Line-of-Sight (LOS) coverage. This technology
allows wireless backhaul connections to be established using
the same technology and specifications as available in the
access links. However, the absence of a physical testbed or
a dataset that can be used for simulation in the millimeter
wave (mmWave) band prevents researchers’ validation of the
proposed algorithms in the IAB scenario. In this paper, we
propose a novel data generator based on Generative Adversial
Network (GAN), trained on a real dataset from a mobile network
that operates in Europe, and maintains a significant market
share that returns accurate traffic data for an IAB network.
Furthermore, we integrate this data generator with the SeBaSi
simulator (an IAB simulator based on Sionna) which permits
to obtain accurate, data-consistent, realistic, and end-to-end
IAB simulation results. The performance results indicate that
the data generator successfully passes the Kolmogorov–Smirnov
(KS) criterion, so it could operate as a verified data generator.
Furthermore, we use the SeBaSi simulator, integrated with the
data generator, to evaluate the performance of an IAB network
in the London City scenario.

Index Terms—6G, GAN, IAB, Self-backhauling, Wireless
Backhaul, GAN, Data Generation

I. INTRODUCTION

The significant increase in data rate capacity at sub-

terahertz (THz) and millimeter wave (mmWave) frequencies

that enable data-hungry use cases such as Extended Reality

(XR) and mobile metaverse applications in 5th generation

(5G) and 6th generation (6G) cellular systems. To mitigate

the effects of the severe propagation environment at higher

frequencies, wireless networks will be deployed with an

exceptionally high density to increase the probability of Line-

of-Sight (LOS) coverage. The 3rd Generation Partnership

Project (3GPP) has standardized an extension of 5G New

Radio (NR), known as Integrated Access and Backhaul

(IAB) [1], to make ultra-dense deployments more feasible and

economically sustainable. This extension reduces the required

number of fiber drops by utilizing the same waveform and

protocol stack to provide wireless backhaul for Next Gener-

ation Node Bases (gNBs), which are the IAB nodes [2].

IAB is a wireless backhauling technique initially suggested

in 3GPP Release 16 [3]. By enabling self-backhauling, it

provides a practical solution to the challenges encountered

by dense mobile networks. This technique employs a chain

structure in which numerous IAB nodes are ultimately linked

to an IAB donor, combining the resources of access [4]

and backhaul links in the gNB (an example of this net-

work is shown in Fig. 1). The 3GPP NR Release 18 [1]

currently includes a Work Item (WI) that is dedicated to

the examination of architectures, radio protocols, and the

physical layer for IAB. The objective is to facilitate the

sharing of radio resources between access and backhaul

links. This WI on IAB anticipates a more sophisticated and

adaptable solution, featuring dynamic resource multiplexing,

multihop communications, and a plug-and-play design for

low-complexity deployments.

Numerous research papers have investigated the develop-

ment of IAB networks for both backhaul and access links,

focusing especially on the identification of optimal solutions

for resource management [5], [6]. Additionally, IAB can

utilize a significantly greater bandwidth at mmWaves than in

legacy sub-6 GHz spectrum, and the inherent directionality

at this frequncies mitigates the interference of concurrent

access and backhaul transmissions. Nevertheless, the design

of a high-performance IAB network remains an open research

challenge, despite the consensus regarding IAB’s capacity to

reduce deployment and management costs. Multi-Hub (MH)

backhauling, an important aspect of IAB technology, has the

potential to enhance network throughput and coverage [7],

[8]. In order to effectively address the blockage issue and

interference management in an IAB network, it is crucial

to leverage spatial reuse through MH backhauling [9], [10].

So, the IAB network design and in particular backhaul

network is an important and complicated problem because it

involves managing the network’s topology, choosing routes,

and adjusting the resources that are shared between backhaul
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and access links [11]. The MH-IAB network deployment and

configuration are flexible, which can present additional chal-

lenges. Consequently, it is important to implement an efficient

network design for the access and backhaul connections of

MH-IAB, which should consider the interference generated

by in-band wireless backhaul and blockage issues.

Prior to actual deployment, it is essential to validate all

suggested methods for IAB, including IAB nodes and donor

placement and backhaul schedulers [12]. In this sense, given

the absence of publicly available testbeds or experimental

setups, network simulation is a more reasonable choice for

the performance evaluation of IAB networks. Among other

solutions, the ns3-mmwave-IAB1 [10] module is built on top

of the ns-3 simulator, and can be used to implement, design,

dimension and evaluate end-to-end IAB networks. However,

the module had not been upgraded to support the newest 5G-

NR standard specifications, and was incapable of handling

the simulation of large-scale network deployments. Recently,

we introduced a simulator called Self-Backhauling-Simulator

(SeBaSi) [13], which is publicly available2 and has the ability

to replicate an IAB network with much stronger connections

to the 3GPP standard than the current version of the ns3-

mmwave-IAB module. Nevertheless, the design of SeBaSi has

not been trained or validated with real data from IAB network

deployments, which could lead to discrepancies between

simulation results and real traffic patterns and deployments.

Because the number of real datasets is extremely limited, it

may be difficult to model a large number of scenarios and to

train enough generality [14]. Therefore, it is crucial to learn

from the real and available datasets, and replicate similar data

in more different and heterogeneous scenarios.

In this context, GAN has become a popular technique to

create datasets starting from real data, including data from

wireless communication networks [15]. Generative Adversial

Networks (GANs) is a unique type of Deep Neural Net-

work (DNN) that can produce data by acquiring the precise

statistical characteristics of a given dataset through indirect

methods. In this research, we propose a new real dataset

generator based on GAN for the IAB network. This generator

can produce realistic IAB traces in various scenarios and has

been trained using a real dataset. The statistical evaluation,

based on the Kolmogorov–Smirnov (KS) test, demonstrates

that the generator and the actual dataset are comparable. We

integrate the proposed generator into the SeBaSi simulator

to enable full-stack simulation of MH-IAB networks using

real data, which guarantees the accuracy and realism of the

results. For instance, we demonstrate the performance of an

MH-IAB deployment in London City and present the main

simulation metrics and results.

The rest of the paper is organized as follows. Sec. II

introduces the IAB system model and a summary of the

SeBaSi simulator. Sec. III describes the proposed data gen-

erator framework. Sec. IV demonstrates statisticaly results

1https://github.com/signetlabdei/ns3-mmwave-iab
2https://github.com/TUDA-wise/safehaul\ infocom2023
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Fig. 1: Illustration of the IAB scenario (with backhaul and access
link), with NI = 3 IAB nodes.

and numerical results for the London City scenario. Finally,

Sec. V concludes the paper.

II. IAB SYSTEM MODEL

This section provides an overview of the system model and

of our assumptions in Sec. II-A, as well as a brief introduction

to SeBaSi in Sec. II-B.

A. System Model

We consider a Time Division Multiple Access (TDMA)

system, as illustrated in Fig. 1, where NU User Equipments

(UEs) exchange data with a single IAB donor that has fiber

connectivity to the Core Network (CN). In order to provide

stable coverage, the donor is supported by NI IAB nodes,

which may be linked either directly to the donor or to

nearby base stations, potentially creating a multi-hop wireless

backhaul. Without making any assumptions that limit the

scope of the situation, we only consider uplink traffic.

We divide the time resources into T radio subframes, each

with a duration of Tsub = 1 ms, whereas all nodes are

equipped with transmission buffers. Consequently, the data

that node i transmits to gNB k (either the IAB donor or an

IAB node) during subframe t is stored in its buffer Bk(t)i.
This data represents either the packets that the donor has

successfully received or the data that will be forwarded to

the next hop along the path during subframe t+1 in the case

of IAB nodes. We assume that the backhaul links operate

in the mmWave spectrum, and each IAB node is equipped

with two Radio Frequency (RF) chains, so that two antenna

systems can be flexibly used for the backhaul and access

communications. The Sionna Ray Tracing (RT) 3 tool is used

to model the channel and calculate Power Spectral Density

(PSD) in this research. The Signal to Interference plus Noise

Ratio (SINR) of a packet from source node s to destination

node d, δs,d can be expressed as

δs,d =
|hs,d|

2σ2
x

σ2
n +

∑

i∈I
σ2
i

, (1)

3https://nvlabs.github.io/sionna/api/rt.html
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where hs,d represents the equivalent channel response

between the communication endpoints, I denotes the set of

interferers, σ2
x, σ2

i and σ2
n are the powers of the transmitted

signal, the i-th received interfering signal, and the thermal

noise at the receiver, respectively. The corresponding access

(backhaul) throughput βA
j,k(t) (βB

s,d(t)) reads

βA
s,d(t) =

1

Tsub

Bt

s∑

l=1

1

{

b̂l(δs,d) = bl

}

, (2)

whereas gNB k = 0, . . . , NI, with index 0 denoting the

IAB donor, receives data from node s, where Bt
s denotes the

number of bits transmitted from user (IAB node) j to gNB d

during subframe t and b̂l(δj,k) is the l-th decoded bit at the

receiver, as a function of δj,k.

B. SeBaSi

SeBaSi [16] is a system-level simulator, built on top of

the open-source SionnaTM [17] simulator, which is used

for modeling the physical layer of 5G and beyond 5G

networks. SeBaSi is specifically designed to model 3GPP

Release 17 IAB cellular networks. It is written in Python

and operates on top of any link-level simulator, such as

Sionna, and simulates essential components. In order to

incorporate self-backhauling IAB capabilities into Sionna, we

have successfully integrated several system-level features into

SeBaSi. The extensions, described in detail in [13], consist

of a scheduler at the Medium Access Control (MAC) level,

layer-2 buffers, and algorithms for selecting the backhaul

path. In addition, we implemented 5G-NR procedures, such

as codebook-based beamforming and SINR computation, to

improve the alignment of Sionna’s physical layer with the

latest 5G-NR standards. In addition, we enhanced SeBaSi to

include support for sub-THz links in the backhaul [18]. This

is enabled by the extension of SeBaSi channel modeling to

support sub-THz by simulated traces in Terasim [19]. So

the links can be configured to function at either mmWave,

sub-THz, or a combination of both frequencies. The purpose

of this enhancement is to evaluate the performance of sub-

THz frequencies for IAB, which is in line with the latest

research and standardization activities on 6G. At the physical

layer, Sionna and SeBaSi implement the 3GPP TR 38.901

model for the mmWave channel, even though the most recent

version of SeBaSi also includes a built-in ray tracer tool to

model the channel. To address routing within the wireless

backhaul network, we implemented the Backhaul Adaptation

Protocol (BAP) layer in the upper layers of SeBaSi [20].

This layer uses a MAC-level scheduler that operates in a

TDMA manner. Additionally, it utilizes hop-by-hop Radio

Link Control (RLC) channels to simulate layer-2 buffering

and data transmission.

SeBaSi enables users to customize various simulation pa-

rameters, including the duration and mode of the simulation,

the size of the packets, and the rate of data transmission from

either individual user equipment or the entire system. The

simulation modes being considered are the run mode and the

debug mode. The debug mode offers extra control signals

and related information. In addition, users have the ability to

personalize the scenario by selecting the quantity and location

of UEs and base stations, as well as the IAB topology,

which refers to the wireless backhaul links between gNBs.

The backhaul scheduler algorithm, which determines which

backhaul links to schedule in each time slot, allows users to

either create custom policies or select from predefined options

such as SCAROS [21], MLR [6], Safehaul [13], and SINR-

based [18].

The simulator generates a comprehensive collection of

system-level Key Performance Indicators (KPIs), including

end-to-end latency, throughput, and packet drop rate. Each

of these metrics can be collected and shown for each IAB

node or for the entire network. Furthermore, SeBaSi provides

internal and/or lower layer metrics, such as the timestamp

of packet generation and arrival, destination UE, and the

backhaul path. In addition, it provides information on the

load of each IAB node for each time step, including both the

access and the backhaul interfaces.

III. DATA GENERATION FRAMEWORK

Data Driven-SeBaSi (DD-SeBaSi) is a framework that

models IAB networks using a real dataset integrated on top

of SeBaSi. DD-SeBaSi incorporates all the existing features

of SeBaSi and introduces an additional functionality that

allows users to select between generating parameters (e.g.,

the number of connected UEs per gNB, system Rate, and

Reference Signal Received Power (RSRP)) randomly or using

data traffic, either from a real dataset or from our data

generator. Figure 2 demonstrates the proposed data generator

in collaboration with SeBaSi. In order to accomplish this, we

initially collect the dataset (described in Sec. III-A). Next,

we employ the GAN architecture to train the model using

this dataset and generate new synthetic data which is still

accurately representative of the original data. Ultimately, we

integrated the GAN model into the SeBaSi as a new feature to

have DD-SeBaSi. It is noteworthy that users have the ability

to define any scenario, and the data generator will attempt

to create data that is relevant to that scenario, using the real

dataset as a basis. In the following sections, we will begin by

providing an overview of the data collection process. Next,

we will present the proposed data generator. Finally, we will

demonstrate how we seamlessly incorporate it into SeBaSi.

A. Dataset collection

In order to conduct our investigation, we utilize real-

world datasets that we collected from a mobile network that

operates in Europe, and maintains a significant market share.

The dataset comprises individual measurement samples of a

variety of metrics from end-user devices that were collected

during 2 months in 2023. The dataset contains thousands of

samples, each of which is associated with the correspond-

ing radio sector identity and geographical coordinates. We

concentrate our analysis on London, which is the primary

innovation hub for the operator as a result of the high

population density and growing service demand.
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Fig. 2: Overall design of DD-SEBASI Framework extension. The blue block is the proposed data generator, the red blocks are SeBaSi,
and the green block represents the Sionna simulator [17].

B. Data Generator

Within the collected dataset, we have selected three pa-

rameters that are likely to have a significant influence on

the performance: the number of connected UEs per gNB

(γ), the system rate per UE (β), and RSRP (λ). Given

the unavailability of real-world mmWave deployments at the

time of writing, all data is limited to cellular deployments

operating at sub-6 GHz frequencies. As a first step, we

establish a simulation scenario utilizing the Sionna RT tool

to generate rays at mmWave spectrum to obtain RSRP values

with corresponding deployment positions. RT is an excellent

tool for modeling the environment and generating paths;

however, it is restricted to specific scenarios. Therefore, in

order to obtain the appropriate channel and, in particular, the

RSRP value, it is necessary to model the environment with

all details for each scenario. So to do simulation with DD-

SeBaSi, first we model the London City scenario (same are

real deployment) in RT to obtain proper RSRP values. We

utilize exclusively real datasets for the γ and β parameters.

GANs are a distinct type of DNNs that have the capacity to

generate data by learning the precise statistical characteristics

of a given dataset through indirect methods.The interesting

feature of GANs is that they can be trained using a limited

amount of available real data to generate synthetic data in

different scenarios and conditions. This synthetic data can

then be used in data generation for wireless communication

networks. GANs involve two key components: the generator

G, which transforms a random sample from a uniform

distribution into a sample that follows the data distribution,

and the discriminator D, which assesses whether a given

sample is representative of the data distribution or not. To

learn a generator distribution pg over the dataset, it constructs

a mapping function G(z) from a noise distribution pz(z)
where z is the input noise to the output of generator (Xf ).

The discriminator D(x) returns a single scalar value that

represents the probability that X is derived from the real

dataset (Xr) rather than pg (Xf ), therefore showing the

authenticity of the data. The negative relationship between

the two components of the GAN is reflected in the min-max

equation, which is a fundamental component of the training

objective. Concurrent training of both G and D is conducted,

with parameters modified for G to minimize the cost func-

tions log10(1−D(G(z))) and log10 D(x) accordingly, using

the min-max value function V (D,G)4 which is defined as:

min
︸︷︷︸

G

max
︸︷︷︸

D

V (D,G) = EX∼pdata(X)[logD(X | y)]

+ Ez∼pz(z)[log(1−D(G(z | y)))]

(3)

The min-max equation encapsulates the adversarial nature

of GAN training, in which the generator and discriminator

are perpetually enhancing themselves in response to each

other’s advancements, resulting in improved data generation

over time. The underlying premise of min-max is that D(X)
is attempting to optimize its accuracy by increasing the

probability of distinguishing between real and fake data.

G(X) is attempting to reduce the discriminator’s capacity

to do so by ensuring that the fake data appears as real as

possible. D(X) should be unable to differentiate between

real and fake data when the GAN reaches equilibrium, which

implies that D(G(z))) = 0.5 for all z. At this step, D(X) is

at its most confused, and the generator generates data that is

indistinguishable from real data.

Figure 3 illustrates the architecture of the DD-SeBaSi GAN

data generator model, whereas Z,Xr, and Xf represent

the input noise, {γ, β, λ}real, {γ, β, λ}fake
5, respectively.

Figures 3a and 3b represent the architecture of G and D

whereas G and D take as input Z, and {Xr, real} or {Xf ,

fake}, respectively.

4For a more detailed description of the GAN training process, we refer
the interested readers to [22].

5During training we refer to output of Generator(Xf) as fake, after
training, during the simulation campaign in DD-SeBaSi, we refer with
G,{γ, β, λ}fake = {γ, β, λ}G
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Finding the best parameters for training a GAN is a chal-

lenging task because it involves optimizing multiple hyperpa-

rameters, including the learning rate, batch size, epoch count,

generator and discriminator layer count, activation functions,

regularization techniques, and more. We performed training

on the model using several combinations of hyperparameters.

We evaluated the performance using a specific measurement

and chose the hyperparameters that produced the most ad-

vantageous outcomes. The most favorable hyperparameters

are as follows. We utilize the rectified linear unit (ReLU)

as the activation function. The training method comprises

80, 000 epochs, with a batch size of 32. We employ Adam

as the optimizer, utilizing a learning rate of 0.001. The loss

function for the generator G and discriminator D is obtained

by utilizing the mean absolute error for G and binary cross-

entropy for D.

IV. PERFORMANCE EVALUATION

In Sec. IV-A we provide a statistical analysis that validates

the accuracy of the proposed data generator. In Sec. IV-B we

validate via simulation the implementation of the DD-SeBaSi

simulator using synthetic data from the data generator, and

evaluate the performance of an IAB network considering

different backhaul schedulers.

A. Statistical Analysis

The initial step in using the data generator in the SeBaSi

simulator is to verify that the proposed data generator is

consistent with the actual dataset [23]. Graphically repre-

senting the Cumulative Distribution Functions (CDFs) of two

distributions is an effective approach to visulaize the degree

of similarity or any strong disparity between them. In order

to accomplish this, we plot the CDF of real and generated

values of and G γ, β, λ in Fig. 4. While we see that the

two curves almost overlap, which indicates that our data

generator is accurate, we use the KS test to formally verify

that the generated data is statistically consistent with the

actual dataset. KS is an important metric used in statistical

analysis to compare the distributions of two datasets. Its

purpose is to determine whether a dataset adheres to a specific

distribution [24]. The test yields a P-value that signifies the

likelihood of achieving the observed disparity in distributions

due to random chance. A higher P-value suggests that the

two datasets are probably sampled from the same distribu-

tion. The D-value, also referred to as the KS statistic, is a

quantitative measure that captures the largest, also referred

to as vertical distance, between the CDFs of two datasets

under comparison. Consequently, the datasets exhibit greater

similarity when the D-value is small.

We conducted the KS for the CDF of {γ, β, λ}real and

{γ, β, λ}G. The results of the test are presented in Table I. It

is shown that all parameters ({γ, β, λ}) are passing the test

very well: An extremely low D-value and high P-value for all

parameters suggest that the distribution of the two datasets is

comparable. Therefore, our KS test does not reject the null

hypothesis, which indicates that there is insufficient evidence
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Fig. 3: Structure of the proposed data generator, including DNN-
based architecture

to demonstrate that the sample distribution deviates from the

reference distribution.

TABLE I: A goodness of fit (two sample KS Test) for.

Parameter P-value D-value

γ 0.714 0.073

β 0.795 0.0124

λ 0.892 0.0091

B. IAB simulation Results

In this section we use SeBaSi to run IAB simulations

in different scenarios, and used our GAN data generator,

that was previously validated in Sec. IV-A, to model the

channel of both the access and the backhaul links. Simulation

results are given a function of the number of IAB nodes and
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Fig. 4: CDF of α, β, λ comparison of generated and real datasets

TABLE II: Simulation parameters.

Parameter Value

Carrier frequency and bandwidth 30 GHz and 400 MHz

IAB RF chains 2 (1 access + 1 backhaul)

Number of BS-nodes N 100
IAB Backhaul and access antenna array 8H×8V and 4H×4V

UE antenna array 4H×4V

IAB and UE height 15 m and 1.5 m

IAB antenna gain 33 dB

Noise Figure 10 dB

for different scheduler implementations. We plot the mean

throughput, latency, and packet drop rate.

Simulation Scenario We simulate the actual cellular net-

work deployment configuration of London City. Specifically,

we consider N = 100 5G-NR base stations within a 15 Km2

area, as shown in Fig. 5. The specific simulation parameters

are outlined in Table II.

Fig. 5: Locations of BS-nodes (red dots) in London City

Numerical Results We use three different IAB schedulers

available in SeBaSi: (i) Safehaul [13], a risk-averse learning

method for ensuring reliability in mmWave systems which

uses a Reinforcement learning algorithm to increase reliabil-

ity in the network; (ii) Scalable and Robust Self-backhauling

Solution (SCAROS), an online learning-based technique that

reduces the average backhaul scheduling latency in the net-

work [21]; and (iii) Maximum-local-rate (MLR), a greedy

statistical method that aims at maximizing throughput by

choosing links with the highest data rate. This approach

operates offline, greatly facilitating its application in real-

world situations, but at the cost of decreased performance.

1) Scenario 1: Average Network Performance: Evaluation

of the algorithms’ performance over time is essential for

determining the rate at which the learning-based approaches,

namely Safehaul and SCAROS, converge. Therefore, in Fig. 6

we display the mean latency, throughput, and packet loss rate

of the IAB network over time. In Fig. 6a, we can observe

that Safehaul rapidly converges to an average latency of

approximately 6.5 ms which is 11% and 48.4% lower than

the latency of SCAROS and MLR, respectively. The high

performance of Safehaul stems from the joint minimization

of the average latency and the expected value of its tail

loss, which results in avoiding risky situations where latency

goes beyond Tmax (maximum time before packet drop in

the network, after which a packet is considered as dropped,

50 ms in our simulation campaign). This is not the case

for SCAROS where we observe a high peak in the latency

before convergence. It is exactly the avoidance of such

transients in Safehaul that leads to higher reliability in the

system. The reliability offered by Safehaul allows Mobile

Network Operators (MNOs) to deploy self-backhauling in an

online fashion and without disrupting the network operation.

Figure 6b illustrates that the average transmission of the

network is not adversely affected by the risk-aversion capa-

bilities of Safehaul. Safehaul’s performance is approximately

79.3 Mbps, which is 11.7% higher than that of MLR and

comparable to SCAROS. The behavior observed in Fig. 6a is

consistent with the performance depicted in Fig. 6c in terms

of packet drop rate. Safehaul obtains the lowest packet drop

rate among the reference schemes, which is 30.1% (84.0%)

lower than SCAROS (MLR).

2) Scenario 2: Impact of the IAB Configuration: In Fig. 7

we evaluate the performance of the IAB network as a function

of the number of IAB nodes, that we change from 25 to 100.

Simultaneously, we augment the network’s burden by increas-

ing the number of UEs (2 UEs per IAB node). We demon-

strate that Safehaul consistently obtains better performance in

comparison to the reference schemes. This demonstrates that

Safehaul accomplishes the intended optimization objective,

which is the joint minimization of the average end-to-end

latency and its anticipated tail loss. As the number of IAB-

nodes increases, Safehaul is capable of maintaining a nearly

constant latency, as illustrated in Fig. 7a. In particular, the

variation of latency with Safehaul is 56.1% and 71.4% lower

than that with SCAROS and MLR, respectively. Additionally,

Safehaul obtains an 11.1% and 43.2% lower latency than

SCAROS and MLR, respectively. The latter’s high variance

is a result of the lack of adaptation capabilities.

The average throughput of the learning-based approaches,

i.e., Safehaul and SCAROS, remains constant as the number
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Fig. 6: Average network performance for 50 UEs(Scenario 1).
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Fig. 7: Network performance for {25, 50, 75, 100} BS-node, 2 UEs per BS-nodes on average, and 40 Mbps per-UE source rate (Scenario
2).

of IAB nodes increases, as illustrated in Fig. 7b. Safehaul, on

the other hand, achieves the lowest variation, differential of

maximum and minimum value, in throughput, with a value

of 0.90, as opposed to the benchmark schemes’ 1.9 and

2.8. The reliability capabilities of Safehaul are corroborated

by the results in Fig. 7c, where we plot the packet failure

rate vs. the number of IAB nodes. It is worth noting that

Safehaul consistently outperforms the reference schemes and

exhibits the least variation in results (at least 47.3% lower

than the benchmarks). When the greatest network size and

traffic are taken into account, namely 200 BS-nodes and 400

UEs, Safehaul achieves a 49.3% and 81.2% lower packet drop

rate than SCAROS and MLR, respectively.

Summary We present an example scenario of London City

end-to-end performance metrics results, utilizing the GAN-

based data generator to demonstrate how various schedules

can be validated in the SeBaSi simulator. It is evident that

from the obtained results, among the backhaul schedulers,

Safehaul has the potential to attain superior performance,

which is directly consistent with the results obtained in [13]

for Manhattan City using a random data generator.

V. CONCLUSIONS AND FUTURE WORK

The scope of this research was to validate the integration

between SeBaSi and the data generator, and present (for the

first time) realistic IAB results, i.e., obtained considering

synthetic (though validated with real traces) data for the

IAB channel. The numerical results align with prior trends

and demonstrate the applicability of approaches for imple-

mentation in the actual system. In future work, further real

datasets will be gathered from various operators to enhance

the generality of the framework and enable the utilization

of the data generator in other simulators, such as ns-3. In

addition, we would extend simulations to do localization to

find the best spot to install the IAB node in various scenarios.
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