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Abstract—Received signal strength (RSS)-based Visible Light
Positioning (VLP) has gained attention due to its relatively easy
infrastructure deployment and high localization accuracy. Dif-
ferent low-complexity geometrical and machine learning (ML)-
based models have been proposed for localization because of their
robustness against the uncertainty produced by tilted devices,
non-Lambertian sources, and the low dimensionality of RSS-
vector. Inspired by the Kolmogorov-Arnold representation theo-
rem, Kolmogorov-Arnold Networks (KANs) have been proposed
as a promising alternative to Multi-Layer Perceptrons (MLPs).
This paper evaluates the use and performance of KANs in VLP
systems for the first time. Results show that in the proposed
scenario, KANs achieve below cm-level accuracy. Moreover,
symbolic regression (SR) can be implemented straightforwardly
to find a function that relates RSS with distance. It is shown
in this paper that both KANs and SR-KAN models outperform
MLP and Weighted K-nearest neighbors based approaches.

Index Terms—Indoor Positioning, Visible light positioning,
fingerprint, Deep Learning (DL)

I. INTRODUCTION

Due to the rapid proliferation of mobile devices and the
associated location-based services, the issue of indoor lo-
calization has emerged as a critically important problem.
Indoor Positioning Systems (IPS) operate within a complex
environment. Moreover, the need for indoor localization sys-
tems emerged due to the absence of GPS coverage in such
environments [1]. Various signals, including radio-frequency
(RF), acoustics, and infrared, have been actively researched
for indoor positioning applications. Among these, visible light
positioning (VLP) has been identified as a promising tech-
nology that can cope with the requirements for localization
in indoor environments. VLP uses modulated artificial light
sources to provide wireless communications along positioning
[2], [3]. These indoor positioning systems provide multiple
advantages over other signals, such as no interference in RF-
crowded areas, low energy consumption, increased security
features, and the deployed lighting infrastructure, which can
be reused as transmitters, leading to a low deployment cost.
VLP algorithms rely on various signal parameters such as
angle of arrival (AoA), time difference of arrival (TDoA),
phase difference of arrival, or Received Signal Strength (RSS).
Commonly, multiple light sources are used as transmitters.
The receiving element of the VLP system could be a single
photodiode (PD), a PD array, or a camera.

State-of-the-art VLP methods provide high precision.
Nonetheless, depending on the application, these methods
might have to increase their accuracy, robustness, and latency
[4] as they are tested mostly in ideal scenarios. To improve
the performance and robustness of RSS-based VLP systems,
supervised machine learning (ML) methods are used. These
methods do not require prior knowledge of the physical model
or parameter estimation techniques to perform localization [5].
These ML techniques learn in a supervised manner the relation
between RSS readings and the position directly from the data.
Among the approaches used in the literature are multi-layer
perceptrons (MLP) and polynomial fitting functions [6]–[8].
Most of the approaches found in the literature assume horizon-
tal LED lights pointing directly downward. Nonetheless, such
an assumption does not hold in some indoor scenarios where
LED luminaries can be mounted in the ceiling arbitrarily tilted
and rotated [4] as depicted in Fig. 1.

Recently, Kolmogorov-Arnold Networks (KANs) have been
proposed as a promising alternative to MLPs [9]. While
the universal approximation theorem inspires MLP, the KAN
focuses on the Kolmogorov-Arnold representation theorem
[10], [11]. Like MLPs, KANs have fully-connected structures.
However, while MLPs place fixed activation functions on
nodes (“neurons”), KANs place learnable activation functions
on edges (“weights”). These networks have shown, in some
cases, higher accuracy and interpretability than traditional
MLPs when dealing with small-scale AI problems [9].

This paper presents the design and implementation of KANs
specifically tailored to operate in RSS-based VLP. We evaluate
the performance of the proposed methods in a simulated indoor
environment comprised of 4 LED transmitters and a single
photodetector (PD) receiver. The main contributions of this
paper are as follows:

• We design and implement a KAN suitable for the problem
of VLP. Different input and output scaling functions and
KAN architectures are proposed.

• We use the potential of KANs to create a symbolic
regression (SR)-based model that relates the received
power with the distance and measure the SR-based model
performance for indoor positioning.

• We compare the performance of the proposed method to
state-of-the-art algorithms.
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The rest of the paper is organized as follows: Section 2
describes the principles of KAN. Section 3 details the scenario
and the KANs optimization procedure. In Section 4, our results
are presented and discussed. Finally, in Section 5, the main
conclusions of the paper are presented.

Fig. 1. Proposed scenario for the evaluation of the VLP-KAN.

II. KANS

KANs Are based on the Kolmogorov-Arnold representation
theorem [9]–[11]. This theorem states that if f is a multivariate
continuous function of x on a bounded domain, then it can
be written as a finite composition of multiple continuous
functions of a single variable and the binary operation of
addition as:

f(x) = f(x1, x2, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp))

)
, (1)

where f : [0, 1] −→ R, ϕq,p : [0, 1] −→ R, Φq : R −→ R,
q = 1, 2, . . . , nout represents the nout-dimensional output
and p = 1, 2, . . . , nin the nin-dimensional input. One main
drawback of this representation is that the 1D function in Eq.
(1) can be non-smooth or fractal. Due to this, there might be
functions that are non-learnable in practice. However, using
deeper representations may bring the advantages of smoother
activation functions and learn more complex representations.
The expression in Eq. (1) is expressed in matrix form to
implement and generalize this theorem to a network of any
particular depth. In the particular case of RSS-based VLP, the
supervised learning task consists in finding the composition of
functions that relate the input RSS vector, RSS, to a particular
distance d between transmitter j and receiver i, dji, i.e.,
dji ≊ f(RSS) = d̂ji.

To find this composition of functions, a neural network
that explicitly parametrizes the functions ϕq,p and Φq of Eq.
(1) needs to be defined. Many different parametrizable 1D
functions can be used as basis functions. In particular, we use
a B-spline curve with learnable coefficients of local B-spline
basis functions. A B-spline is a piecewise polynomial spline
expressed for a particular basis. Pieces meet with continuity
as high as possible, given the degree of the basis. B-spline
curve sections meet and connect in points called knots. The

knot set can be expressed as X = {x0, x1, . . . , xK+1}. The
B-spline of order m with knot sequence X is, by definition,
a linear combination of basis B-splines functions of order m,
Bk,m(x), x ∈ [x0, xK+1], k ∈ Z = {0, 1, . . . ,K + 1}, which
are associated with the knot sequence X denoted by:

S(x) =

K+m∑
k=0

akBk,m, (2)

where ak ∈ R are the control points and Bk,m are the
normalized B-spline blending functions described by the order
m and the non decreasing real numbers k.

One key assumption for our approach is that the function
relating the RSS readings to a particular distance between
transmitter and receiver is learnable by a KAN of an arbitrary
depth since the optical transmission model follows the laws
of physics. These problems are often smooth and have sparse
compositional structures, which facilitates the deployment of
smooth Kolmogorov-Arnold representations [9].

The structure of a 3-layer KAN is shown in Fig. 2. The main
breakthrough proposed by Liu et al. [9] is that they define a
KAN layer with nin inputs and nout outputs as a matrix of
1D functions:

ΦL =

 ϕ1,1 . . . ϕ1,nin

...
. . .

...
ϕnout,1

. . . ϕnout,nin

 , (3)

where the functions ϕq,p(.) have trainable parameters.
The Eq. (1) is a composition of two KAN layers, the first

one with nin = n and nout = 2n + 1 and the second layer
with nin = 2n + 1 and nout = 1. To generalise, a L-layers
KAN for a given input vector x ∈ Rn0 is given by:

f(x) = (ΦL−1 ·ΦL−2 · . . . ·Φ1 ·Φ0) · x (4)

Fig. 2. 3-layer Kolmogorov-Arnold Network (KAN) architecture. The KAN
shown has two inputs, one output, and one hidden layer.
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A. SR-KAN

One of the main advantages of KANs is that they can be
easily interpreted and transformed into mathematical formulas
or expressions. SR can be used to discover the underlying
mathematical relationship within the data. Traditional SR
approaches search for the best mathematical expression within
a large formula space. This process is computationally in-
tensive and struggles with computational resource constraints
[9]. The process of transforming a KAN to an SR model
is as follows: each layer of the KAN is passed through
a symbolification process. The activation functions of the
KAN, which were found after training, are transformed into
a symbolic form. For this, we consider a set of functions,
F = {cos(x), log(x), . . . ,

√
(x)} . KAN layers cannot directly

set the activation function to the exact symbolic formula since
its inputs and outputs may have shifts and scaled versions of
the function set. To overcome this problem, the symbolification
process fits affine parameters (a, b, c, d) to all the functions
contained in F , such that y ≊ cf(ax + b) + d, f ∈ F . The
fitting is done by iterative grid search of a, b, and linear
regression. Once the affine parameters are adjusted for each
one of the functions in F , the one with the highest coefficient
of determination is selected.

III. PROPOSED SCENARIO AND METHOD

In this section, we introduce the considered scenario for
testing the proposed method and provide details on the KAN
architecture used for indoor visible light positioning. In Fig.
1, the proposed setup is shown. Here, 4 LEDs are used as
transmitters, and a single PD receiver is considered at the
mobile node side.

The VLC channel is modeled assuming line of sight (LOS)
conditions. We assume that each LED transmitter LEDj

transmits an optical signal with a different frequency to the
receiver i. The received power from transmitter j at the
photodetector (PD) i, Pji, can be modeled as [12]:

Pji = RiPjH
LOS
ji +RiPjH

n−LOS
ji + η, (5)

where Pj , Ri, HLOS
ji , Hn−LOS and η are the transmitted

power, PD responsivity, optical LOS channel gain, non-LOS
channel gain, and noise, respectively. As depicted in Fig. 3
(a), the optical channel gain HLOS

ij can be modelled as:

HLOS
ji =

{
Cji

d2
ji

cosmj (φji) cos(ψji) 0 ≤ ψji ≤ Ψi

0 elsewhere
, (6)

where d2ji is the distance between transmitter and receiver,
mj is the Lambertian order of the transmitter, ψji is the
transmission angle with respect to the normal N̂j , φji is the
incident angle at the receiver with respect to the normal N̂i

and Ψi is the PD field of view (FOV). Finally, the constant
Cji = can be modelled as:

Cji =
(mj + 1)A

2π
G(ψji)Ts(ψji), (7)

where A corresponds to the area of the PD and
G(ψij)Ts(ψij) represents the combined optical filter gain and
the optical concentrator gain.

In a real setup, the transmitter and receivers might be tilted.
Due to this, the incident and transmitted angles in Eq. (6) can
be determined using the following expressions:

dji = ||rj − ri||, (8)

cos(φji) = N̂j ·
(

rj − ri
dji

)
, (9)

cos(ψji) = N̂i ·
(

ri − rj
dji

)
. (10)

The PD and LED normal vectors can be calculated in
spherical coordinates, assuming β is the tilt angle and α is
the rotation angle, as depicted in Fig. 3.

N̂i =
[sin(βi) cos(αi), sin(βi) sin(αi), cos(βi)]

∥[sin(βi) cos(αi), sin(βi) sin(αi), cos(βi)]∥2
, (11)

As the transmitter is assumed to be always pointing down-
wards, the tilting angle of the transmitter j is restricted in the
range of π/2 ≤ βtotal

j ≤ 3π/2. Using this assumption, we
define the tilting angle of the transmitter with respect to the
normal vector N̂g as βtotal

j = π + βj , where −π/2 ≤ βj ≤
π/2. Using the trigonometric identity of the sum of two angles,
it can be demonstrated that cos

(
βtotal
j

)
= cos(π + βj) =

− cos(βj). Using this, we define the normal vector to the
transmitter plane using the tilting angle βj instead of βtotal

j

as follows:

N̂j =
[sin(βj) cos(αj), sin(βj) sin(αj),− cos(βj)]

∥[sin(βj) cos(αj), sin(βj) sin(αj), cos(βj)]∥2
. (12)

We assume the PD is horizontal to the floor plane, i.e.,
βi = 0. This assumption holds in various practical applications
[13]. furthermore, using this assumption, the incidence angle
to the PD, ψji, is rotation-invariant. This article assumes that
the LED transmitters are arbitrarily tilted and rotated, as might
happen in some ceiling-mounted lighting architectures [4].

Similarly, the non-LOS channel gain shown can be mathe-
matically expressed as [14]:

Hn−LOS
ij =

{∑W
w=1HjwHwi 0 ≤ ψwi ≤ Ψi

0 elsewhere
, (13)

where Hjw is the channel gain from LED to the wall, Hwi is
the channel gain from wall to PD, and W is the total number of
reflective elements considered in the algorithm. In particular,
the channel gain from the LED to the reflective element and
from the reflective element to the PD is obtained as follows:

Hjw = ∆Awρw

d2
jw

cosml(ϕjw) cos(ψjw), (14)

Hwi = Cwi cos(ϕwi) cos(ψwi), (15)

where ∆Aw is the area of the considered reflecting element,
ρw is the reflecting coefficient of the surface area ∆Aw, djw
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is the distance between the source and the reflective element
as shown in Fig. 3 (b). The angle ψjw is the transmission
angle with respect to the normal N̂j of the reflecting element,
φjw is the incident angle at the reflecting surface with respect
to the normal N̂w, ψwi is the reflected angle with respect to
the normal N̂w, and φwi is the incident angle at the PD with
respect to the normal N̂i of the ray coming from the reflected
element.

Since ||H(k)
non−LOS || → 0 when k → ∞, the channel im-

pulse response can be modeled using only the first reflection.
The first reflection is the most important component since it
limits the data rate in LOS transmissions. The VLC system
parameters used for simulation are shown in Table I.

(a)

(b)

Fig. 3. Tilted photodiode and LED source for (a) LOS link and (b) non-LOS
link.

To evaluate the performance of the KANs, first, a few
parameters must be found to optimize its performance. B-
spline coefficients are found in the training stage using the
backpropagation algorithm. Nonetheless, three other parame-
ters have to be tuned beforehand. The first one is called the
grid size or number of knots. The second parameter is the
number of hidden layers and the number of functions of each
layer. Finally, the degree of the spline base function d needs
to be selected.

We perform a grid search with the parameters in Table II.

TABLE I
VLC SYSTEM PARAMETERS

Parameter Value Parameter Value
LED half power 60◦ Source power 10 (W )

Area of PD 10−4
(
m2

)
Ts(ψij) 1

FOV receiver 90◦ Room 3× 3 (m)
LED height 3 (m) G(ψij) 1

Number of LEDs 4 PD height 1.5 (m)
Grid train 0.5 (m) Grid test 0.11 (m)

System BW 10 (MHz) Noise PSD 10−21 (W/Hz)
∆Aw 0.0625 (m2) ρw 0.8

TABLE II
GRID SEARCH PARAMETERS FOR KAN ARCHITECTURE.

knots L nout d
[3,10,20,50] [1,2,3,4] [1,2,3] [3]

The selected fitness function to optimize B-spline coeffi-
cients is the mean squared error (MSE).

It has to be noticed that the input and output of the KAN
are both bounded by:

0 ⪯ RSS ⪯ RSSmax, (16)

rmin ⪯ ri ⪯ rmax, (17)

where rmin = [min(rx),min(ry)], and rmax =
[max(rx),max(ry)] are the minimum and maximum coordi-
nates of the room. The input and output size is determined by
the number of lights inside the room. The input of our KAN
is: RSS ∈ R4 and the output: KAN(RSS) = d̂ji ≊ dji ∈ R
is the distance between transmitter and receiver. Once the
distance is computed, the mobile node position can be obtained
using the least squares method as follows:

minimize
r̂i

J∑
j=1

(
||rj − r̂i|| − d̂ji

)2
subject to r̂i ⪰ rmin,

r̂i ⪯ rmax.

(18)

From Eq. 18, it can be seen that this requires knowledge of the
position of the LED transmitters rj while tilting and rotation
angles of the transmitter are unknown and directly learned by
the KAN in a supervised manner.

IV. RESULTS AND DISCUSSION

In this section, we show the performance of the proposed
KAN in the RSS-based VLP problem. As shown in Fig.
4, there is a direct relationship between the RSS and the
distance between LED 1 and the PD when no tilted LEDs are
considered. An exponential function is often fitted to relate the
RSS and the distance before performing circular trilateration.
In this scenario, the distance based on RSS can be found by
employing the following expression:

d̂ji =

(
(m+ 1)APjh

m+1
i

2πPji

) 1
m+3

=

(
a

Pji

)b

, (19)
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where a =
(

(m+1)APjh
m+1
i

2π

)
and b = 1

m+3 . The above
expression can be converted using the logarithmic function
as follows:

log
(
d̂ji

)
= b log(a)− b log(Pji) = c− b log(Pji). (20)

Based on this derivation, we can conclude that using the
logarithmic function, the expression that relates the distance
and the RSS can be written into a linear function instead of
the original expression. We will measure the effect of such
transformation on the training and test data when using a
simple one-layer KAN.

0 0.5 1 1.5 2 2.5

RSS
1i

10
-4

1

2

3

4

5

6

7

8

D
1

i

Tilted LED

No tilted LED

2 3 4

10
-5

2

2.5

3

Fig. 4. Distance vs RSS relationship for tilted LED and horizontal LED.

In Fig. 4, it can also be seen that the above-described
relationship does not hold when the LEDs installed in the
ceiling are tilted as the function becomes not injective and
more complex. To solve this problem, the RSS from different
LEDs relate a particular RSS vector to a distance. Up to date,
there is no analytical solution for this function. Due to this,
traditional ML models have been used to estimate this distance
by relying on the universal approximation theorem of neural
networks.

Fig. 5. Trained 1 Layer KAN [4,1] for estimation of d1i using T10.

A. Impact of signal pre-processing

As mentioned before, the functions that relate the RSS to
the distance between transmitter and receiver can be expressed
in more than one manner based on the transformation applied
to the Eq. (19). In this section, we will measure the impact of

TABLE III
PERFORMANCE OF ONE LAYER KAN TO DIFFERENT INPUT AND OUTPUT

PRE-PROCESSING.

Transform Input Output MSE KAN [4,1]
T1 RSS dji 1.62× 10−1

T2 RSS log(dji)) 3.78× 10−2

T3 RSS S(dji) 4.27× 10−2

T4 RSS S(log(dji)) 6.70× 10−2

T5 S(RSS) dji 1.77× 10−2

T6 S(RSS) log(dji) 8.98× 10−2

T7 S(RSS) S(dji) 3.92× 10−2

T8 S(RSS) S(log(dji)) 6.29× 10−2

T9 log(RSS) dji 2.34× 10−5

T10 log(RSS) log(dji) 3.7× 10−7

T11 log(RSS) S(dji) 1.12× 10−2

T12 log(RSS) S(log(dji)) 7.32× 10−3

T13 S(log(RSS)) dji 2.77× 10−2

T14 S(log(RSS)) log(dji) 5.5× 10−3

T15 S(log(RSS)) S(dji) 1.76× 10−3

T16 S(log(RSS)) S(log(dji)) 9.57× 10−7

signal pre-processing on the performance of a simple KAN
model. We consider only the simplest VLP case, i.e., no
tilted transmitters or receivers. In Table III, the error on the
test dataset after applying scaling, S(), and log() functions
is displayed. The scaling function used here is the min-
max normalization, which re-scales the features in the [−1, 1]
range.

As it can be seen in Table III, the proposed KAN model
achieves the best performance when the logarithmic transform
is applied to the RSS and distance (T10). As was shown in Eq.
(20), the log transforms the original exponential relationship
between RSS and distance into a linear equation. Due to
this, the performance of the KAN is increased by simplifying
the function to be found using simple pre-processing. This
finding will be crucial in the remainder of the paper as these
transforms will be applied to the input and output signals
to find a function that describes the distances based on RSS
readings when tilted LEDs are considered.

It can also be seen in Fig. 5 that the network is capable
of pruning unnecessary inputs, and only one RSS value is
required to estimate the distance between the first transmitter
and the receiver. Here, the distance estimation to LED 1 is
performed using only the RSS information coming from itself.
By applying SR in this KAN, we obtain that the proposed
model follows the equation log(d1i) = −0.2 log(RSS1i) −
1.29. This expression has the same structure as Eq. (20). Here,
for the first time, we show the capabilities of KANs and SR in
finding an approximate polynomial expression for the problem
of VLP.

B. Performance with tilted LEDs

In this section, we show the performance of different KAN
architectures to find the relationship between RSS and the dis-
tance between transmitter and receiver when tilted transmitters
are considered. It can be noticed from Fig. 6 that the power
distribution does not follow a circular coverage when tilted
LEDs are considered. Due to this, the geometrical functions
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log
(
d̂11

)
= −3.8549

√
(0.0635x1 − 0.00035x3 + 0.0317(0.1222x4 + 1)2 + 1 + 0.0004e−0.3080x2)+

0.3557sin(−0.0186x2 + 0.0043x4 + 0.49340(0.0933x3 + 1)2 + 0.2153sin(0.4159x1 + 4.3999) + 2.1535) + 3.0172
(21)

log
(
d̂21

)
= −0.0689(−0.0040x1 − 0.0269x3 + 0.0071x4 − sin(0.2127x2 + 8.3839)− 0.9518)2+

1.4529sin(−0.0788x2 + 0.0014x3 + 1.2986(−0.0919x1 − 1)2 + 0.0225sin(0.4041x4 + 9.6586)− 0.6192)− 0.1059+

1.2539sin(0.0533x2 + 7.3448e0.4479x1 − 0.0391sin(0.6038x3 + 8.4287) + 0.0196sin(0.5835x4 − 0.9840)− 3.1224)
(22)

log
(
d̂31

)
= −0.2094x3 + 0.0220(0.2082x2 + 1)2 − 0.0585sin(0.3797x1 + 8.2005) + 0.0550sin(0.3799x4 − 7.5999)−

0.0199sin(1.5658(0.1162x3 + 1)2 + 7.5439sin(0.1804x1 − 2.9925)− 0.4941sin(0.4125x2 − 1.4039)+

1.6610sin(0.3799x4 + 5.0)− 8.4558)− 1.4747
(23)

log
(
d̂41

)
= −0.0032x1 − 0.0043x2 + 0.0117x3 − 0.1922x4 − 0.6500(−0.1038x2 − 1)2+

0.0830sin(0.2123x4 + 4.7760)− 1.0989 + 0.0003e−0.4719x1

(24)

that relate the distance and the RSS cannot be obtained from
Equations (19) and (20).

-2 -1 0 1 2

x(m)

-2

-1

0

1

2

y
(m

)

0.5

1

1.5

2
10

-4

Fig. 6. Power distribution in the proposed scenario with tilted LEDs
considering only LOS.

To discover the set of small functions that relate the RSS
with a particular distance, we train different KANs with the
parameters depicted in Table II. Table IV shows the LED’s tilt
and rotation angles considered in this scenario.

TABLE IV
TILT AND ROTATION ANGLES FOR EACH LED.

Rotation Angle Tilted Angle
α1 20◦ β1 20◦

α2 10◦ β2 11◦

α3 170◦ β3 8◦

α4 10◦ β4 22◦

In Table V, the results of the best architecture for different
numbers of KAN layers are shown.

The architecture without hidden layers is not a good fit for
solving this problem. Due to this, more functions are required

TABLE V
PERFORMANCE OF DIFFERENT ARCHITECTURES FOR DISTANCE

ESTIMATION WITH TILTED LEDS.

dji Layers Architecture MSE (×10−3)
d1i 0 [4,1] 1.9
d1i 1 [4,2,1] 0.048
d1i 2 [4,2,2,1] 0.047
d2i 0 [4,1] 1.6
d2i 1 [4,3,1] 0.033
d2i 2 [4,2,3,1] 0.026
d3i 0 [4,1] 4.5
d3i 1 [4,2,1] 0.036
d3i 2 [4,2,1,1] 0.037
d4i 0 [4,1] 1
d4i 1 [4,2,1] 0.043
d4i 2 [4,2,1,1] 0.049

to minimize the distance estimation error. The MSE obtained
by the 1 and 2 hidden layers architectures is lower than 5 ×
10−5.

This means that a combination of small functions is capable
of estimating log(dji) based on the vector log(RSS) with
a single PD as receiver. It has to be noticed that the error
obtained using the input and output data T1 in Table III is
higher than 1 × 10−2. This shows that the logarithmic trans-
formation is an efficient step for improving the performance
of the proposed method.

In Fig. 8, we show different trained KANs for the problem
of estimating the distance to the LED 1 based on the RSS
vector.

For simplicity, we select the simplest KAN that achieves
an error lower than 1 × 10−4. The above KAN architectures
can be transformed into an approximated composition of poly-
nomial functions using SR. This makes the implementation
of the positioning method suitable for edge nodes where the
computational power is restricted. Equations (21), (22), (23),
and (24) show the SR functions obtained from the KAN
that relate each RSSI to the distance. As can be seen, these
functions can be implemented in any device without needing
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Fig. 7. Positioning error of the proposed method (KAN) compared to KAN-
based SR expression, MLP [4], and WKNN [7].

high computational power or a high number of parameters.

C. Performance on Positioning

Here, we measure the impact of the distance estimation
error in the indoor positioning task. We compare the results
obtained using a simple MLP and WKNN with the 3-layer
KAN and the approximated composition of functions obtained
by symbolic regression (SR-KAN). The MLP follows the same
architecture proposed in [4], namely, two hidden layers of 6
and 3 nodes, respectively, while the WKNN method is the one
proposed in [7]. In Fig. 7, we show that KAN can perform
sub-centimeter positioning in the considered scenario. Fur-
thermore, the approximated mathematical expression derived
from it, SR-KAN, performs better than MLP and WKNN.
This solution is also feasible for cm-level accuracy indoor
positioning systems in edge devices that do not support deep-
learning packages and functionalities.

As with other fingerprint-based positioning methods, the
proposed KAN and SR-KAN suffer detrimental effects from
changes in the scenario. These changes account for different
tilted or rotation angles or LED power and position changes.
Due to this, the model needs to be re-trained when these
changes occur.

The proposed method uses one KAN for each LED light
in the environment. Due to this, the number of KANs to be
trained and SR-KAN models to be stored increases linearly
with the number of LED transmitters within the environment.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed for the first time the usage of
KANs for VLP. We consider the scenario where transmitters
are tilted and rotated, and receivers are parallel to the floor
plane. Through simulation, we show that the proposed method
outperforms traditional MLP and WKNN in the task of indoor
positioning when tilted transmitters and a single horizontal
transmitter are considered. In future work, we will measure
the performance of KANs in the task of device orienta-
tion determination when tilted transmitters and receivers are

(a)

(b)

(c)

Fig. 8. Best trained KANs for the estimation of d1i with different sizes of
hidden layers considering tilted LEDs (a) KAN=[4,1], (b) KAN=[4,2,1], and
(c) KAN=[4,2,1,1].

considered. Furthermore, multiple PD architectures will be
proposed for device orientation and position determination. A
measurement campaign using commercial off-the-shelf visible
light communications devices will be conducted to measure
the performance of the method in real-world scenarios.
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