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Abstract—Efficient crop fertilization (e.g., nitrogen) is crucial
for maximizing agricultural productivity, ensuring food security,
and promoting sustainable farming practices. Traditional meth-
ods, such as fixed-rate fertilizer applications or soil sampling,
often result in inefficiencies, over-fertilization, and environmental
harm, as they fail to account for dynamic in-season weather
conditions and varying nutrient needs at different crop growth
stages. In this work, we introduce FertilizeSmart, an innova-
tive framework that optimizes crop fertilization by leveraging
Internet of Things (IoT) technologies. The goal is to determine
the optimal fertilization strategy throughout the season. To this
purpose, at the core of FertilizeSmart, is an optimization problem
that maximizes crop yield while minimizing the amount of
fertilizer used. The crop yield in response to different timings
and rates of applied fertilizer is estimated using a process-
based crop simulation model, namely the Decision Support
System for Agrotechnology Transfer (DSSAT). The optimization
problem is then solved periodically, by an improved Differen-
tial Evolution (DE) algorithm that trades off exploration and
exploitation of available solutions, throughout the crop growth
cycle, following a Model Predictive Control (MPC) approach.
This adaptive approach allows FertilizeSmart to respond to
dynamic weather conditions and adjust fertilizer application to
meet varying nutrient demands across growth stages. Moreover,
we perform extensive simulation experiments and results show
that FertilizeSmart significantly outperforms existing fertilizer
recommendations, achieving yields approximately 20% higher
while reducing fertilizer usage by up to 32% compared to the
fixed application rate.

Index Terms—Crop Fertilization, IoT, Differential Evolution.

I. INTRODUCTION

Efficient crop fertilization is essential for enhancing crop
productivity, minimizing farming costs, and fostering sustain-
able agricultural practices. Traditionally, farmers apply fixed
fertilizer rates based on local field trials or historical practices,
they may lead to inefficient use of resources and potential over-
fertilization, which can harm both soil quality and surrounding
ecosystems [1]. Several fertilization management techniques
and tools have been developed to determine more precise
fertilizer strategies. Common approaches include soil nutrient
availability testing and plant tissue testing [2], which are
used to develop in-season crop fertilizer strategies. Given the
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time-consuming on-site and laboratory process, soil and plant
testing may result in low adoption rates. In addition, they may
provide poor accuracy in determining an optimal fertilization
strategy, since they do not account for the dynamic effects of
weather and soil nutrient losses and availability [3].

Several works have shown that in-season weather data,
such as rainfall, temperature, and solar radiation, is cru-
cial in improving the prediction accuracy of crop fertilizer
demands [4], [5]. By incorporating the in-season weather
data, process-based crop simulation models, such as Decision
Support System for Agrotechnology Transfer (DSSAT) [6],
[7] have been developed, and have become ubiquitous tools
in crop growth simulations worldwide. The crop models
within DSSAT require inputs such as daily weather data, soil
profile information, cultivar information, and specified crop
management practices. These inputs combined with model
calibration are vital for accurately simulating crop growth
dynamics and predicting the outcomes of various management
strategies. However, despite the potential and flexibility offered
by DSSAT, the simulator is not designed to optimize fertiliza-
tion strategies. Further, DSSAT requires as input the entire in-
season weather data, typically derived from historical records
[5]. Although the most recent version of DSSAT [8] is able
to adjust the yield prediction with in-season weather, it does
not adjust the fertilizer strategy accordingly.

In addition to adapting to dynamic in-season weather condi-
tions, accurately determining the rates of fertilizer application
across different crop growth stages presents a significant chal-
lenge. Firstly, crop yield response to the quantity of fertilizer
application is not monotonically increasing nor plateaus, as
over-fertilization can decrease yield and harm the environment
[9]. Moreover, fertilizer requirements (i.e., nitrogen) fluctuate
in different growth stages [10]. As a result, decisions made at
one point may not lead to the optimal long-term fertilization
strategy if they fail to account for the cumulative effects of
nutrient distribution over the entire growth cycle.

To address the aforementioned challenges, we propose Fer-
tilizeSmart, a framework to determine an adaptive strategy
for crop fertilization, leveraging Internet of Things (IoT)
technologies and Differential Evolution (DE) techniques. At
the core of FertilizeSmart is an optimization problem, which
aims at maximizing crop yields while minimizing the amount
of fertilizer used, also known as Agronomically Optimum
Nitrogen Rate (AONR). To solve this problem, inspired by
Model Predictive Control (MPC) [11], FertilizeSmart adap-
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tively adjusts the fertilizer application rate by solving the
optimization problem periodically over the crop growth cy-
cle. Here, the fertilizer application dates represent the finite
horizon time steps of MPC. At each application date, in-
season weather data acquired from IoT technologies are used
to inform the decision-making process. The system leverages
an improved DE algorithm to determine an optimal fertilizer
strategy by strategically tradeoff the exploration and exploita-
tion of available solutions. It begins by generating an initial
population of potential solutions, each representing a fertil-
ization strategy containing the fertilizer application rates over
the remaining growth cycle. FertilizeSmart then iteratively
improves these solutions through an optimized evolutionary
processes—mutation, crossover, and selection—based on fit-
ness values, which reflect the gain calculated by the difference
between the crop yield and fertilizer costs. The DSSAT crop
simulation tool is integrated with the DE algorithm to estimate
yields, by incorporating the current available and estimated in-
season weather data. Following the MPC approach, only the
first element (fertilizer rate of the current date) of the resulting
fertilizer strategy is implemented, while future applications
will be determined at the next decision cycle, when more
weather data will be available. This iterative process allows
FertilizeSmart to continuously adapt to changing weather
conditions and unforeseen events, ensuring a dynamic and
resilient fertilization strategy. Consequently, Fertimilzer not
only improves crop yields but also reduces the environmental
footprint of fertilization practices.

The main contributions of this paper are:

1) We formulate a novel optimization problem aimed at
determining an optimal fertilization strategy.

2) We propose FertilizeSmart, a framework that integrates
IoT technologies with a Differential Evolution (DE)
algorithm to solve this optimization problem.

3) We conduct extensive experiments, and the results
demonstrate that FertilizeSmart outperforms state-of-
the-art approaches, achieving yields approximately 20%
higher while reducing fertilizer usage by up to 32%.

II. PROBLEM FORMULATION

Fertilizers are usually applied on several dates D across the
crop growth cycle. Let xd represent the amount of fertilizer
applied on date d, and B denote the budget constraint for the
amount of total fertilization used. Denote the crop yield as
Y = y(X|A), where A represents the weather data and the
vector X = [x1, x2, ..., x|D|] is the fertilizer strategy across
all the application dates. Our objective is to find the optimal
sequential fertilizer strategy that maximizes crop yield while
minimizing the fertilizer utilization, leveraging the available
weather data, and not exceeding the budget of B.

X∗ = arg max
X∈[0,B]|D|

min
B̂≤B

Y : y(X|A) s.t.
∑

d∈[1,..,|D|]

xd ≤ B̂

(1)

Fig. 1. FertilizeSmart Framework Overview

This problem is hard to solve. First, as noted in [9], crop
yields are complex to predict, they depend on a variety of
factors, and do not increase linearly with the amount of
fertilizer applied. Over-fertilization does not improve yield,
and damages the environment. Second, the amount of fertilizer
needed vary at different crop growth stages, thus simple
strategies such as fertilizing only at a single date or uniformly
fertilizing throughout the season, achieve poor performance.
Finally, weather conditions play a crucial role in determining
fertilizer needs, making it more challenging to optimize the in-
season applications, even for the same fields. Consequently,
a strategy determined at the beginning of the season, based
on weather forecast, would be far from the optimum, and in-
season weather needs to be considered.

III. PROPOSED SOLUTION: FERTILIZESMART

A. Overview

We introduce FertilizeSmart, a framework for optimizing
the crop fertilizer strategy, outlined in Figure 1. FertilizerSmart
draws the concept of MPC to provide an adaptive fertilizer-
ation optimization approach. MPC is a technique commonly
used in control theory and engineering for controlling dynamic
systems [11]. In MPC, the optimization problem is solved
over a finite time horizon at subsequent decision steps, by
optimizing a control sequence. Specifically, at each decision
step, the optimization considers both the current state of
the system and a prediction of how the system will evolve
over the horizon. Based on this information, MPC selects an
optimal action sequence over the entire time horizon. MPC
applies the horizon control principle, i.e., only the first control
action of the optimized sequence will be implemented. As
time progresses, the horizon recedes, and the optimization
problem is solved again based on the updated state of the
system. This process is repeated at each decision step, allowing
for control adjustments as time progresses while considering
future system behavior.

Similarly, FertilizerSmart solves the crop fertilization op-
timization problem over the crop growth cycle (finite time
horizon), by optimizing a fertilizer strategy (control sequence).
The strategy contains the amount of fertilizer to be provided at
each future fertilizer application date, d ∈ D (decision steps).
At each decision date, FertilizeSmart considers both current
available in-field weather data and a prediction of weather
conditions of the remaining growing cycle.
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1) IoT-enabled weather data collection: FertilizeSmart ex-
ploits IoT-enabled digital monitoring of various weather pa-
rameters in the crop field, including solar radiation, air tem-
perature, precipitation, dew point, wind speed, and humidity
to collect weather conditions [12]. These data can be collected
from sensors deployed across the field. Multiple approaches
have been proposed for this purpose using technologies such
as drones [13] and low power wide area network (LPWAN)
[14]. The gathered information, along with fertilizer strategies,
serves as input for the DSSAT crop simulator to estimate crop
yield during the optimization process, as described below.

2) DE-based fertilizer strategy optimization: FertilizeSmart
employs a DE-based algorithm to determine a fertilization
strategy that maximizes the crop yield while minimizing
the total fertilizer usage. DE offers an efficient technique
for guiding decision-making in addressing global numerical
optimization challenges. The main idea of the DE algorithm
is to start from a randomly generated initial population and
the individuals within the population are iteratively improved
through an evolutionary process that balances exploration and
exploitation. Specifically, FertilizeSmart initiates a population
with random fertilizer strategies, each representing a potential
solution as a vector containing the quantity of fertilizer to be
applied across the remaining application dates.

Unlike traditional approaches in DE algorithms that evolve
a single population, FertilizeSmart innovatively divides the
parent (initialization) population into sub-populations based
on their fitness values, calculated from a fitness function.
Each sub-population undergoes three key operations: muta-
tion, crossover, and selection. FertilizerSmart applies different
mutation strategies to different sub-populations, generating
mutant vectors based on each individual’s proximity to the
global optimal solution. Crossover operation generates new
candidate solutions by combining the elements of different
parent solutions. It promotes diversity and allows exploration
of the search space. Subsequently, selection determines which
solutions survive and proceed to the next generation based
on their fitness value. This value is calculated through a
fitness function that takes into account the yield and amount
of fertilizer provided by a solution. FertilizeSmart employs
the DSSAT crop simulation tool [15] estimating the yield in-
curred by each candidate solution during the selection process,
incorporating the information of the current and estimated
future weather data within the crop growth cycle. The process
repeats a certain number of generations. Finally, the individual
(candidate solution) with the highest fitness value is selected
as the best fertilizer strategy for the current decision date.

We represent the chosen fertilization strategy at the current
decision date d as a vector Xd = [xd, xd+1..., x|D|]. Recall
that this is the determined sequence of fertilizer allocation
across all the remaining dates starting from the current date d.
We then apply the receding horizon control principle and only
apply xd fertilizer to the current date d. As time progresses
to the next application date d + 1, the real weather data of
the period between the previous date d and application date
d + 1 becomes available. We update the weather knowledge,

as well as the remaining available budget, and repeat the
optimization process. This iterative approach, guided by real-
time weather data and estimated future weather data, ensures
that we dynamically adjust our fertilization strategy to adapt
to real-time weather conditions and reduce the uncertainty
simulating crop growth and yield in DSSAT. The pseudo-code
of FertilizeSmart is illustrated in Algo. 1, as detailed below.

B. Parameter and Population Initialization

The input parameters for FertilizerSmart include the total
fertilizer budget B, a set of potential fertilizer application dates
D, and parameters for the differential evolution algorithm,
such as the population size Np, the maximum number of
generations Gmax, the sub-population division ratio ϵ, two
normalization parameters α and β, and two constants γ and δ.
The past weather data from the sowing to the current decision
date is stored in the matrix Ac, while the estimated future
weather data is stored in Ae

1. The differential evolution
process is performed across all possible application dates (lines
3 onwards). For each date d, the initial population PG

d is
created as an empty set, with both FG

m and CrGm parameters set
to γ (line 4). FG

m is a parameter used to generate and update
the scaling factor of the mutation operation, while CrGm is
another parameter used to generate and update the crossover
rate at each generation. Next, we randomly generate the initial
population with the size of Np (lines 5-7). Each i-th individual
(potential fertilizer strategy) in the current generation G for
the current date d is represented by a vector XG,i

d of size
|D| − d+ 1, denoted as XG,i

d = (xG,i
d , xG,i

d+1, ..., x
G,i
|D|), where

xG,i
d signifies the fertilizer quatity to be applied on decision

date d. All elements of the vector are initially generated
randomly from (0, 1) (line 6). Subsequently, each element xG,i

j

within vector XG,i
d is scaled to fit in the remaining budget B,

following Eq. 2 (line 7). The resulting vector XG,i
d is then

added to the initial population PG
d .

xG,i
j =

xG,i
j∑|D|

k=d xG,i
k

·B (2)

C. Differential Evolution

The differential evolution process entails Gmax generations
(lines 8-27). Each generation involves the computation of
fitness values for individuals in the population. The fitness
value of individual XG,i

d is denoted as f(XG,i
d ), which is

calculated by the fitness function outlined in Eq. 3.

f(XG,i
d ) = y(XG,i

d |Ac,Ae) · α−
|D|∑
j=d

xG,i
j · β (3)

where, y(XG,i
d |Ac,Ae) represents the predicted crop yield

given the weather data from the sowing date to the current
date Ac and the estimated future weather data Ae, and the
fertilizer strategy XG,i

d . The yield prediction is obtained from

1Examples of the considered weather data include solar radiation, daily
maximum and minimum temperatures, precipitation, dew point, wind speed,
and relative humidity.
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Algorithm 1: FertilizeSmart
1 Input: B,D, Np, Gmax, ϵ,Ac, Ae, α, β, γ, δ
2 G← 1;
3 for d = 1 to |D| do
4 PG

d = ∅; FG
m ← γ; CrGm ← γ;

/* Population Initialization */
5 for i =1 to |Np| do
6 Randomly create a vector XG,i

d = (xG,i
d , xG,i

d+1, ..., x
G,i
|D|)

st. ∀xG,i
j = rand(0, 1) ;

7 Scale the vector XG,i
d with respect to the remaining budget

B according to Eq. (2) and add it to the population PG
d ;

/* Differential Evolution Process */
8 while G < Gmax do
9 Calculate the fitness value f(XG,i

d ) of every individual
fertilizer strategy XG,i

d in population PG
d according to

Eq. (3);
10 Rank the population in descending order according to the

fitness value;
11 for i =1 to |Np| do
12 Fi = Gaussian(FG

m , δ);
Cri = Guassian(CrGm, δ);

/* Mutation with sub-populations */
13 Devise the neighbors and remote relatives for

individual XG,i
d ;

14 if i ≤ ϵ ·Np then
15 Generate mutation vector V G,i

d with Eq. (4);
16 if ϵ ·Np < i ≤ 2ϵ ·Np then
17 Generate mutation vector V G,i

d with Eq. (5);
18 if 2ϵ ·Np < i ≤ 3ϵ ·Np then
19 Generate mutation vector V G,i

d with Eq. (6);
/* Crossover operation */

20 Create an empty trail vector UG,i
d of V G,i

d ;
21 for j = d to |D| do
22 uG,i

j ={
vG,i
j if randj,i ≤ Cr or j = irand

xG,i
j otherwise

23 Put trail vector UG,i
d into trail population UG

d ;

/* Selection Operation */
24 for i=1 to Np do

25 XG+1,i
d =

{
UG,i
d if f(UG,i

d ) ≤ f(XG,i
d )

XG,i
d otherwise

;

26 Update Fm and Crm according to Eqs. (9), (10), (11) and
(12);

27 G=G+1;

28 Select the best solution XG,best
d in PG

d and apply xG,best
d

fertilizer to the current application date d;
29 Update the current weather knowledge Ac and estimated

weather data Ae, and available budget B = B − xG,best
d ;

30 d=d+1;

the crop simulation tool DSSAT. Here, α and β are used as
normalization parameters that can be tuned to prioritize higher
yield versus lower budgets.

Subsequently, we rank the population in descending order
according to the fitness value. The subsequent section illus-
trates sub-population splitting from the ranked population and
the process of mutation and crossover.

1) Sub-population splitting: Most DE algorithms aim for
an efficient balance between exploring new solutions and
exploiting promising ones within the population to enhance

overall performance. To improve the search efficiency, we
divide the population into four sub-populations, drawing in-
spiration from paper [16]. Each sub-population is assigned
a distinct search task. The first sub-population comprises
the top ϵ · Np individuals in terms of fitness, representing
solutions closer to the global optimum. Therefore, this sub-
population focuses on exploitation, intensively refining already
promising solutions. In contrast, the second sub-population
encompasses individuals ranked between the ϵ·Np and 2ϵ·Np,
serving to balance exploration and exploitation throughout the
evolutionary process. The third sub-population is composed of
individuals between the 2ϵ ·Np and 3ϵ ·Np, potentially distant
from the global optimum. Here, exploration takes precedence,
with individuals undergoing significant perturbations to escape
local optima and approach towards more favorable regions.
All these three sub-populations will go through a mutation
and crossover process. Lastly, the remaining (1 − 3ϵ) · Np

individuals form the fourth sub-population directly inherited
from the parent population, fostering diversity and preventing
premature convergence to suboptimal solutions. The four sub-
populations then undergo a mutation process.

2) Mutation with different strategies: In the mutation pro-
cess, we introduce the concepts of neighbors and remote
relatives for each individual within the current generation.
These serve as distinct search spaces for different mutation
strategies. Specifically, for every individual, we select the top
Np/4 of the closest individuals in terms of Euclidean distance
within the entire population as its neighbors. Similarly, we also
select the top Np/4 of the furthest individuals as its remote
relatives. These groups are pivotal for both local neighbor
mutation and global remote relative mutation, which aid in
generating mutant vectors for the respective individuals.

Different mutation strategies are employed for sub-
populations. Specifically, the DE/current-to-bestNeighbor/1
mutation strategy is applied to the first sub-population with
superior individuals, outlined as in Eq 4 (lines 14-15).

V G,i
d = XG,i

d +Fi ·
(
XG,bestn

d −XG,i
d

)
+Fi ·

(
XG,R1

d −XG,R2
d

)
(4)

Where V G,i
d represents the mutation vector generated for indi-

vidual XG,i
d , XG,bestn

d denotes the best individual among the
neighbors of XG,i

d . Additionally, XG,R1
d and XG,R2

d represent
two distinct individuals randomly chosen from the current
population, both of which differ from the target vector XG,i

d .
The scaling factor Fi governs the magnitude of mutation,
dynamically generated at each generation and it is used across
all the mutation strategies. Details on its adaptive generation
are provided in the following section III-C5.

This mutation strategy aims to guide the target vector XG,i
d

towards a superior or similar individual within its neighbors,
while introducing a small perturbation to facilitate local explo-
ration. Consequently, the superior individuals within the first
sub-population can effectively exploit the current search space,
thereby enhancing the likelihood of discovering either local or
global optimal solutions.
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In the case of the second sub-population with medium indi-
viduals, we employ the DE/current-to-best/1 strategy, outlined
in Eq. 5 (lines 16 -17).

V G,i
d = XG,i

d +Fi ·
(
X

G,bestp
d −XG,i

d

)
+Fi ·

(
XG,R1

d −XG,R2
d

)
(5)

Where XG,bestp
d represents the best individual within the entire

population. Similar to Eq. (4), XG
R1 and XG

R2 are two distinct
individuals randomly selected from the current population,
both of which differ from the target vector XG

i . This strat-
egy strikes a balance between exploration and exploitation,
facilitating effective global search.

Concerning the third sub-population, DE/current-to-
bestRelative/1 strategy is adopted as in Eq. 6 (lines 18-19).

V G,i
d = XG,i

d +Fi ·
(
XG,bestr

d −XG,i
d

)
+Fi ·

(
XG,R1

d −XG,R2
d

)
(6)

Where XG,bestr
d denotes the best individual among the reo-

mote relatives of XG,i
d . With this mutation strategy, the target

vector XG,i
d undergoes a significant perturbation, aiding its

attraction towards a superior individual within the current
population. This is facilitated by a larger difference vector,
XG,bestr

d −XG,i
d , along with an additional random difference

vector. Such an approach empowers individuals with lower
fitness to explore more extensively within the search space,
mitigating the risk of becoming trapped in local regions.

The fourth sub-population stays unchanged without going
through the mutation process, it will be directly inherited by
the next generation.

3) Crossover operation: After mutation, a crossover op-
erator is performed on the target vector XG,i

d to generate a
trail vector (offspring) UG,i

d = (uG,i
d , uG,i

d+1, ..., u
G,i
|D|). Each j-

th element in UG,i
d can be set as the corresponding element in

the mutant vector or in the target vector XG,i
d , as described

by Eq. 7 (lines 21 -22).

uG,i
j =

{
vG,i
j if randG,i

j ≤ Cri or j = irand

xG,i
j otherwise

(7)

Where randG,i
j represents a random number sampled from

the interval [0,1]. The parameter Cri ∈ [0, 1] denotes the
crossover rate, dictating the proportion of individuals inherited
from the mutant vector. Cri is adaptively generated at each
generation, further elaboration on its generation is illustrated in
the section III-C5. Additionally, irand is a randomly selected
integer within the range [d, |D|], ensuring that at least one
element of the trial vector is inherited from the mutant vector.

Finally, the trial vector UG,i
d is added to the trail population

UG
d (line 23).
4) Selection operation: The selection operator determines

which vectors, either the target or the trail, proceed to the
next generation based on their fitness values. Valid vectors
that remain within the budget (i.e., with a sum less than or
equal to 1) and provide higher fitness values will be selected
to advance to the next generation, according to Eq. (8).

XG+1,i
d =

{
UG,i
d if f(UG,i

d ) ≤ f(XG,i
d ) ∧

∑|D|
j=d uG,i

j ≤ 1

XG
i otherwise

(8)

Where f(·) is the fitness function defined in Eq. (3).
After Gmax generations, the best solution, represented by

XGmax,best
d , is selected from the population PGmax

d . This
solution guides us in determining the optimal fertilizer quan-
tity, denoted as xGmax,best

d , to be applied on the current
application day d. When the time progresses to the next
application date, we update the knowledge of the weather
conditions including the current weather data and estimated
future in-season weather data, and the available budget. The
DE progress repeats.

5) Adaptive Parameter Approach: We introduce the adap-
tive parameter adaptation to both the scaling factor Fi used in
the mutation operation and the crossover rate Cri.

At every generation G, both the scaling factor Fi and the
crossover rate Cri for each individual XG,i

d are independently
generated from Gaussian distributions (line 12). These distri-
butions have expected values of Fm and Crm, respectively,
with a standard deviation δ, as outlined below.

Fi = Gaussian(Fm, δ);Cri = Gaussian(Crm, δ)

If Fi exceeds 1, it is truncated to 1. Conversely, if Fi falls
below 0, it is regenerated. Similarly, for Cri, if its value
exceeds 1, it is set to 1. Otherwise, if Cri drops below 0,
it is set to 0.

FG
m and CrGm are initially set to λ and then updated at the

end of each generation, as described in Eq. (9) and Eq. (10),
respectively.

FG+1
m = wF · FG

m + (1− wF ) · Fi (9)

CrG+1
m = wCr · CrGm + (1− wCr) · Cri (10)

Here, wF and wCr represent random weight factors. In our
implementation we use 0.8+0.2 ·rand(0, 1), as recommended
in [17].

However, if the parent XG,i
d survives into the next genera-

tion, it means that the scaling factor Fi and the crossover rate
Cri are somewhat invalid. In such instances, FG+1

m is updated
according to Eq (11) and CrG+1

m is updated as in Eq (12).

FG+1
m = cF · FG

m + (1− cF ) · rand(0, 1) (11)

CrG+1
m = wCr · CrGm + (1− wCr) · rand(0, 1) (12)

Where cF and wCr are randomly weight factors. In our
implementation use 0.5 · rand(0.1), as suggested in [17].

D. Time Complexity of FertilizerSmart

In the following, we evaluate the time complexity of Fertil-
izerSmart. Initially, calculating the fitness value for each fer-
tilizer strategy in the population involves estimating the yield
using the DSSAT simulator. Since the inner functionality of the
simulator is unknown, we denote this complexity as O(C), for
ease of exposition. Therefore, the total time required for all the
individuals within the population is O(C ·Np). Then, Sorting
all individuals within the population based on their fitness
value incurs time complexity of O(Np · log(Np)). Following
this, pairwise distances between individuals are computed to
determine neighbor and remote relatives, incurring a time
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complexity of O(D ·Np ·(Np−1)/2). Subsequently, distances
within the first and third sub-populations are sorted, requiring
O(2ϵ · Np · log(Np)) time. These steps repeats over Gmax
generations, the overall time complexity of FertilizerSmart
is O(Gmax · (C · Np + O(Nplog(Np)) + O(D · Np(Np −
1)/2) + O(2ϵNp · log(Np)))), which can be simplified as
O(Gmax · (C ·Np +D ·N2

p )).

IV. EXPERIMENTS

A. Experimental Setup

1) DSSAT Setup: The Decision Support System for
Agrotechnology Transfer (DSSAT) is a software application
with dynamic simulation models for over 42 crops. It is com-
plemented by various utilities and applications that handle data
related to weather, soil, genetics, crop management, and obser-
vational experiments. DSSAT also provides example datasets
for all its crop models. These simulation models predict crop
growth, development, and yield by analyzing the interactions
between soil, plants, and atmospheric conditions. We use the
DSSAT v.4.8.2 [6], [8] for the following experiments.

The DSSAT simulation environment provides a set of cal-
ibrated experimental profiles. We opted to utilize one such
experiment, namely FLSC8101 for the crop of maize. We
modified the planting date to May 1 and other soil, crop coef-
ficients, and management input settings were left unmodified.
The typical growth cycle for maize spans around 120 days.
Our experiments explore nitrogen fertilizer strategies, pivotal
for maize growth and yield.

2) Weather Dataset: We use weather data from the NASA
Prediction of Worldwide Energy Resources (POWER) project
[18]. POWER provides over 200 solar and meteorological
near real-time datasets. In our experiments, we utilize the
daily weather data spanning from 2020 to 2023 in Florence,
South Carolina. The daily weather data includs solar radiation,
daily maximum and minimum temperatures, precipitation, dew
point, and wind speed. 2.

3) FertilizeSmart Setup: The normalization factors used in
the fitness function are set to α = 0.165 and β = 1.1. For
generating the mutation scaling factor and crossover rate, the
parameters γ and δ are set to 0.5 and 0.1, respectively. The
maximum number of generations Gmax, is set to 400.

B. Benchmark Description

We consider a benchmark strategy based on the fertiliza-
tion best practices described in [19]. In particular, for corn
cultivars, the growth phase that requires the most nitrogen is
around the last vegetative stages, or around 30-40 days from
sowing. This is when most of the fertilizer should be applied.
The grain-filling stage, towards the end of the growth process,
is also a phase when fertilizer is needed. Based on this, we
model the rates of fertilizer application as a normal distribution
centered on the 35th day with a standard deviation of 10 days.
This approach allocates 70% of the nitrogen budget early on,

2In our experiments, we consider the ground truth data for future weather.
Several weather prediction models can be adopted by FertilizeSmart, which
is out of the scope of this paper.

with the remaining 30% uniformly distributed after the 75th
day to support the grain-filling stage. All are then scaled to fit
the budget.

C. Experiment Results

Experiment I: Impact of the population size (Np) on
the qualify of the solution. We first consider the evolu-
tionary aspects and convergence behaviors of FertilizerSmart.
Specifically, we investigate how the population size (Np)
influence the quality of solutions, measured by the fitness
value derived from Eq. (3) and computational efficiency (i.e.,
execution time). We vary the population size (Np) from
20 to 75 individuals and iterate through 400 generations.
Leveraging weather data from 2023, we distribute 9 appli-
cation dates evenly throughout the growth period. They are
0, 14, 28, 42, 56, 70, 84, 94, 105 days after sowing. In addition,
we set fertilizer budget of 200 Kg/ha.

Figure 2 (a) shows the fitness value of the best solution
during the execution of FertilizerSmart, under different values
of the population size. As expected, FertilizerSmart finds
better solutions with larger population sizes. Moreover, the
approach is able to converge towards good solutions after 300
generations across all considered population size. Figure 2 (b)
shows the computational time versus the population size. Note
that, although the computational complexity is upperbounded
by a quadratic function in Np, the experimental results show
a linear behavior for the considered value of the population
size.

(a) (b)
Fig. 2. Experiment I: (a) Fitness value versus population size and number of
generations; (b) Execution time versus population size.

Experiment II: Impact of the number of application dates.
This set of experiments shows the impact of the number
of application dates on the yields. We study three different
options with 5, 9, and 15 application dates, respectively. The
distribution of the dates are shown in Table I and we guarantee
the crucial period for nitrogen application are covered. How-
ever, the number of applications and the dates are input for
FertilizeSmart that can be adjustted to the farmers preferences
and the budget. We set the budget as 200 Kg/ha and the
weather data is from 2023. More application dates means more
decision variables the algorithm needs to learn, thus requiring
a bigger population size. To be fair comparisons, we set the
population size to 20, 40, and 60 for the application dates 5,
9, and 15, respectively.

Figure 3 illustrates that FertilizerSmart achieves superior
yields with reduced nitrogen usage across all application dates

© 2025 International Federation
for Information Processing (IFIP).
ISBN: 978-3-903176-71-3

2025 20th IEEE/IFIP Wireless On-Demand Network Systems and Services Conference (WONS)

30



TABLE I
DISTRIBUTION OF NITROGEN APPLICATION DATES

# of application dates application dates (offset to sowing
dates)

5 [0, 28, 55, 83, 105]
9 [0, 14, 28, 42, 56, 70, 84, 94, 105]
15 [0, 14, 21, 28, 35, 42, 49, 56, 63, 70,

77, 84, 91, 98, 105 ]

(a) (b)
Fig. 3. Experiment II: (a) Yields and (b) Fertilizer usage varying the number
of application dates. .

compared to the baseline approach. Specifically, Figure 3 (a)
shows that increasing the number of nitrogen application dates
from 5 to 9 results in higher yields. This improvement is
attributed to the more precise fertilizer strategy, as additional
application dates are scheduled during the rapid growth period
from day 30 to day 50, making the strategy more adaptive
to weather conditions. Notably, FertilizerSmart demonstrates
a more significant yield increase compared to the baseline
approach. However, further increasing the application dates
beyond 9, does not lead to additional yield improvements due
to the saturation of nitrogen needs.

In contrast, Figure 3 (b) reveals that FertilizerSmart consis-
tently achieves higher yields with all application schedules,
using less fertilizer overall. The adaptability and precision
fertilization technique offered by FertilizerSmart allows it to
save nitrogen as the number of application dates increases
from 5 to 9, after which fertilizer usage remains stable even
with additional application dates. Based on this observation,
we select 9 application dates for the subsequent experiments.
Experiment III: Scalability over budget. In this set of
experiments, we assess the impact of fertilizer budgets con-
cerning yields by varying the maximum nitrogen budget from
90 Kg/ha to 300 Kg/ha. We utilize the weather data from
2023, and set the population size of 50, as it provides the best
tradeoff between performance and computation time as shown
in Experiment I, Figure 2 (b).

Figure 4 demonstrates the superior performance of Fertil-
izerSmart in achieving higher yields with reduced nitrogen
usage across all the fertilizer budgets, when compared to the
baseline method. Specifically, as depicted in Figure 4 (a), the
yield steadily improves with increasing fertilizer budget up to
a threshold of 150 Kg/ha for both approaches. Beyond this
point, applying excess nitrogen becomes counterproductive,
potentially harming yields. FertilizerSmart adeptly manages
this balance, reaching yield saturation after the budget hits

(a) (b)
Fig. 4. Experiment III: (a) Yields and (b) Fertilizer usage varying Budget.

150 Kg/ha, thanks to its incorporation of fertilizer usage opti-
mization within the fitness function (Eq. 3). This optimization
empowers the evolutionary process to make more informed
decisions, resulting in maximum yields with minimal fertilizer
consumption. Conversely, the baseline approach sees yield
decreasing beyond 150 Kg/ha, as it adheres to conventional
practices that may not necessarily provide the optimal strategy,
due to a lack of adaptation to the current weather condition and
a lack of learning processing. This is also evident in Figure
4 (b), where FertilizerSmart consistently utilizes significantly
less fertilizer, up to 50% less than the available budgets
compared to the baseline approach.

Overall, these findings underscore the importance of pre-
cision fertilizer techniques with weather adaptation, such as
FertilizerSmart, which dynamically adjust fertilization strate-
gies to maximizing crop productivity while minimizing the
fertilizer usage.
Experiment IV: Performance over various years. In this set
of experiments, we evaluate the performance of FertilizerSmart
across the years from 2020 to 2023 with a population size of
50. The variability in weather conditions of different years can
influence fertilizer strategy decisions and consequently impact
yields. For these experiments, we set the budget at 200 Kg/ha,
with a population size of 40 and 400 generations.

(a) (b)
Fig. 5. Experiment IV: (a) Yields and (b) Fertilizer usage across different
years.

Figure 5 shows that FertilizerSmart consistently outperforms
the baseline approach in terms of both yield and fertilizer us-
age across all the years. For instance, in 2021, FertilizerSmart
achieves yields approximately 20% higher than the baseline,
as shown in Figure 5 (a), while reducing fertilizer usage by up
to 32%, as depicted in Figure 5 (b). These results demonstrate
again the ability of FertilizerSmart to find the optimal fertilizer
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strategy by adapting the weather condition changes, while the
baseline approach employs the fixed recommended strategy.

V. RELATED WORK

Crop fertilization has evolved from conventional meth-
ods, like uniform application and soil testing, to modern
precision agriculture techniques that improve efficiency and
sustainability. Traditional approaches, though simple, often
neglect spatial variability within fields, causing nutrient imbal-
ances and resource inefficiencies [20]. Site-Specific Nutrient
Management (SSNM) [21] offers a more targeted solution
by optimizing nutrient application based on detailed assess-
ments of soil and crop needs, improving yields and reducing
waste. However, SSNM can be complex and time-consuming.
Process-based simulation tools like DSSAT [8] are more effi-
cient, accounting for environmental conditions and plant-soil-
atmosphere interactions, but require calibration with detailed
data from local field trails for accurate predictions.

Modern precision agriculture approaches, such as Variable
Rate Technology (VRT) [22], leverage IoT technologies, in-
cluding GPS, sensors, and remote sensing, to collect field data
[23]. Geographic Information Systems (GIS) are then used to
analyze the data and create detailed field maps that show vari-
ations in soil fertility, moisture, and other factors influencing
crop growth. These maps enable farmers to apply inputs like
fertilizers, pesticides, and seeds more precisely, tailoring the
application to the specific needs of different fields. Paper [14]
proposed a crop disease detection tool iCrop leveraging the
remote imaging sensing and image processing. Recent works
have advanced these technologies further, proposing the use of
agricultural drones [13] to monitor crop fields through canopy
imaging and vegetation indices [24]. By leveraging remote
multispectral sensing, these systems can determine the current
high-accuracy fertilizer requirements.

Although these approaches provide more targeted solutions
by offering a reliable assessment of plant nutrient status,
they often make decisions without fully considering evolving
environmental and weather conditions later in the growing
season. As a result, these solutions, while optimal at the
moment of application, may fail to remain globally optimal
throughout the entire crop growth cycle. Our work addresses
these gaps with FertilizeSmart, a framework that periodically
optimizes fertilization strategies using current weather data
and forecasts, ensuring the approach adapts to evolving con-
ditions and nutrient demands.

VI. CONCLUSION

We propose FertilizeSmart, a novel framework that inte-
grates IoT technologies and DE-based learning to optimize
crop fertilization. By incorporating in-season weather data
collected from IoT sensors, FertilizeSmart dynamically adjusts
fertilization strategies throughout the growth cycle, addressing
the limitations of traditional methods, such as fixed fertilizer
application rates and the inability to respond to weather
fluctuations. Experiments demonstrate its effectiveness in max-
imizing yields while reducing costs and environmental impact.
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