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Abstract—This paper tackles the problem of base stations place-
ment to guarantee line of sight connectivity to vehicles in ur-
ban areas, when high frequency communications (mmWave or
TeraHertz) are used. Our novel methodology takes advantage of
vehicular traffic simulation to generate a realistic demand model
for vehicles in urban areas. Then, through a bounded error heuris-
tic, find the maximal coverage that can be achieved with a given
density of base stations. The heuristic is implemented on GPU and
used to evaluate the coverage in a densely urbanized area in the
city of Luxembourg. Our results indicate that a reasonably low
density (20 base stations per km²) is sufficient to provide coverage
for vehicles in urban environments. However, optimizing solely on
vehicles negatively affects the coverage of pedestrians.

Index Terms—vehicular communication, 5G, mmWave, gNB
placement

I. INTRODUCTION AND STATE OF THE ART

In order to meet the increasing demand for mobile connectiv-
ity, the next-generation access networks (which we refer to as
XG) will rely on the use of very high frequencies (mmWave and
TeraHerz) and on the densification of the existing access net-
work, by increasing up to 10 times the number of base stations
deployed [1]. These new communication technologies are much
more susceptible to obstruction and they need Line-of-Sight
(LoS) to function reliably. For these reasons, the placement
strategy of base stations is crucial, and as already shown in
previous works, an optimal choice of such locations can lead
to substantial savings for network operators [2].

One of the future application enabled by XG is the use
of Cooperative Autonomous Vehicles (CAVs). To be really
effective, cooperative driving will not only require vehicles to
exchange basic data such as position, speed, heading, etc., but
raw sensor data as well. This will permit vehicles to implement
Cooperative Perception (CP) [3], i.e., to be able to construct a
view of the surrounding environment that goes beyond the field
of view of their sensors. Sharing raw sensor data rather than
pre-processed data enables vehicles to take decisions on their
own or to come up with a consensus on how to classify certain
objects, which can lead to safer and more efficient driving (see
the boar and the hare example [4]).

While the placement of base stations is a widely investigated
matter [5], the LoS requirements introduced by the newer
communication technologies have reignited the attention on the
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subject, with several works taking advantage of similar tech-
niques [6]–[9]. However, to the best of our knowledge, no other
study is focused on investigating different placement strategies
to optimize mobile coverage for vehicles using realistic traffic
data. The most similar research, from Jaquet et al. [10] is
focused on enhancing vehicular networks by taking advantage
of unmanned aerial vehicles.

This paper improves a recently-introduced 3D approach to
find an optimal placement for gNBs (the name for the base
stations in the 5G standard) by taking into account the traffic
patterns in order to better cover the areas where there is a high
vehicular traffic. First, we derive a demand model by using
simulated traffic data, then we devise a new heuristic that takes
advantage of the demand model to find the optimal location
of the gNBs. We take advantage of open geographical data,
specifically OpenStreetMap (OSM) vectorial maps and Digital
Surface Model (DSM) to evaluate different gNB placements
on real-world data. While the analyses have been conducted
only in the city of Luxembourg, the availability of open-data
together with the source code we release will enable anyone
else to reproduce the analyses in different areas.

II. PROBLEM FORMULATION

Given a 3D shape of an urban area, we identify a set of points
Λ in the ground that can be potentially covered with a LoS
connection from a gNB. Each point corresponds to an (x, y, z)
triplet, in which the (x, y) coordinates are quantized using one
point per squared meter. Points are selected to be outside any
building shape and only in public areas (streets, roundabouts,
street parking, sidewalks) and not in private areas. The problem
we tackle can be summarized in three steps described in the
next two sections:

1) For each point define a weight, the higher the weight the
higher the probability the point will be covered.

2) Identify the set P of points in space in which a gNB could
potentially be placed. Each position pi is defined by an
(x, y, z) triplet, and we restrict our analysis to the facades
of buildings.

3) Find an algorithm that chooses the minimal number of
gNB so that the coverage is maximized.

Step one is a novel contribution of this paper. The solution
to the second step comes from a previous publication in which
we introduced the problem of coverage as a variation of the
classical maximum subset coverage problem [2], the third step
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modifies the solution proposed therein to take into account the
weights introduced in step one.

III. A DEMAND MODEL FOR VEHICLES

Obtaining realistic vehicular traffic data is always a chal-
lenging task, as data collected by cities is rarely released to
the public. One possibility, which is the one we consider in
this work, is to generate traffic data using microscopic traffic
simulators and realistic scenarios. In this work we use the urban
traffic simulator SUMO [11] to generate realistic mobility
traces of the city of Luxembourg. In particular, we make use
of the Luxembourg SUMO Traffic (LuST) scenario [12], a
publicly available scenario generated from traffic data provided
by the Luxembourg government which includes both public and
private transportation over a period of 24 h.

To obtain traffic traces, we run the scenario over the full
24 h for a total of 286 215 vehicles moving on the streets. The
simulation step is set to 1 s and, at the same frequency, we log
the positions of the vehicles in the area of the city shown in
Fig. 1, corresponding to roughly 4 km2. We collect traces using
GPS (latitude/longitude) coordinates and then convert them to
a .gpx file for later processing.

To generate a matrix of weights from these traces, we first
rasterize the traces mapping each logged position to a cell of
a matrix, where a matrix cell represents an area of 1m2. We
obtain a matrix τ ⋆ where τ ⋆

x,y = n means that n vehicles
have passed from the (x, y) cell during the whole simulation.
For the sake of readability we rescale it to the number of
passages per minute. Fig. 3 shows the empirical pdf of the
values of the cells with non zero value, binned with bins of
size 0.125 passages/minute. It can be seen that the majority of
the cells have less than one passage per minute, with the 95th
percentile roughly at 0.55. The distribution is pretty skewed,
with about 5 orders of magnitude between the largest and the
lowest frequency.

For reasons that will be clear in the next section, Eq. (1)
remaps the values to an uint8 type in the range [0, 255] ob-
taining the traffic matrix τ . The values up to the 95th percentile
have been linearly mapped in the interval (0, 64), while the rest
of the values have been linearly mapped to the range (64, 255).
Note that we have considered the values greater than 21 as
outliers and thus they are all equally mapped to 255.

τx,y =


⌈116 · τ ⋆

x,y⌉ if τ ⋆
x,y ≤ 0.55

⌈9.34 · τ ⋆
x,y + 58.77⌉ if 0.55 ≤ τ ⋆

x,y ≤ 21

255 otherwise

(1)

IV. GNB PLACEMENT

The second required step is to define the set of candidate
locations P from which we will choose the positions of the
gNBs. Let B = {bi} be the set of buildings extracted from
the OSM dataset. Let also ϕ(bi) be a function that extracts a set
of coordinates that compose the perimeter of the building bi,
with points spaced in average one meter away from each other,

Fig. 1: Area of the city of Luxembourg over which traces are
collected.
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Fig. 2: Empirical p.d.f. of the vehicles passages per minute per
cell.

placed 1m below the height of the roof. We can then define the
set of candidate locations P as:

P =
⋃
bi∈B

ϕ(bi) (2)

Once the set of candidate locations is determined, we need to
evaluate the coverage from each one of them. In order to do
so, we take advantage of a viewshed algorithm implemented
using the CUDA library on NVidia GPUs [13]. This algorithm,
applied on a highly precise DSM computes the presence of LoS
from the candidate location pi to each point in Λ given a max-
imum distance (dmax = 300m) from pi. Let σi = Υ(Λ, pi)
be a 2-dimensional binary matrix that associates each point in
(x, y) to a non-zero value if there is LoS from the point pi to
the point of coordinate (x, y, z) ∈ Λ. Υ corresponds to the
application of the viewshed algorithm from the point pi over
the set of points Λ. We call σi the viewshed matrix from point
pi. If we apply Υ to all the points in P we obtain a collection of
matrices that represent all the possible viewsheds from all the
potential positions of gNBs, as in Eq. (3):

Ω =
⋃

pi∈P
Υ(Λ, pi) (3)

We then obtain a collection of matrices Ω =
{σ1,σ2, . . . ,σm} in which σi

x,y = 1 means that a terminal in
position (x, y) has LoS with a gNB placed in the point pi.

A. Quasi-optimal gNB placement

We want to find a subset Ω⋆ ⊆ Ω whose size is lower
than a parameter k (|Ω⋆| ≤ k) that maximises the elements
coverage

∣∣∣∨σi∈Ω⋆ σi
∣∣∣, where

∨
is the OR operator between

binary matrices and | · | is the norm-1 operator (the sum or all



elements). In order to take into account the traffic patterns, let τ
be a non-negative integer matrix as defined in Eq. (1) with the
same shape of σi. We can formulate the maximization objective
as follows:

maxΩ⋆

∣∣∣∣∣∣τ ⊙
∨

σi∈Ω⋆

σi

∣∣∣∣∣∣ (4)

Where ⊙ is the element-by-element multiplication between
two matrices. This will lead to a choice of the optimal k sets in
Ω⋆ to cover the roads with the highest traffic. The problem is a
so-called weighted maximum coverage problem.

We can now better justify Eq. (1). Since the frequencies in
Fig. 3 are very skewed, and we are using a GPU with integer
algebra, we can not remap linearly between 1 and 255, or else,
95% of the samples would be squashed at weight 1. On the other
hand we want to give a strong priority to points with a very
high weight, so we decided to linearize the weights with two
different slopes. This guarantees that our heuristic will choose
the few points with a high weight with a high priority, but also
that it will be able to distinguish between points with low, but
different weights.

Note that if we call 1 the matrix made of all one elements,
and we set τ = 1 then the problem converges to the classical
unweighted maximum coverage problem, in which we try to
cover the largest portion of the points in Λ treating all of
them equally. In other words, the weighted variant tries to
optimize the coverage of cars, while the unweighted variant
tries to optimize the coverage of all terminals in the public
areas, streets, crossroads, sidewalks, and thus can be interpreted
as the attempt to provide coverage to pedestrians, for which we
can not have a movement pattern.

While this heuristic solution either optimizes the coverage
for vehicles or pedestrians, a future extension of this work could
consider a mixed objective between vehicles and pedestrians,
which could improve the coverage of pedestrians in a vehicle-
oriented network. For example, a different mapping function
(Eq. (1)) could assign a minimal coverage priority to all the
cells where no vehicles had passed.

B. Heuristic solution

Since the above-described coverage problem is NP-Hard in
our past work we relied on a polynomial greedy heuristic with
bounded error to efficiently find a quasi-optimal solution [2].

Here we modify the greedy heuristic as described in detail
in Algorithm 1 to take into account the weight provided by
the vehicular networks simulations. The heuristic proceeds as
follows: we start by defining a coverage matrix C of the same
size of τ , initialized with zeroes (Line 2). Each iteration of
the loop in Line 4 will choose the position of one gNB. For
each candidate location pi and the corresponding viewshed σi

we derive the so-far uncovered elements as the negation of the
coverage matrix (Line 7). We define C⋆ that represents the so-
far uncovered elements that would be covered by the candidate
location, with their weight given by τ (Line 8). Note that bool()
is a function that makes an integer matrix a boolean one, ¬ is
the boolean NOT operand. We then provide a score for pi as the

Algorithm 1 Greedy algorithm for the weighted maximum
coverage problem.

Require: Ω (Set of viewsheds), k (number of gNBs),
τ (weighted traffic matrix)

Ensure: Ω⋆ (Set of the viewsheds from optimal locations)
1: procedure Γ (Ω, k, τ )
2: C = 0
3: Ω⋆ = {}
4: for i← 0 to k do
5: h⋆ = −∞
6: for σj ∈ Ω do
7: C̄ = ¬bool(C)
8: C⋆ = C̄ ⊙ σj ⊙ τ
9: hj = |C⋆|

10: if hj > h⋆ and σj /∈ Ω⋆ then
11: σ⋆ = σj ; h⋆ = hj

12: C = C + σ⋆

13: Ω⋆ = Ω⋆ ∪ {σ⋆}
14: return Ω⋆

norm-1 of the coverage matrix (in Line 9). Then, the element
with the maximal ranking is chosen and the corresponding
values of the viewshed matrix are added to C (Line 12). Note
this makes C a non-boolean matrix. Finally, the viewshed σ⋆

is added to the set of optimal viewsheds (Line 13). The loop
is repeated till the number of desired locations is reached. The
operation at line Line 8 has complexity |Λ|, and is repeated at
most k ×m times, so the overall complexity is O(km|Λ|).

The result of this algorithm is a set of quasi-optimal view-
sheds.

V. EXPERIMENTS AND RESULTS

Our initial results are based on a single area in the city of
Luxembourg with a surface S of roughly 4km2.

We apply Algorithm 1 to compute the optimal locations for
the gNBs, increasing k. We consider a density λ of gNBs per
squared km going from 5 to 85 at steps of 5, and we set k = λS.
We consider two different settings, one in which we use the
weighted variant, and another in which we use the unweighted
variant (τx,y = 1) so every element in Λ has the same weight.
We obtain two solutions for the coverage

Ω⋆
λ,τ = Γ (Ω, λ ∗ S, τ ) (5)

Ω⋆
λ,1 = Γ (Ω, λ ∗ S,1) (6)

that we aggregate with the OR operator to obtain a full coverage
matrix:

Φλ,τ =
∨

σj∈Ω⋆
λ,τ

σj ; Φλ,1 =
∨

σj∈Ω⋆
λ,1

σj (7)

Finally, we use four metrics to compare the results:

V covτ (λ) =
|τ ⊙ Φλ,τ |
|τ |

; V cov1(λ) =
|τ ⊙ Φλ,1|
|τ |

(8)
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Fig. 3: The V covτ and V cov1 metrics.
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Fig. 4: The Pcovτ and Pcov1 metrics.

The metrics in Eq. (8) tell how good is the coverage of
vehicles when we optimize for vehicles (V covτ (λ)) or when
we optimize for pedestrians (V cov1(λ)). The second metric, in
practice, tells us what happens if we try to optimize the street
coverage for pedestrians but we measure the results only on the
points where the vehicles pass (with their multiplicity).

Pcovτ (λ) =
|Φλ,τ |
|Λ|

; Pcov1(λ) =
|Φλ,1|
|Λ|

(9)

Metrics in Eq. (9) instead are used to evaluate the opposite
situation. Both metrics express how good is the coverage of
pedestrians, in the first case when we optimize with cor vehicles
(Pcovτ (λ)) in the second, when we optimize for pedestrians
(Pcov1(λ)).

Fig. 3 reports the metric in Eq. (8) and shows two very
relevant conclusions. The first is that V covτ reaches 90%
coverage with λ = 15, 95% coverage with λ = 20 and 99.9%
coverage with λ = 35 while V cov1 needs 33% and 25% more
gNB to cover 90% and 95% of the vehicles, and can not reach
99.9% even with λ = 85. Considering that vehicles coverage
for autonomous driving requires a high reliability, we see that
there is a relevant difference when we specifically optimize for
vehicles, rather than for pedestrians. The second conclusion is
more generic: so far we did not have any concrete indication of
how much we need to increase the density of gNBs to achieve
vehicles coverage, and this result tells us that in urban areas, a
reasonably low density can still be sufficient for reliable service.

Fig. 4 instead tells a different message. There is a remarkable
difference in the coverage of pedestrians when optimizing for
vehicles or not. In particular, the vehicles’ optimization does

not allow us to cover 95% of the ground. Note also that if we
would consider non public areas, or areas non adjacent to streets
(like parks) this metric would be even worse.

The takeaway for the operator that needs to start deploying
gNBs for LoS communications is that the goals of covering
vehicles or pedestrians are concurring ones. Optimizing for ve-
hicles would reduce significantly the required density of gNBs
but would not allow to reliably cover pedestrians positions.

VI. CONCLUSIONS

The foreseen densification of gNBs and the advancements
in vehicular communications are playing a pivotal role in the
deployment of XG access networks in ultradense urban areas.
This paper proposes a novel data-driven method to optimize
the placement of such gNBs and provide crucial insights to
the network operators to understand how the two coverages, for
vehicular communication and pedestrians, are intertwined. The
results show that a reasonably low density of gNBs is sufficient
to provide 95 % coverage in urban areas, but that at the same
time optimizing the coverage only towards the roads with the
most traffic will affect coverage for pedestrians.

REFERENCES

[1] Small Cell Forum, “Hyperdense HetNets: Definition, drivers
and barriers,” Tech. Rep., Feb 2017. [Online]. Avail-
able: https://scf.io/en/documents/180_Hyperdense_HetNets_Definition_
drivers_and_barriers.php

[2] G. Gemmi, R. Lo Cigno, and L. Maccari, “On cost-effective, reliable
coverage for los communications in urban areas,” IEEE Transactions on
Network and Service Management, vol. 19, no. 3, pp. 2767–2779, 2022.

[3] S. Aoki, T. Higuchi, and O. Altintas, “Cooperative Perception with Deep
Reinforcement Learning for Connected Vehicles,” in IEEE Intelligent
Vehicles Symposium (IV 2020). Virtual Conference: IEEE, 10 2020.

[4] R. Lo Cigno and M. Segata, “Cooperative driving: A comprehensive
perspective, the role of communications, and its potential development,”
Elsevier Computer Communications, vol. 193, pp. 82–93, 9 2022.

[5] M. Wright, “Optimization methods for base station placement in wireless
applications,” in IEEE Vehicular Technology Conference, vol. 1, 1998, pp.
387–391.

[6] N. Palizban, S. Szyszkowicz, and H. Yanikomeroglu, “Automation of
millimeter wave network planning for outdoor coverage in dense urban
areas using wall-mounted base stations,” IEEE Wireless Communications
Letters, vol. 6, no. 2, pp. 206–209, 2017.

[7] Y. Zhang, L. Dai, and E. W. M. Wong, “Optimal BS Deployment and
User Association for 5G Millimeter Wave Communication Networks,”
IEEE Trans. on Wireless Communications, vol. 20, no. 5, pp. 2776–2791,
2021.

[8] P. Seda, M. Seda, and J. Hosek, “On mathematical modelling of auto-
mated coverage optimization in wireless 5g and beyond deployments,”
Applied Sciences, vol. 10, no. 24, 2020.

[9] C. K. Anjinappa, F. Erden, and I. Guvenc, “Base Station and Passive
Reflectors Placement for Urban mmWave Networks,” IEEE Transactions
on Vehicular Technology (TVT), vol. 70, no. 4, pp. 3525–3539, 4 2021.

[10] P. Jacquet, D. Popescu, and B. Mans, “Connecting flying backhauls of
drones to enhance vehicular networks with fixed 5g nr infrastructure,” in
IEEE INFOCOM 2020 - IEEE Conference on Computer Communications
Workshops, 2020, pp. 472–477.

[11] P. A. Lopez, E. Wiessner et al., “Microscopic Traffic Simulation using
SUMO,” in 21st IEEE International Conference on Intelligent Trans-
portation Systems (ITSC 2018). Maui, HI: IEEE, 11 2018, pp. 2575–
2582.

[12] L. Codecá, R. Frank et al., “Luxembourg SUMO Traffic (LuST) Scenario:
Traffic Demand Evaluation,” IEEE Intelligent Transportation Systems
Magazine, vol. 9, no. 2, pp. 52–63, 4 2017.

[13] G. Gemmi, R. L. Cigno, and L. Maccari, “On the properties of next
generation wireless backhaul,” IEEE Transactions on Network Science
and Engineering, pp. 1–12, 2022.


