
Vehicle-to-Infrastructure Communication for

Real-Time Object Detection in Autonomous Driving

Faisal Hawlader, François Robinet and Raphaël Frank

Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg, 29 Avenue J.F Kennedy, L-1855 Luxembourg

firstname.lastname@uni.lu

Abstract—Environmental perception is a key element of au-
tonomous driving because the information received from the
perception module influences core driving decisions. An outstand-
ing challenge in real-time perception for autonomous driving
lies in finding the best trade-off between detection quality and
latency. Major constraints on both computation and power have
to be taken into account for real-time perception in autonomous
vehicles. Larger object detection models tend to produce the
best results, but are also slower at runtime. Since the most
accurate detectors cannot run in real-time locally, we investigate
the possibility of offloading computation to edge and cloud
platforms, which are less resource-constrained. We create a
synthetic dataset to train an object detection model and evaluate
different offloading strategies. Using real hardware and network
simulations, we compare different trade-offs between prediction
quality and end-to-end delay. Since sending raw frames over the
network implies additional transmission delays, we also explore
the use of JPEG compression at varying qualities and measure
its impact on prediction metrics. We show that models with
adequate compression can be run in real-time on the cloud while
outperforming local detection performance.

Index Terms—5G; Cloud/Edge Computing; Perception; C-
V2X; Autonomous Driving;

I. INTRODUCTION

One of the core challenges in autonomous driving is to

reliably and accurately perceive the environment around the

vehicle. Perception is crucial to ensure safe driving because

the information received from this task influences the core

driving decision which determines how the vehicle should

plan its path. However, perception requires processing a large

amount of sensor data (i.e. Camera, LiDAR, Radar) in real-

time. At the same time, the hardware embedded in vehicles

is constrained by both, cost and power consumption. Running

all detection tasks locally can therefore require sacrifices on

perception quality, in favour of real-time operation.

In this work, we focus on visual perception using a front-

facing camera. The position and class of objects in the scene

is needed to plan collision-free paths in autonomous driving

and should be available in real-time. We follow the existing

literature and aim to perform object detection at a rate of

20Hz [1]. We investigate different variants of the YOLOv5

[2] detection model, which offer different detection qualities

at different inference times. As illustrated in Table I, larger

models generally perform better. However, higher performance

comes at the cost of increased computational requirements.

Due to the limited computing resources and power available

in the car, running larger models can prove difficult.

One alternative is to offload some computations where

resources are available. Compute capabilities are less limited

on Multi-access Edge Computing (MEC) platforms, and the

best hardware is available in the cloud. Offloading some

perception computation to the cloud can be appropriate in

some situations. However, data offloading to MEC or cloud

devices adds some additional transmission latency, which

might not be acceptable for time-sensitive applications. With

the promise of new 5G technologies supported by C-V2X,

data offloading is an interesting option to complement local

perception in autonomous driving.

In this work, we explore data offloading strategies for

remote object detection on edge and cloud devices. We aim to

evaluate these strategies on their detection quality, as well as

their compliance with end-to-end latency requirements using

a realistic communication channel model.

Our contributions are as follows:

• We create a synthetic dataset to train an object detection

model and evaluate the proposed offloading strategies.

• We investigate the transfer of camera frames and their

processing on edge or cloud platforms. Using real hard-

ware and network simulations, we compare different

trade-offs between prediction quality and end-to-end de-

lay.

• Since sending raw frames over the network implies

additional transmission delays, we also explore the use

of JPEG compression at varying qualities and measure

its impact on prediction metrics.

The rest of the paper is organised as follows. In Section II,

we review the related literature. In Section III, we describe

the hardware used, our network simulation settings, and the

training and evaluation of our object detectors. Section IV

presents the experimental results and discusses the different

offloading trade-offs. Finally, we conclude this work with an

outline of our contributions and a discussion of future work

directions.

II. RELATED WORK

A. V2I communication

As explained in [3, 4] using vehicle-to-infrastructure (V2I)

communications, autonomous cars generally offload sensor

© 2023 International Federation for Information Processing (IFIP). ISBN: 978-3-903176-56-0



data processing to a server. The server could be placed on

the edge using the 5G MEC [5] or in a cloud with higher

computational resources [6]. V2I communications are carried

out using the upload / download path [7]. The autonomous

car offloads the task to an edge or cloud server that performs

computations and sends the results back to the car. In this use

case, the local device performs only mandatory pre-processing

tasks, such as compression / encoding [8]. Offloading sensor

data to the cloud through V2I adds additional transmission la-

tency [9]. According to [7], this communication latency could

be reduced using MEC, which requires a low transmission

delay compared to the cloud. However, edge devices are also

subject to limited resources that could limit application needs.

B. Object detection & impact of compression

Object detection: Pioneering work in object detection has

used hand-crafted procedures to extract features from raw

images, before using them as inputs to one or more object de-

tectors. Popular examples include the Viola-Jones face detector

based on Haar-like features [10], or the Histogram-of-Gradient

detector [11]. Recent years have seen the emergence of two

families of detectors based on deep neural networks: two-stage

and single-stage models. Two-stage detectors first roughly

identify regions that are likely to contain an object, before

filtering and refining these object proposals with a trained

model [12–14]. Although two-stage models achieve impressive

accuracy, their computational complexity makes real-time op-

eration a challenge. To remedy this, the SSD [15] and YOLO

[16] and family of models propose to combine region proposal

and refinement into a single operation. In YOLO, input frames

are divided into cells and a set of bounding boxes are predicted

for each cell. The YOLO detector can be trained end-to-

end using a loss function that accounts for bounding box

accuracy, objectness probabilities and class assignments. Our

work leverages YOLOv5 [2], a refined variant of the original

YOLO method.

Impact of compression on detection: To enable faster

data transmission for cloud inference, we study the impact

of JPEG compression on detection performance, for varying

compression qualities. Existing work has shown that JPEG

compression negatively affects the performance of models

trained on uncompressed frames [17, 18]. In the case of

object detection, this effect is particularly noticeable at lower

compression qualities. Performances deteriorate rapidly for

moderate to heavy compression [17].

C. Perception using C-V2X communication

With the new features of 5G technologies, including edge

and cloud computing, C-V2X technology has become more

widespread [1, 5, 8]. C-V2X appears qualified to support

advanced applications [19, 20], such as collective perception

[21]. Processing of perception sensor data using the on board

car computer might not always be an option due to latency

constraints [6]. However, collective perception using the V2X

service allows cars to potentially offload sensory data to

edge and cloud for resource-intensive computations [4, 22].

Perception data processing in MEC or the cloud appears to

be a viable option for autonomous driving, which has been

the subject of many studies [4, 6–8]. However, the perception

of surrounding objects requires real-time detection that is fast

processing and low latency and cannot be arbitrarily obtained,

as it is highly dependent on where we process the data. In

[21, 23, 24], different sensor data offloading strategies have

been presented, ranging from raw data offloading to partially

or completely processed data offloading to save network

resources. However, their approach emphasises data commu-

nication to reduce transmission overhead without evaluating

the impact on perception quality. In principle, offloading raw

sensor data is excellent for perception accuracy [25], but

could increase transmission costs [26]. However, offloading

compressed data can save network resources, but it might

degrade detection quality [27]. The literature does not yet

provide a trade-off between detection quality and end-to-end

processing.

Model Size

Small Large
Large

(high-res)

All (mAP) 0.64 0.66 0.85
Pedestrian 0.30 0.36 0.81
Traffic light 0.80 0.82 0.86
Vehicle 0.79 0.81 0.89

TABLE I: Average Precision results for different model vari-

ants (AP@50). Model variants are detailed in Section III-A

III. METHODOLOGY

This section describes our initial efforts toward estimating

the end-to-end delay of real-time object detection. Based on

previous work, our objective is to perform object detection at

a rate of 20Hz [1] without degrading the detection quality. In

this context, end-to-end delay heavily depends on where we

perform the computation. If the car chooses to offload the data

to an edge or cloud, the car must exchange the raw sensor data,

which V2X technologies may not support due to bandwidth

needs [26].

A. Motivation & Hardware

The limited computing resources and energy consumption

make it difficult to detect objects in the car. Therefore, the

computations are offloaded where the resources are obtainable.

However, reaching high detection quality and decreasing the

inference delay remain a challenge [28]. To better understand

the problem and solve it, we performed a series of experiments

on actual hardware setups. The hardware configurations are

shown in Table II, where local represents the on board device

of an autonomous car that has limited processing power.

However, the compute capabilities are less constrained on edge

platforms, and the very best hardware is available in the cloud.

This choice is made based on the research in [8, 29]. To

perform object detection, we use YOLOv5 [2] as it has been

demonstrated to have superior performance (that is, accuracy



Platform Scenario / Model Hardware configuration

Local YOLOv5 small NVIDIA Jetson Xavier NX SoC
(≈20W) 157 layers, 7M params Volta GPU, 384 CUDA cores

640x640 Resolution Carmel ARMv8.2 CPU@1.9GHz

Edge YOLOv5 large Laptop with GeForce GTX 1650
(≈100W) 267 layers, 46M params Turing GPU, 896 CUDA cores

640x640 Resolution Intel i9-9980HK @2.4GHz

Cloud YOLOv5 large high-res HPC node with Tesla V100
(≈450W) 346 layers, 76M params Volta GPU, 5120 CUDA cores

1280x1280 Resolution Intel Xeon G6132 @2.6 Ghz

TABLE II: Based on inference time constraints, we selected

distinct platforms to run three models of different sizes. Fig. 1

compares inference times for different models and platforms.

and latency). YOLOv5 offers various model sizes ranging from

small to large. We observe that larger models are beneficial

considering the detection quality as reported in Table I, but

there are inference timing constraints that must be taken into

account. In this context, we want the best possible model for

each platform that fits the time constraint. We use Fig. 1 to

determine which model we can run on each platform. The

inference time in Fig. 1 shows that the larger model has an

inference time of more than 50ms and as such is not suited

to run on the local platform. In view of the 20Hz detection

speed, we decided to investigate the use of the small model on

the local, the large on the edge, and the large high-res one on

the cloud. The exact YOLOv5 version with the corresponding

resolution is summarised in TableII.

Small (YOLOv5s) Large (YOLOv5l) Large high-res (YOLOv5l6)
Size of the Model

0

50

100

150

200

In
fe

re
nc

e 
Ti

m
e 

(m
s)

Local
Edge
Cloud

Fig. 1: Model inference time comparison between different

model sizes on different platforms. We use half-precision

floating-point computation at inference time in order to speed

up computation.

B. Networking Aspects

In this section, we describe the main elements of the 5G

Radio Access Network (RAN) and show how to use the

network simulation framework to measure end-to-end network

delays for a real-time object detection model supported by

cloud infrastructure. To simulate the 5G data plane, we used

Network Interferce 
Card (NIC)GTP

UDP

IP

PPP

NR PDCP

NR RLC

NR MAC

NR PHY

PPP

IP

Radio Access Network (5G RAN)

5G Core

gNB

Cloud

Car(UE)

PDCP

NR RLC

NR MAC

NR PHY

LTE RLC

LTE MAC

LTE PHY

GTP

UDP

User Plan Function
(UPF)

Mec App 2 Mec App N

Virtualization 
Manager 

Resource
Manager 

UDP

Mec App 1 ...

IP PPP

GTP MEC Host

IP2NIC

IP2NIC

Network Interferce Card (NIC)
App

UDP

IP

Point-to-point wired connection

Fig. 2: Architecture of the end-to-end network simulation

framework, showing the main elements of the 5G radio access

network (RAN), including the multi-access edge computing

(MEC) host-level components with a User Equipment (UE).

Simu5G [7] which is a OMNeT++ based discrete event

network simulation library [30]. We focus on two scenarios,

namely, perception data offloading with MEC and perception

data offloading with cloud considering C-V2X technologies.

Furthermore, we describe the main components of Simu5G

used to model the scenarios considered. The network environ-

ment we consider consists of a RAN and a 5G Core Network

(CN). The RAN has a single 5G base station (BS), which is an

expansion of 4G base stations known as eNB [31]. One user

equipment (UE) is attached to the BS, which is this use case

is a vehicle. We also placed a MEC host close (500m) to the

BS connected to a wired network, so MEC can interact closely

with BS and obtain fast information from the RAN user. The

gNB is then connected to a cloud server via CN. The cloud

is located 1000km [6], away from the gNB base station. The

different components of the framework are shown in Fig. 2.

5G Core Network (CN): In this work, we consider a

standalone version of the 5G core network [32], which meets

our requirements and is also available for simulation using

Simu5G. The core network consists of a user plane function

(UPF) that supports wired connection between the RNA and

the cloud. A Point-to-Point (PPP) network interface is used to

connect eNB to the cloud through a wired connection [33].

The GPRS [9] tunnelling protocol (GTP) is used to route

IP datagrams (UDP) and establish a communication channel

between gNB and the cloud.

Multi-access Edge Computing (MEC): The applications

of MEC are growing and several standardisation initiatives

are being carried out to provide a successful integration

of MEC into the 5G network [34]. This work considers a

simplified MEC host-level architecture in accordance with

the European Telecommunications Standards Institute (ETSI)

reference [5]. In our case, an MEC host is co-located with

gNB as shown in Fig. 2. The MEC host provides various

modules that allow MEC applications to operate efficiently and

seamlessly. The MEC applications run in a virtual environment

and the resource manager orchestrates the life cycle of those



applications. The Virtualisation Manager allocates, manages,

and releases virtualised aids such as computing, storage, and

networking resources. The MEC host also includes a GTP

protocol, which means that it can be located anywhere on the

network. We placed the MEC 500m away from the gNB [7]. A

PPP wired connection with 100G data rate is used to connect

the MEC to gNB [35].

5G base station (gNB): In the case of the scenario con-

sidered, gNB is configured with protocol up to Layer 3 and

supports two network interface cards. One for PPP wired

connectivity to connect the core network and the other for

the radio access network. The internal structure of the two

network cards is shown in Fig. 2. The PPP connection uses the

GTP protocol, which has the same architecture as CN. On the

other hand, the radio access network card has four modules.

The topmost is the packet data convergence protocol (PDCP),

which receives IP datagrams, performs ciphering, and sends

them to the radio link control layer (RLC). RLC service data

units are stored in the RLC buffer and retrieved by the under-

lying Media Access Control layer (MAC) when a transmission

is required. The MAC layer aggregates the data into transport

blocks, adds an MAC header, and sends everything through

the physical layer (PHY) for transmission; for more details,

we refer the reader to the Simu5G documentation [7].

User equipment (UE): As defined in the ETSI [5] and

3GPP specifications [36], user equipment is any device used by

the end user. In our case, the user equipment refers to a car that

is connected to the gNB, and equipped with C-V2X protocol

stacks. We choose C-V2X because it is a 3GPP defined

standard for connected mobility applications and works with

5G NR technology that is also available for simulation. It is

important to mention that we used C-V2X only for bidirec-

tional Vehicle-to-Infrastructure communications following the

application needs. And the application we are focusing on is

the offloading of perception data to the edge and cloud for real-

time object detection. As part of the development policies and

the implementation of Simu5G the UE has dual NIC to allow

dual connectivity for both LTE [6] and 5G NR [20], as shown

in Fig. 2.

Parameter Name Value

Carrier frequency 3.6 GHz [37]
gNB Tx Power 46 dBm
Path loss model [7], Urban Macro (UMa)
Fading + Shadowing model Enable, Long-normal distribution
Number of repetitions 200
Path loss model 3GPP-TR 36.873 [38]
UDP Packet size 4096 B [39]
Throughput 113.94 Mbit/s (Avg.)
Numerology (µ) 3
Latency (Vehicle-to-Edge) 0.43 ms (Avg.)
Latency (Vehicle-to-Cloud) 0.45 ms (Avg.)
Packet loss ratio 0.0001

TABLE III: Important network parameters with throughput

and packet loss ratio for a stationary test. The averages are

computed over 200 repetitions.

C. Perception Aspects

Dataset generation: In order to train the YOLOv5 models

described in Table II, we built a synthetic dataset using the

CARLA simulator [40]. CARLA allows us to simulate a

camera-equipped car driving in a rendered town environment,

and to access ground truth bounding boxes for three classes

of interest: vehicles, pedestrians, and traffic lights. We run

the simulation to collect ten thousand camera frames, taken

every second from the front of the ego-vehicle. We also collect

ground truth 3D bounding boxes, which we project into camera

frame coordinates to obtain 2D bounding boxes usable for

training and evaluating YOLOv5. The data is split into three

subsets: 6000 frames are used for training, 2000 for validation,

and we reserve the remaining 2000 frames for testing.

Training Protocol: All models are trained for 100 epochs

on a single NVIDIA Tesla V100. We use the Adam optimizer

with an initial learning rate of 0.001. In order to speed up

training, we set the batch size to the maximal value that fits

in GPU memory for each experiment.

IV. RESULTS

This section describes the experiments carried out to eval-

uate our proposed data offloading strategies. We perform

experiments on the hardware described in Section II, and we

analyse both the end-to-end delay and the detection quality.

A. End-to-end delay evaluation

To be able to compare the performance/latency trade-off of

the three scenarios described in Section III-A and Table II, we

first measure their end-to-end delays.

In the case of the local platform, the delay depends only

on the inference time on the local hardware. Note that non-

maximum suppression (NMS) & input preprocessing are in-

cluded in our inference time measurements, in addition to the

forward pass of the model. We obtain a local end-to-end delay

of 19.5 ms.

For the second and third scenarios, we evaluate the data of-

floading strategy between the car and edge or cloud platforms.

Network latency is measured using the end-to-end simulation

framework presented in Fig. 2. The important network sim-

ulation parameters with throughput and packet loss ratio are

summarised in Table III. In these situations, the end-to-end

delay includes compression, transmission, decompression and

inference. The time to send the results back is not shown,

but 0.43 ms (see Table III) extra latency is added to the

transmission delay, assuming that the raw detection results will

fit into a single packet. Sending raw uncompressed frames to

remote devices results in large transmission delays because of

the size of the data. We measured an average transmission time

of 123.2 ms in the vehicle-to-edge scenario. This delay rises

to 521.7 ms in the vehicle-to-cloud scenario due to a higher

resolution frame being processed by the cloud model.

Since these delays are not acceptable in most practical per-

ception scenarios, we investigate the use of JPEG compression

to reduce them. For fast compression and decompression, we

rely on the libjpeg-turbo library [41]. Compression always



occurs on the local device, and decompression happens on

either the edge or cloud device depending on the scenario.

As illustrated in Table IV, JPEG compression can drastically

reduce the size of the frame to be transmitted, allowing real-

time remote object detection when C-V2X is available.

Platform JPEG Quality
Avg. data size

(% of original)

End-to-end

delay (ms)

No compression 1.23 MB (100%) 123.2
Edge JPEG-80 63.7 KB (5.2%) 44.54

640×640 JPEG-30 27.2 KB (2.2%) 40.13
JPEG-10 14.6 KB (1.2%) 39.68

No compression 4.92 MB (100%) 521.7
Cloud JPEG-80 185.7 KB (3.8%) 50.9

1280×1280 JPEG-30 81.3 KB (1.7%) 39.52
JPEG-10 45.9 KB (0.9%) 34.44

TABLE IV: Amount of data to transfer for the edge and

cloud scenarios, at different JPEG compression qualities. Last

column refers to end-to-end delay in vehicle-to-edge/cloud

scenario.

A breakdown of average end-to-end delays for different

compression qualities is displayed in Fig. 3. In all cases,

compression and decompression have a negligible impact on

the overall delay. As expected, network transmission increases

with the amount of data to be transmitted. Inference times

are constant for a given platform since the same model and

input resolution are considered. In terms of end-to-end delay,

all compression qualities are viable for real-time operation at

20Hz on both platforms. The next section will investigate how

compression impacts detection quality.

0 10 20 30 40 50
End-to-End delay (ms)

JPEG-80

JPEG-30

JPEG-10

Compression Network Decompression Inference

(a) Car-to-Edge (large model, 640× 640 input).

0 10 20 30 40 50
End-to-End delay (ms)

JPEG-80

JPEG-30

JPEG-10

(b) Car-to-Cloud (large model, 1280× 1280 input).

Fig. 3: Breakdown of average end-to-end delay (ms) into

compression overhead, network transfer, and inference times.

B. Analyzing detection quality

In order to obtain a complete picture of detection quality,

measuring only Precision and Recall is insufficient. We follow

the object detection literature and compute the Average Preci-

sion (AP), which is the area below the Precision-Recall curve.

A detection is considered a true positive if its Intersection-

over-Union (IoU) with a ground truth bounding box exceeds

50%. In order to derive a single metric for all classes, per-

class APs are averaged to obtain the Mean Average Precision

(mAP).

As already discussed, the end-to-end delay can be signifi-

cantly reduced using JPEG compression. However, excessive

compression affects detection quality, degrading the mAP. This

section aims to determine the best trade-offs between detection

quality and end-to-end delay. These trade-offs are illustrated

in Fig. 4.

As expected, local operation is the fastest in terms of

latency, and obtains 64% mAP. As we can see from Fig. 4,

the combination of hardware and model of the edge platform

either leads to worse results in the JPEG-30 case (62% mAP)

and slightly better than Local in the JPEG-80 case (67%

mAP). The end-to-end delays are 40.13 ms and 44.54 ms

respectively. The Edge scenario examined here is therefore

not advantageous over offloading to the cloud device. The use

of better edge hardware specifically designed for mid-power

inference rather than a traditional consumer GPU could most

likely result in more competitive performance from the edge

platform. On the other hand, the cloud platform is interesting

since it offers better performance with both JPEG-30 and

JPEG-80, with 69% and 80% mAP respectively. Meanwhile,

the end-to-end delays are kept under 50ms, respecting the

20Hz constraint. Although compression is necessary for real-

time operation on edge and cloud platforms, we observe its

negative impact on detection quality. At extreme compression

levels, remote detection mAP can drop below local perfor-

mance while taking longer, rendering the offloading harmful.

We also evaluate the detection quality separately for the

three classes of interest: pedestrians, vehicles and traffic lights.

The purpose of this evaluation is to understand the impact of

compression on different classes. The results are depicted in

Table V. We observe that compression has a disproportionate

impact on AP for classes that are typically smaller in scale.

Indeed, when enabling JPEG-80 compression, AP decreases

by −16% for pedestrians and by −4% for traffic lights, while

vehicles see a +2% AP increase. This is not surprising, since

JPEG compression artifacts will impact smaller objects more

than larger ones. Pedestrians are rarer in the dataset compared

to traffic lights, and their appearance also varies much more.

These conditions are challenging for object detectors.

V. CONCLUSION AND FUTURE WORK

In this work, we have explored the possibility of real-

time remote object detection. Although larger models perform

better, they also require higher computational power. Con-

sidering cost and power constraints in autonomous vehicles,

the very best models cannot run locally in real-time. To

solve this problem, we have proposed different strategies to



0 20 40 60 80 100
End-to-end-delay (ms)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
ea

n 
Av

er
ag

e 
P

re
ci

si
on

 (m
A

P
)

Local (small)
Edge (large)
Cloud (large high-res)

JPEG-10
JPEG-30
JPEG-80
No compression

Fig. 4: Trade-off between mean average precision (mAP)

and end-to-end delay for different platforms and compression

qualities. The end-to-end delay correspond to the total of

compression, network, decompression, and object detection

inference delays.

Compression

quality
Platform Pedestrian Vehicle Traffic light

No compression
Local 0.30 0.79 0.80
Edge 0.36 0.81 0.82
Cloud 0.81 0.86 0.89

JPEG-80
Edge 0.41 0.83 0.78
Cloud 0.65 0.88 0.85

JPEG-30
Edge 0.35 0.77 0.74
Cloud 0.43 0.84 0.81

JPEG-10
Edge 0.23 0.73 0.55
Cloud 0.24 0.78 0.62

TABLE V: Per-class AP for different compression qualities

and platforms. The input resolutions are 640×640 for the local

and edge platforms, and 1280×1280 for the cloud model.

offload object detection to edge or cloud devices using C-

V2X. We have compared these strategies in terms of their

detection quality and compliance with end-to-end latency

requirements. To evaluate the proposed strategies, we have

generated a synthetic dataset and have trained different variants

of the YOLOv5 architecture. Using an end-to-end 5G network

simulation framework, we have measured the network latency

incurred when transferring camera frames for processing on

the edge and cloud. We have also analysed how the use of

heavy JPEG compression can reduce the frame size by up to

98% to enable real-time remote processing. Our experimental

results show that excessive compression affects the detection

quality compared to raw frames, particularly for the pedestrian

class. We show that models with adequate compression can

be run in real-time on the cloud while outperforming local

detection performance.

Future work will focus on testing the offloading strategies in

different driving environments. Since local perception is still

needed as a fallback to cope with bad connectivity, we plan

on investigating the impact of mode switching between local

and remote processing on detection quality and latency.

ACKNOWLEDGMENTS

This work is supported by the Fonds National de la

Recherche of Luxembourg (FNR), under AFR grant agreement

No 17020780 and project acronym ACDC.

REFERENCES

[1] S. A. Abdel Hakeem, A. A. Hady, and H. Kim, “5g-v2x: Standardization,
architecture, use cases, network-slicing, and edge-computing,” Wireless

Networks, vol. 26, no. 8, pp. 6015–6041, 2020.
[2] J. B. Jocher Glenn, Ayush Chaurasia and A. Stoken, “Yolov5 (2020),”

https://github.com/ultralytics/yolov5., Accessed 10 July 2022.
[3] C.-M. Huang and C.-F. Lai, “The mobile edge computing (mec)-based

vehicle to infrastructure (v2i) data offloading from cellular network to
vanet using the delay-constrained computing scheme,” in 2020 Interna-

tional Computer Symposium (ICS). IEEE, 2020, pp. 1–6.
[4] A. Islam, A. Debnath, M. Ghose, and S. Chakraborty, “A survey on

task offloading in multi-access edge computing,” Journal of Systems

Architecture, vol. 118, p. 102225, 2021.
[5] M.-a. E. Computing, “Framework and reference architecture, etsi gs mec

003, rev. 2.2. 1, dec. 2020.”
[6] M. A. Khan, E. Baccour, Z. Chkirbene, A. Erbad, R. Hamila, M. Hamdi,

and M. Gabbouj, “A survey on mobile edge computing for video
streaming: Opportunities and challenges,” IEEE Access, 2022.

[7] G. Nardini, G. Stea, A. Virdis, and D. Sabella, “Simu5g: a system-level
simulator for 5g networks,” in SIMULTECH 2020. INSTICC, 2020.

[8] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5g mobile edge computing:
architectures, applications, and technical aspects,” IEEE Communica-

tions Surveys & Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021.
[9] S.-L. C. Tsao, “Enhanced gtp: an efficient packet tunneling protocol for

general packet radio service,” in ICC 2001. IEEE International Confer-

ence on Communications. Conference Record (Cat. No. 01CH37240),
vol. 9. IEEE, 2001, pp. 2819–2823.

[10] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. CVPR 2001,
vol. 1, 2001, pp. I–I.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), vol. 1, 2005, pp. 886–893
vol. 1.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 580–587.

[13] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on

Computer Vision (ICCV), 2015, pp. 1440–1448.
[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–
1149, 2017.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision –

ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham:
Springer International Publishing, 2016, pp. 21–37.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.
[17] M. Ehrlich, L. Davis, S.-N. Lim, and A. Shrivastava, “Analyzing

and mitigating jpeg compression defects in deep learning,” in 2021

IEEE/CVF International Conference on Computer Vision Workshops

(ICCVW), 2021, pp. 2357–2367.
[18] S. Dodge and L. Karam, “Understanding how image quality affects deep

neural networks,” in 2016 Eighth International Conference on Quality

of Multimedia Experience (QoMEX), 2016, pp. 1–6.
[19] R. Yu, D. Yang, and H. Zhang, “Edge-assisted collaborative perception

in autonomous driving: A reflection on communication design,” in 2021



IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2021, pp.
371–375.

[20] H. Vanholder, “Efficient inference with tensorrt,” in GPU Technology

Conference, vol. 1, 2016, p. 2.
[21] G. A. Kovács and L. Bokor, “Integrating artery and simu5g: A mobile

edge computing use case for collective perception-based v2x safety
applications,” in 2022 45th International Conference on Telecommuni-

cations and Signal Processing (TSP). IEEE, 2022, pp. 360–366.
[22] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based

computation offloading and resource allocation for mec,” in 2018 IEEE

Wireless communications and networking conference (WCNC). IEEE,
2018, pp. 1–6.

[23] A. Belogaev, A. Elokhin, A. Krasilov, E. Khorov, and I. F. Akyildiz,
“Cost-effective v2x task offloading in mec-assisted intelligent transporta-
tion systems,” IEEE access, vol. 8, pp. 169 010–169 023, 2020.

[24] E. E. Marvasti, A. Raftari, A. E. Marvasti, Y. P. Fallah, R. Guo, and
H. Lu, “Feature sharing and integration for cooperative cognition and
perception with volumetric sensors,” preprint arXiv:2011.08317, 2020.

[25] E. Ye, P. Spiegel, and M. Althoff, “Cooperative raw sensor data fusion
for ground truth generation in autonomous driving,” in 2020 IEEE 23rd

International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2020, pp. 1–7.

[26] F. Hawlader and R. Frank, “Towards a framework to evaluate cooperative
perception for connected vehicles,” in 2021 IEEE Vehicular Networking

Conference (VNC), 2021, pp. 36–39.
[27] J. Ren, Y. Guo, D. Zhang, Q. Liu, and Y. Zhang, “Distributed and

efficient object detection in edge computing: Challenges and solutions,”
IEEE Network, vol. 32, no. 6, pp. 137–143, 2018.

[28] M. Ahmed, S. Raza, M. A. Mirza, A. Aziz, M. A. Khan, W. U. Khan,
J. Li, and Z. Han, “A survey on vehicular task offloading: Classification,
issues, and challenges,” Journal of King Saud University-Computer and

Information Sciences, 2022.
[29] A. Ndikumana, K. K. Nguyen, and M. Cheriet, “Age of processing-

based data offloading for autonomous vehicles in multirats open ran,”
IEEE Transactions on Intelligent Transportation Systems, 2022.

[30] A. Varga and R. Hornig, “An overview of the omnet++ simulation

environment,” in 1st International ICST Conference on Simulation Tools

and Techniques for Communications, Networks and Systems, 2010.
[31] M. Farasat, D. N. Thalakotuna, Z. Hu, and Y. Yang, “A review on 5g

sub-6 ghz base station antenna design challenges,” Electronics, vol. 10,
no. 16, p. 2000, 2021.

[32] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “Simu5g–an
omnet++ library for end-to-end performance evaluation of 5g networks,”
IEEE Access, vol. 8, pp. 181 176–181 191, 2020.

[33] H. Xu, S. Liu, G. Wang, G. Liu, and B. Zeng, “Omnet: Learning
overlapping mask for partial-to-partial point cloud registration,” in
Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2021, pp. 3132–3141.
[34] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane, and M. Guizani,

“Multi-access edge computing: A survey,” IEEE Access, vol. 8, pp.
197 017–197 046, 2020.

[35] J. Winick and S. Jamin, “Inet-3.0: Internet topology generator,” Techni-
cal Report CSE-TR-456-02, University of Michigan, Tech. Rep., 2002.

[36] Z. Ali, S. Lagén, L. Giupponi, and R. Rouil, “3gpp nr v2x mode 2:
overview, models and system-level evaluation,” IEEE Access, 2021.

[37] R. Frank and F. Hawlader, “Poster: Commercial 5g performance: A v2x
experiment,” in 2021 IEEE Vehicular Networking Conference (VNC).
IEEE, 2021, pp. 129–130.

[38] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios,
and J. Zhang, “Overview of millimeter wave communications for fifth-
generation (5g) wireless networks—with a focus on propagation mod-
els,” IEEE Transactions on antennas and propagation, vol. 65, no. 12,
pp. 6213–6230, 2017.

[39] J. Liu and Q. Zhang, “To improve service reliability for ai-powered time-
critical services using imperfect transmission in mec: An experimental
study,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9357–9371,
2020.

[40] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[41] P. repository, “Libjpeg-turbo,” https://github.com/libjpeg-turbo/libjpeg-

turbo, Accessed 01 November 2022.


