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Abstract—Swarms of Unmanned Aerial Vehicles (UAVs) are a
key technology to support communication in many harsh environ-
ments where fixed infrastructures (e.g., 5G) are disrupted or not
available. However, the fast mobility and highly dynamic network
topology pose unique challenges and require the development of
novel multi-hop routing protocols. Previous work in this direction
extends geographical protocols, or adapts approaches designed
for Mobile Ad-hoc NETworks (MANETs), rarely taking full
advantage of UAV capabilities. In this paper we introduce a novel
data offloading approach, namely Stop & Route, that exploits
the device controllable mobility to facilitate network routing.
The swarm of UAVs performs data offloading synchronously and
recurrently. At fixed intervals of time, the swarm interrupts the
sensing mission (stop) and moves, as less as possible, to build
a connected formation to the base station and offload the data
(route). We provide both centralized solutions — assuming a long-
range control channel — and a distributed solution — working
in the absence of a control channel. By means of extensive
simulations we show that our proposals outperform state-of-the-
art solutions, decreasing the time taken to build a connected
formation of about 25% and increasing the time spent on sensing
of 14%.

Index Terms—UAVs, Drones, routing, data offloading, FANETs

I. INTRODUCTION

The past few years have witnessed an unprecedented prolif-
eration of Unmanned Aerial Vehicles (UAVs) in people’s daily
lives. Thanks to their increasing capabilities and moderate cost,
the use of UAVs has expanded to uncountable application
scenarios, from last-mile delivery to precision agriculture,
border patrolling, and many others [1]–[3].

The use of small multi-rotor UAVs in swarm formations has
attracted particular attention because they are easy to assemble
and quickly deployable. They are the technology of reference
in monitoring critical environments where the existing commu-
nication infrastructure is damaged or knocked off. Due to their
power limitations, however, small UAVs cannot rely on high
data-rate long-range communications (e.g., 5G) to offload the
collected data. In such scenarios, UAVs are typically required
to navigate to the base station every time they need to offload
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monitoring data. As a consequence, they suffer fast draining
of their batteries, which limits the monitoring capabilities of
the network and shortens its lifetime.

One way to address these limitations is to allow the UAVs of
the swarm to exploit multi-hop communication paths to deliver
data to the base station. However, when deployed over large
areas, the monitoring swarm may experience temporary losses
of connectivity. The necessity to establish multi-hop paths for
data delivery brings up the need to address the connectivity
problem, and design efficient routing algorithms to deliver data
packets along the swarm network. To jointly tackle both the
connectivity and routing issues we propose Stop & Route,
an innovative algorithm that periodically creates connected
formations of the UAV network. Once attained a connected
formation (STOP action) the UAVs can deliver their monitored
data to the base station, through an efficiently selected routing
path (ROUTE action).
Stop & Route lets the monitoring swarm move quickly

upon the need, to form a connected network topology to
deliver data. Thanks to its movement efficiency, it allows the
network to spare communication time in favor of more device
availability for monitoring and sensing tasks.

The objective of Stop & Route is to build the most
efficient formations starting from any monitoring deployment,
so as to maximize the minimum residual energy of the UAVs
of the swarm, thus maximizing the network availability for the
mission tasks and its lifetime.

Throughout the paper, we refer to the formation obtained
during a stop phase as a connected offloading formation. Stop
& Route guides the UAVs to build connected offloading
formations in two modalities. The first allows for centralized
coordination of the swarm. It is based on the assumption that
each UAV is equipped with a long-range transmitter whose
data rate, though very limited, is sufficient to establish a
control channel with the base station. Through the control
channel, the UAVs send and receive the necessary messages to
periodically construct the desired connected formations, in a
centralized manner. In centralized scenarios, the UAVs realize
a connected formation based on the reception of a trigger
message from the base station, hereafter called the offloading
trigger.

The second modality, instead, considers a distributed exe-
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cution of the algorithm activities. It relaxes the assumptions
on communication range and considers UAVs that are only
equipped with short-range communication devices, i.e. the
swarm works without any control channel. In this scenario,
the network devices only rely on a local view of the achieved
deployment while moving to build a connected formation.
To coordinate their movements and schedule the algorithm
phases, the devices adopt a loosely synchronized clock.

The Stop & Route algorithm provides an iterative ex-
ecution of the following activities. The first is the mission
activity: the UAVs execute their mission tasks, moving along
the area to gather sensing data related to targets of interest.
Examples of sensing applications include monitoring of large
infrastructures such as roads, railways and bridges to gather
data about the condition of these structures. Or post disaster:
like earthquakes, hurricanes or flooding, where they can be
used to monitor the damage, and help with post-disaster recov-
ery. Upon reception of the data offloading trigger (centralized
execution) or periodically (distributed execution), the UAVs
execute a second activity, i.e., they build a connected offload-
ing formation to establish communication paths with the base
station. Once connected, the UAVs deliver the monitored data
and resume their monitoring tasks.

The repeated execution of the two activities continues until
the end of the network lifetime, that is, when the battery of
the last available drone runs out of power and it must be
recharged at the recharging station. The original contributions
of this paper are the following:

• We define and provide a Mixed Integer Linear Pro-
gramming (MILP) formulation of the Optimal Connected
Offloading problem to allow the coordination of a UAV
swarm for communication-constrained sensing missions.

• We provide two polynomial-time centralized solutions,
Greedy Assignment Algorithm (GAA) and Tree Contrac-
tion Algorithm (TCA), to efficiently solve the Connected
Offloading problem. We theoretically analyze the com-
plexity of the two algorithms and give a performance
bound on the maximum amount of distance traveled by
the UAVs under the use of TCA.

• We provide a polynomial-time, distributed solution,
called Distributed Gathering Algorithm (DGA), based
on a loose device synchronization, and a parametric
discretization of the area of interest.

• We perform extensive simulations to compare Stop &
Route with state-of-the-art solutions. The experiments
highlight that Stop & Route outperforms previous
approaches by promptly providing connected formations
that ensure lower formation times, in favor of higher
availability for the mission, and longer network lifetime.

II. RELATED WORK

The problem of exploring an area of interest with sensor
networks gained a lot of attention in the literature. In order to
minimize the accumulated age of the information during the

monitoring activity, the problem is augmented with commu-
nication requirements. We focus on exploration pursued with
multi-robots, in particular, UAVs in communication-restricted
contexts. Most of the works in the literature focus on terrestrial
robots, and they cannot directly be applied to UAV squads.
The latter have unconstrained mobility, different energetic
constraint, and requirements. For example, the amount of
energy spent by UAVs in a still hovering position is not
negligible as it would be for terrestrial robots. In this work,
we focus on event-based, periodic connectivity, which imposes
UAVs to offload their discoveries to the base station upon
periodic offloading triggers. To the best of our knowledge,
none of the works in the state-of-the-art addressed the same
problem for UAV networks.

In [4] a taxonomy of the communication requirements
in multi-robots exploration systems is proposed. Some ex-
ploration missions require continuous connectivity, that is
the squad operates information gathering while remaining in
partial or global communication, typically including the base
station. An example of this kind is that of real-time streaming
of monitoring video for human inspection at the base station.
[5]–[12]. Other works require event-based connectivity in
which UAVs regain partial or global connection with the
squad, periodically or triggered by specific events [13]–[19].
Some approaches exploit temporary pairwise connectivity,
intermittently present among devices [15], [19].

Dutta et al. [12] consider the problem of information
collected from a polygonal environment using a multi-robot
system, subject to continuous connectivity constraints. Banfi
et al. [20] design exploration strategies that allow robots to
coordinate with teammates to form such a network in order to
satisfy recurrent connectivity constraints that is, data must be
shared with the base station when making new observations
at the assigned locations. Banfi et al. [21] provide a solution
by modeling the signal’s distribution with a Gaussian Process
exploiting online different sensing strategies to coordinate and
guide robots during data acquisition. Reich et al. [6] explore
distributed mechanisms for maintaining the physical layer con-
nectivity of a mobile wireless network while still permitting
significant area coverage. Bartolini et al. [22] consider critical
scenarios with a squad of UAVs requiring to autonomously
inspect an area of interest under uncertainty of time and
location of target events ensuring maximum coverage of event
monitoring with minimum average inspection delay. Banfi
et al [13] study effective multi-robot exploration strategies
under recurrent connectivity by considering a centralized and
asynchronous planning framework. They provide both the
problem formalization of selecting the optimal set of locations
robots should reach, the exact formulation to solve it and an
approximation algorithm to obtain efficient solutions with a
bounded loss of optimality. Tan et al. [5] present two heuristics
based on virtual forces, with the goal to maximize sensing
coverage and also guarantee continuous connectivity at the
cost of a small moving distance. The heuristics do not need
any knowledge of the field layout. The latter two works are
used as a comparison in the experimental analysis.



III. SYSTEM MODEL AND ASSUMPTIONS

We consider the scenario in which a swarm of UAVs
denoted with the set U = {u1, . . . , um}, is cooperatively
pursuing information-gathering over an area of interest. We
denote with dmax the longest distance between two points
within the area. The control base station, denoted by σ, is
placed within the area for squad coordination and acts like
a sink for the information gathered from the squad. Every
UAV is equipped with a GPS module and sensors to bypass
obstacles in the area with ease. We denote with p(u) ∈ R2

the position of UAV u in space, analogously p(σ) for the base
station. We further denote with bu(t) the available energy of
UAV u at time t, and with β0, β1 the energy consumption
factor per unit of time spent on hovering by the UAVs and
per unit of traveled distance, respectively. We denote by h(u)
the time spent hovering by a UAV u.

As we consider harsh environments we cannot assume the
presence of any reliable long-range communication infras-
tructure, such as 5G. Therefore, to send sensed data to the
base station, the UAVs use short-range radio transceivers (e.g.,
WiFi) over multi-hop routes. This communication channel,
called primary channel, allows communication only between
neighbor nodes, ensuring a high data rate and low energy
consumption. A disk model is adopted, we denote with rcom

the transmission range of UAVs.
In some cases, we consider also the availability of a low

data-rate long range communication technology, such as LoRa,
that allows the transmission of control packets to the entire
network. We call control channel this long-range commu-
nication technology. Both the UAVs and the base station use
this channel to transmit simple commands and coordinate with
each other.

To guarantee periodic information offloading at the base
station, the UAVs stop their monitoring activity when triggered
by the base station through the control channel (offloading
trigger) and gather towards it to route sensing data creating a
connected offloading formation.

Definition III.1 (UAVs Communication). A pair of UAVs ui,
uj is said to be in communication com(p(ui), p(uj)) if and
only if,

1) ‖p(ui)− p(uj)‖ ≤ rcom or
2) ∃uk, com(p(ui), p(uk)) and com(p(uk), p(uj))

Definition III.2 (Connected Offloading Formation). A con-
nected offloading formation f : R2 → R2 is a function
mapping the coordinates of every UAV u ∈ D ⊆ U to new
coordinates f(p(u)) such that com(f(p(u)), p(σ)).

Definition III.3 (Optimal Connected Offloading Formation).
An optimal connected offloading formation f∗ : R2 → R2

upon an offloading trigger at time t, is a coordinates map
such that,

max min
u∈U

bu(t)− β0h(u)− β1‖p(u)− f∗(p(u))‖ (1)

it maximizes the minimum residual energy for the UAVs.

Fig. 1: Control and primary channels in a monitoring mission.

Notice that the UAVs in the swarm reach their target position
f(p(u)) at different times, depending on their starting position
p(u) and traveling speed. Thus the hovering time spent by all
the UAVs waiting for the last UAV to join the formation has
an impact on the solution and will be taken into account in
the optimal formulation presented in the next section.

We study two different ways to build connected offloading
formations. First, we consider a centralized approach in which
the UAVs and the base station are equipped with both the pri-
mary and the control channels. The base station and the UAVs
use the control channel to build the offloading formation: the
base station broadcasts the stop command, the UAVs reply by
sending their positions, and the base station in turn sends the
connected offloading formation. We then consider a distributed
approach in which only the primary channel is available. In
this case, the UAVs have only a partial view of the network
(i.e., the neighborhood), and use their local information to
derive a connected offloading formation in a distributed way.

Figure 1.a, shows a squad of 5 UAVs performing a moni-
toring mission over an area of interest. They are all connected
with the base station through the control channel. Figure
1.b shows neighbor UAVs communicating over the primary
channel. Figure 1.c shows a possible offloading formation, in
which each UAV has an offloading route to the base station.
Data offloading takes place over the primary channel.

IV. OPTIMAL PROBLEM FORMULATION

To obtain optimal connected offloading formations we pro-
pose a solution based on linear programming. We denote by
p̂(u) the decision variable representing the target position of
UAV u to generate a connected offloading formation. We first
constraint the new position of the UAV to stay within the area
of interest,

p̂(u) in AOI ∀u ∈ U (2)

We constraint the points that are reachable with the available
energy as:

‖p(u)− p̂(u)‖ · β1 ≤ bu(t), ∀u ∈ U . (3)

Then, we add a constraint to impose the network connectivity
of the new formation, to allow communication among all
the UAVs and the base station. Let U+ = U ∪ {σ}. To
constraint connectivity between the UAVs and the base station,
we consider that each UAV generates a unit of flow and that the



base station wants to receive m units. Let ŝij be the decision
variable representing the information flow from UAV ui to uj .
We constraint the base station to receive m units of flow as
follows: ∑

i∈U+

ŝiσ = m (4)

and to produce 0 units of flow as follows:∑
i∈U+

ŝσi ≤ 0 (5)

Then, we impose that UAVs generate a flow only towards
their neighbors. We add an auxiliary binary variable γij s.t.
γij = 1 ⇐⇒ ‖p̂(ui)− p̂(uj)‖ ≤ rcom, defined as follows,

‖p̂(ui)− p̂(uj)‖ −M · (1− γij) ≤ rcom

‖p̂(ui)− p̂(uj)‖+M · γij ≥ rcom

γij ∈ {0, 1}
(6)

for each i, j in U+ when M is an upper bound variable.
Then, we impose that the flow is given by:∑

j∈U+

ŝij ≤ γ̂ij ·m, ∀i ∈ U (7)

an edge can have a flow only if the path length between
i and j is less than the communication range. Finally, to
enforce connectivity we impose flow conservation through the
following constraint:∑

j∈U+

ŝij =
∑
j∈U+

ŝji, ∀i ∈ U (8)

which imposes that, for each out-edge from i the flow is
increased by the UAV, only if i and j otherwise. These three
constraints enable the connectivity of the formation.

Let w be the variable representing the maximum
travel time to reach the target point, defined as
w ≥ ‖p(u)− p̂(u)‖/v ∀u ∈ U with v the uniform speed
of the UAVs. Thus the hovering time for a UAV is defined as

h(u) = w − ‖p(u)− p̂(u)‖/v (9)

We finally constraint ω to be least residual energy as:

ω ≤ bu(t)− β0h(u)− β1‖p(u)− p̂(u)‖, ∀u ∈ U (10)

The objective function is as follows:

maxω (11)

We approximate the euclidean distance, which is not linear to
compute, using the approximation function proposed by [23].

V. CENTRALIZED HEURISTICS

The MILP formulation presented in the previous section
is solvable in polynomial time. However, in many scenarios,
the computational time for an optimal connected offloading
formation is unacceptable. Figure 3 shows an improvement in
computational time that goes from 3 to 4 orders of magnitude
for the heuristics w.r.t. the MILP solution. This problem is
exacerbated by the fact that during a mission the UAVs are

Algorithm 1: Greedy Assignment Algorithm (GAA)
Input: A set of UAVs D(t) ⊆ U under offloading trigger at time t
Output: An Connected Offloading Formation f

1 f(p(u))← ∅ ∀u ∈ D(t)
2 R← F (Γ({σ}))
3 while ∃u ∈ D(t) s.t. f(p(u)) = ∅ do
4 (u∗, r∗)← arg max

r∈R, u∈D(t)
Θ(D(t)− {u}, F (R ∪ Γ({r})))

5 R← R ∪ F (Γ(r∗))
6 D(t)← D(t)/{u∗}
7 f(p(u∗))← r∗

8 return f

called to offload data several times, thus requiring the base
station to calculate a new optimal formation each time. After
sending their positions to the base station the UAVs have
to wait (in hovering) the time needed by the base station
to calculate the optimal formation online. This amount of
time not only has a catastrophic impact on the delay to build
the offloading formation, but also requires substantial energy
consumption due to UAVs hovering. To face this problem, we
propose efficient heuristics and evaluate their computational
complexity.

A. Greedy Assignment Algorithm

We first propose the Greedy Assignment Algorithm (GAA).
Algorithm 1 illustrates GAA formally. It considers the set
of UAVs, D(t) = {u ∈ U | bu(t) > 0} having a sufficient
residual battery to go back to the base station for recharging.
UAVs that deplete their battery, go back to the base station
and are no longer available for the monitoring mission. We
consider a regular hexagonal tiling of the area of interest and
refer to the centers of the hexagons as rendezvous points in
R ⊂ R2. This set is such that taken two rendezvous points
belonging to any two adjacent tiles r1, r2 ∈ R, com(r1, r2).
The main idea of GAA is to iteratively select for each UAV a
rendezvous point that allows connection with the base station
and has the least impact on the battery. First, we define
Θ(D(t), R) the residual energy of the least energetic UAV of
those in D(t) available at time t, after reaching the rendezvous
point in R maximizing the residual energy, formally:

Θ(D(t), R) = min
u∈D

max
r∈R

bu(t)−‖p(u)− p(r)‖ · β1 (12)

Let X ⊆ R be a set of rendezvous points. We denote by
Γ(X) ⊆ R the set of rendezvous points adjacent to those in
the set X . We define F (X) ⊆ R the frontier of X , to the
set of rendezvous points lying on the perimeter of the convex
hull induced by the rendezvous points in X . GAA iteratively
builds the connected offloading formation f , by mapping at
each while loop iteration a UAV u∗ to a target rendezvous
point r∗, chosen in the neighborhood of connected rendezvous
points.

Proposition V.1. The set of candidate rendezvous points at
each iteration is upper bounded by m.

Proof. The number of rendezvous points in R is upper bounded
by the cardinality of the union of the adjacent hexagonal



tiles of the UAVs positions and of the base station, that is
O(6(m+ 1)) = O(m).

Theorem V.2. GAA computational complexity is O(m5).

Proof. Referring to Algorithm 1, the while loop iterates until
all the UAVs are not mapped to a target rendezvous point.
A map happens once at each iteration, the while loop lasts
for O(m) iterations. The Θ function is called for every
candidate rendezvous point among the O(m) in the growing
frontier R (see Proposition V.1), and for every UAV among the
O(m). This function has O(m2) computational complexity. It
follows that the overall computational complexity of GAA is
polynomial in the number of UAVs and is O(m5).

B. Tree Contraction Algorithm

To lift the assumption of map discretization and improve
time complexity, we propose the Tree Contraction Algorithm
(TCA). Algorithm 2 illustrates TCA formally. It consists in
contracting the edges of a tree, by moving the UAVs along
the most convenient route toward the base station and allowing
communication through the primary channel with the whole
squad. The algorithm computes the Delaunay graph G =
(P,E,W ), derived from the points p(u) ∀u ∈ D(t) ∪ {σ},
with W : (n1, n2) ∈ E → ‖p(n1) − p(n2)‖. Then the
algorithm derives from G the Euclidean Minimum Spanning
Tree (EMST) T = (P,E′) which inherits from the Delaunay
graph the property of geometric k-spanners. A geometric k-
spanner is a graph in which all the path weights are upper
bounded by k times the spatial distance between the path
endpoints. As Theorem V.3 illustrates, this property is useful
to have an upper bound on the distance traveled by the UAVs
[24]. It follows an edges contraction phase, where the edges
of T are made shorter to match the connection requirements
through the primary channel. The shrinking process starts
from the root of the tree T (representing the base station)
to the leaves and proceeds iterating over the nodes of the
tree sorted in a Breath First Search (BFS) fashion. For every
UAV in r ∈ P , representing UAVs a new target position is
computed. The new position is relative to the parent node in
the tree parent(r) ∈ P . In particular the angle α between r
and parent(r) is used to determine the new position the UAV
should reach to gain connectivity, i.e., the coordinates of the
parent plus the dimension of the minimum communication
range between r and its parent. Finally, γ ∈ (0, 1] can be
used to uniformly reduce communication range to guarantee
a much stabler communication.

Theorem V.3. The distance traveled by a UAV u ∈ D(t)
to connect to the base station σ according to a connected
offloading formation produced by TCA is upper bounded by
1.998 · ‖p(u)− p(σ)‖ − γrcom · ρ(u, σ, T ).

Proof. The EMST T computed by TCA guarantees that the
path linking each node with the base station is the shortest. The
EMST derived from the Delaunay graph is a geometric span-
ner. In such graphs the maximum distance between two nodes
n0, n1 is no greater than 1.998 · ‖n0−n1‖ [25]. This property

Algorithm 2: Tree Contraction Algorithm (TCA)
Input: A set of UAVs D(t) ⊆ U under offloading trigger at time t
Output: An Connected Offloading Formation f

1 P ← {p(u) ∀u ∈ D(t) ∪ {σ}}
2 G(P,E,W )← DELAUNAY(P )
3 T (P,E′)← KRUSKAL(G)
4 P ← BFS(T )
5 f(p(u))← p(u) ∀u ∈ D(t)

6 for r ∈ P do
7 if r 6= σ then
8 if ‖p(r)− p(parent(r))‖ > γrcom then
9

α← arctan

(
∆Y (r, parent(r))
∆X(r, parent(r))

)
10 f(p(r))← p(parent(r)) + γrcom · 〈cos(α), sin(α)〉
11 return f

is maintained in the EMST. In the TCA contraction phase of
the EMST, any path from u to σ having ρ(u, σ, T ) number of
hops, is contracted in one of length γrcom · ρ(u, σ, T ) units
of distance. Since we place UAVs belonging to the same path
exactly at distance γrcom the one from the other, that distance
can be excluded from the overall count because it will not be
traveled by any UAV.

Theorem V.4. TCA computational complexity is O(m logm).

Proof. The Delaunay graph G = (V,E,W ) can be computed
in O(m logm). Kruskal’s algorithm for the EMST runs in
O(|E| log |E|). Since the Delaunay graph is a planar graph,
the upper bound on the number edges is |E| ≤ 3m−6, as given
by Euler’s formula. It follows that Kruskal’s algorithm runs in
O(m logm). The BFS on the EMST runs in linear time O(m).
The shortening procedure requires O(m) iterations. Hence the
overall computational complexity is O(m logm).

VI. DISTRIBUTED HEURISTICS

We now consider a scenario in which the long-range con-
trol channel is not available and communication is possible
only among neighboring UAVs by means of a short-range
primary channel. Also, the base station can communicate only
with neighboring UAVs. In this scenario, we propose two
distributed algorithms that allow building a connected multi-
hop offloading formation leveraging only partial information
about the network.

Two types of control packets are exchanged to build a local
network view. For neighborhood discovery, each UAV period-
ically sends an hello packet, containing, among other things,
its identifier, time of creation, current position, and if it is
connected with the base station or not. The base station instead
notifies its presence by periodically sending heartbeat packets.
When a UAV receives a heartbeat packet, it rebroadcasts it
to all the neighbors to notify its connection with the base
station. We assume that the UAVs are lazy-synchronized and at
every ∆ interval they stop their monitoring activity and gather
towards the base station to route sensing data by creating a
connected offloading formation.



Fig. 2: ρ-grid rendezvous placement

A. Distributed Gathering Algorithm

Our Distributed Gathering Algorithm (DGA) is based on
predefined rendezvous points and leader-follower strategy.
We denote with R the set of predefined rendezvous points
where the UAV traffic is conveyed to facilitate the creation
of the connected formation. When a UAV u has to build a
connected formation, it moves towards the rendezvous point
that is closest to it and geographically closer to the base
station. When u has reached the rendezvous point, three cases
may happen. First, u is a neighbor of the base station or of
a connected UAV. In this case, u has reached its point for
data offloading; it remains there and broadcasts any hearth-
beat packet it receives to notify its connection with the base
station. Second, u is a neighbor of a non-connected UAV.
In this case, u becomes a follower of this leader neighbor,
meaning that u will follow the leader neighbor in case this
starts moving. Third, u is isolated. Then u moves towards
the next rendezvous point, and checks again which of the
three previous cases is verified. Algorithm 3 presents the DGA
algorithm. We consider a rendezvous placement called ρ-grid
that is derived from a hexagonal tiling, in which all hexagons
have uniform radius ρ (see Figure 2).

Algorithm 3: Distributed Gathering Algorithm (DGA)
Input: A UAV u running the algorithm
Output: Action for the UAV u

1 Γ(u){← u′ ∈ U : com(u, u′) }

2 if |Γ(u)| > 0 then
3 if ∃u′ ∈ Γ(u) | com(u′, σ) then
4 stop
5 else
6 leader ← arg minu′∈Γ(u)‖p(u′)− p(σ)‖
7 follow leader
8 else
9 if com(u, σ) then

10 stop
11 else
12 Π← {r ∈ R | ‖p(r)− p(σ)‖ < ‖p(u)− p(σ)‖
13 reach arg minr∈Π‖p(r)− p(u)‖

VII. PERFORMANCE EVALUATION

We now evaluate our proposed algorithms through simu-
lations and compare them with state-of-the-art approaches.

We use a custom destined discrete-time simulator written in
Python for experimenting with routing protocols and path
planning for UAV networks. We run our tests on an i9-10920X
12 core (24 thread) up to 4,60 GHz and 256 GB RAM.

Scenarios. For all tests, we consider an area of interest of 1500
m x 1500 m, with the UAVs moving according to a random
way-point mobility model, at a constant speed of 8 m/s under
constant energy consumption factors β0, β1. The base station
is located in the middle of the area and each simulation starts
with UAVs placed in random positions. In our experiments we
let the number of UAVs vary from 5 to 25. We consider two
scenarios.

In the first scenario, we evaluate centralized heuristics.
UAVs are equipped with both primary and control channels,
having communication ranges 140 m and 6 km respectively.
Connected offloading formations are computed according to
the optimal formulation OPT (see Section IV), GAA and TCA
(see Section V) and the Asynchronous Multi-robot Exploration
Algorithm [13]. The latter is a topology formation algorithm
for terrestrial sensor networks. It exploits Steiner trees to link
a set of candidate locations to the base station using robots as
relays. The new positions are computed iteratively depending
upon the number of nodes to connect. For short we refer to it
as AME. For the optimal solution, we used the Gurobi solver
[26].

In the second scenario, UAVs are equipped only with the
primary channel. Here we compare DGA (see Section VI)
with Connectivity-Preserved Virtual Force (CPFV) and its
floor-based scheme (FloorCPVF) [5]. The latter are two state-
of-the-art algorithms for decentralized search for connected
offloading formations. They consider mobile sensors moving
to re-establish global connectivity with the base station with
the goal of maximizing sensing range and residual energy,
with total communication as a constraint. Disconnected mobile
sensors move toward the base station according to a lazy
movement strategy, which consists in getting closer to it and
halting for a small amount of time recurrently with the hope
of meeting other sensors; stopping when it finds a connected
sensor. The virtual forces method is then applied to maximize
area coverage. The FloorCPVF variant imposes fixed corridors
for the sensors to follow, that are placed in such a way as to
limit sensors’ overlap.

Metrics. We measure the performance of the algorithms in
terms of:

Sensing Time (seconds) defined as the average time spent
by UAVs in sensing during the whole mission. It includes the
time to reach targets plus the time to inspect them.

Computational Time (seconds) describes the time needed to
compute the connected topology, it is computed only for the
centralized solutions.

Building Time (seconds) is the time required for the UAVs
to build a connected offloading formation. In centralized ap-
proaches, it is measured as the amount of time passing between
when all the UAVs received their offloading coordinates, and
when they are all connected. In distributed approaches, the



Fig. 3: Computational Time (seconds) for centralized ap-
proaches

building time is measured as the time passing between when
the UAVs stop their sensing activity and when they are all
connected.

A. Results for Centralized Algorithms

We recall that in centralized approaches the base station has
a global view of the network. When it triggers data offloading,
it calculates the connected offloading formation and sends the
coordinates to the UAVs, which in the meantime have to hover
on their position. The time required to calculate the offloading
formation is thus a critical aspect as it determines the waiting
time for the UAVs. Once received the coordinates, they can
move toward the indicated point. When data offloading is
completed, each UAV can return to perform sensing.

Figure 3 shows the computational time required by cen-
tralized approaches to calculating the offloading formation.
Results demonstrate that the OPT solution requires long com-
putational time even for small squads of UAVs (from 18.6s
in the case of 8 UAVs up to 64.2s for 25 UAVs on average),
making its online applicability very limited. Our GAA and
TCA algorithms instead present very low computational time.
TCA for instance is able to calculate an offloading formation in
0.0036s in the case of 25 UAVs, with a 10-fold improvement
with respect to the AME algorithm.

The significant computational time reduction does not cause
any performance deterioration. Figure 4 shows that both GAA
and TCA are faster than AME in building the offloading
formation independently of the number of UAVs: with TCA
the UAVs build a formation in only 85s in the case of 5
UAVs, while AME takes over than 120s for the same number
of UAVs. The building time decreases significantly when the
number of UAVs increases: TCA employs less than 50s when
the squad is composed of 25 UAVs, decreasing the building
time of 38% with respect to AME. The OPT is faster than
any other solution but it pays in computational time as seen
before (Fig. 3).

Being faster in offloading operations (with shorter compu-
tational and building time), both GAA and TCA can devote
more time to sensing with respect to AME. Figure 5 shows that
GAA and TCA dedicate 14% and 10% more time respectively
to sensing than AME, while OPT’s performance is dropped
down due to the long computational time.

Fig. 4: Topology building time (seconds) for centralized ap-
proaches

Fig. 5: Sensing Time (seconds) for centralized approaches

Thus, our first set of results clearly shows the benefits of
our TCA algorithm which is faster in calculating and building
a connected formation and hence it can spend more time in
performing sensing.

B. Results for Distributed Algorithms

We now evaluate our distributed DGA-grid algorithm and
compare it with the two state-of-the-art solutions, CPVF and
Floor-CPVF [5]. Figure 6 shows the formation building time
by varying the number of UAVs. CPVF and Floor-CPVF take
more than 120s to build a formation of 5 UAVs, while this
time decreases to 85−90s when the number of UAVs increases
to 25. DGA-grid is always faster than CPVF and Floor-CPVF:
it builds a connected formation of 5 UAVs in 100s and this
time decreases to 60s when there are 25 UAVs in the squad,
achieving a maximum improvement of 25% in case of 8 UAVs.

The time gained while building the connected formation can
be used to perform sensing. Figure 7 shows that DGA-grid
performs a better utilization of mission time as it increases
the sensing time of 7% with respect to CPVF.

VIII. CONCLUSIONS

We presented Stop & Route, a novel approach to han-
dling a squad of UAVs under recurrent connectivity con-
straints. We assume two types of network UAV equipment:
long-range and short-range communication hardware. In the
first scenario, UAVs are equipped with both hardware com-
ponents. In this case, we propose two different centralized
approaches, GAA and TCA, resorting to a central unit to
compute the connected offloading formation starting from the



Fig. 6: Building Time (seconds) for distributed approaches

Fig. 7: Sensing Time (seconds) for distributed approaches

most recent UAV positions. The other scenario instead in-
volves only short-range hardware components. In this scenario,
we provide a decentralized solution, called DGA, to build
the connected offloading formation. Results show that our
proposed algorithms, GAA and TCA, outperform the state-
of-the-art centralized algorithm (AME) reaching up to 29%
and a 33% improvement in building time. We also show that
both our algorithms bring an improvement in sensing time
over the state-of-the-art of about 14% for TCA and 10% for
GAA, reducing the computational time up to one order of
magnitude. Regarding decentralized approaches, we tested the
DGA-grid rendezvous placement. Results show that DGA-grid
improves the performance of the state-of-the-art by about 15%
in building time and 7% in sensing time.
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