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Abstract—The Tactile Internet needs to support multiple
modalities, including haptic data simultaneously, to enable hu-
man and robot interaction in perceived real-time. Compared to
video and audio, haptic data streams require an even lower
delay and more shallow packet loss, which is a challenge for
the underlying networks originally designed to support high
bandwidths by having a large queue to buffer packets. This
raises the need to study queuing management for different
data streams. We examine the performance of CoDel++, which
combines the well-known Controlled Delay (CoDel) protocol
and Priority Queues. We leverage programmable data planes,
which can be programmed with P4. Evaluation results show
that CoDel++ produces superior results for high-priority data
streams, i.e., reducing latency by at least 60% and packet loss
by half compared to individual exploitation of Priority Queuing
or CoDel individually.

Index Terms—Tactile Internet, Buffer Bloat, Active Queue
Management, Congestion Control, P4

I. INTRODUCTION

The Internet has been successfully connecting people across
the globe by delivering many types of data, including audio
and video. Therefore, the Internet has enabled multimedia
applications, such as audio and video streaming and real-time
video conferences. Furthermore, novel applications, such as
teleoperation, allow humans to remotely control robots from a
distance, leveraging audio and video streams as supporting
means. Human adaptability and advanced robot-controlling
algorithm help overcome the discrepancy of interactions due
to latency. However, perceived real-time interactions require
the sense of touch via haptic data streams [1]. It is, however,
very challenging because human brains are significantly more
sensitive to touch stimuli than acoustic and visual ones. An au-
thentic feel during the interaction would require the delivery of
haptic data streams with low latency and extremely low packet
loss. Enabling such interaction via better support of haptic
data streams is the goal of the future Tactile Internet [2]. Such
networks can leverage novel yet mature technologies, such as
software-defined networking and programmable data planes, to
tackle fundamental challenges in computer networking. One of
which is buffer bloat.

Buffering packets at network devices is a standard practice
in networking. The goal is to avoid packet drops at the cost
of increasing dissemination delay. The problem becomes ex-
treme when buffers have a high occupation ratio for extended

periods (so-called buffer bloat), increasing the overall delay
and eventually undermining the buffering role. To tackle the
buffer bloat problem, Active Queueing Management is a well-
known technique that discards packets in a buffer connected to
a network interface controller before this buffer is full, often to
reduce network congestion or improve latency. For example,
the Random Early Detection (RED) algorithm [3] alleviates
congestion by keeping track of the average queue length and
dropping packets prematurely as the buffer nears capacity. The
drawback of RED is centrally on its parameters. Fine-tuning
various parameters is difficult and time-consuming. Further-
more, RED’s complexity can lead to performance degradation.
In a different approach, Controlled Delay (CoDel) [4] aims to
resolve the parameter setting problem and combat the constant
buffer bloat issue. Specifically, CoDel operates like a FIFO
queue where packets are stamped with an entrance time and
sent to the device’s statistical multiplexer upon entering the
switch. The packets are handled in the order of their arrival
[5]. Nevertheless, CoDel applies the same policies for all data
flows, regardless of their differences in delay and packet loss
requirements.

Motivated by this observation, in this study, we focus on un-
derstanding the impacts of CoDel++, combining priority queu-
ing and CoDel to data flows of different priorities. We leverage
the programmable data plane to design packet processing
pipelines, which the P4 language can program. CoDel++ maps
data flows, or slices, into priority levels, leverages the priority
queues at the Traffic Manager, and integrates CoDel at the
Egress. CoDel++ constantly observes the queue status and uses
the corresponding readings to actively drop packets before they
enter the queues based on pre-defined thresholds. We examine
the performance of CoDel++ with CoDel and Priority Queuing
individually and the baseline without any of those techniques.
The performance evaluation on bottleneck topology suggests
that the combination help reduce both delay and packet losses
in congestion phases.

The rest of the paper is structured as follows: Section II
discusses the background and related work. We elaborate on
the methodology in Section III. After presenting the evaluation
results in Section IV, we conclude the paper in Section V.
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II. RELATED WORK

Congestion control is crucial in computer networks. As a
result of the discontinuous nature of Internet traffic, congestion
affects the network edge and core. AQM is performed by the
network scheduler, which uses various algorithms [6] to help
with the congestion problem. However, there were initial reser-
vations about the widespread adoption of AQM policies due to
stability issues. Nevertheless, over time operators worldwide
have started applying AQM algorithms upstream of the ADSL
modem to enhance the user’s quality of experience [7].

Some of the potential treatments for congestion that helped
build our paper will be covered in this section. The tail drop is,
by default, used as a queue management algorithm to control
congestion [8]. It is based on a first-in-first-out (FIFO) queue
that drops arriving packets when the buffer is full. However,
the issue with this algorithm is that the sender starts regulating
its transmission rate only after noticing packet loss (resulting
from buffer overflow). Detecting packet loss can sometimes
take a significant amount of time, and by then, more packets
are dropped due to the sender’s high transmission rates.

To curb the disadvantages of the tail drop algorithm, Floyd
and Jacobson introduced Random Early Detection (RED)
algorithm [3], which operates by using two thresholds: a min-
imum threshold (minth) and maximum threshold (maxth).
No packet is discarded if aql < minth while all packets
after aql > maxth are dropped. If minth < aql < maxth,
then packets are dropped with a probability depending lin-
early on the buffer occupancy [9]. As already mentioned in
the previous section, the limitations of RED are configuring
several parameters for which little guidance is provided and
its dependence on aql that can cause performance issues
during sudden congestion. Even though there have been many
modifications made to the original RED algorithm [10], [11],
[12], these different flavors additionally complicate the process
of RED, thus there continues to be much resistance to its
widespread deployment [13].

Considering the shortcomings of previous AQMs, Nichols
and Jacobson proposed Controlled Delay (CoDel) [4]. Com-
pared to earlier AQMs, CoDel does not employ queue length
as a parameter and instead uses queue delay as an indicator
of congestion. According to [14], CoDel was created to be a
parameterless, simple-to-implement AQM capable of differen-
tiating” good” and” bad” queues, and is insensitive to round-
trip delays, link rates, and traffic loads. CoDel regulates delay
solely within the context of packet-in, packet-out. In addition,
a set point and a state-space controller are utilized to preserve
the algorithm’s state. During the dequeue process, the state-
space controller must assess whether a queue is bad or good
by using the sojourn time and the set point. Sojourn time is
a compelling statistic for traffic congestion. It is calculated
as the difference between the packet’s enqueue and dequeue
timestamp. As congestion grows, this delay per packet will
naturally increase. By utilizing an estimator function, CoDel
enters a dropping state when the observed sojourn duration
exceeds the previously indicated goal set point. CoDel has

achieved great success. It was even introduced in the Linux
kernel in 2012. However, its limitation lies in not enforcing
different and specific rules depending on the QoS needs of
particular applications. Thus, [5] describes an algorithm that
combines CoDel with priority queuing. It assigns and evaluates
priority classes and drops packets based on the Least-Slack-
Time-First scheduling algorithm.

Many researchers even use SDN to resolve the congestion
problem. Through a logically centralized controller, SDN en-
ables simplified access and management of a network’s control
plane. OpenFlow is one of the first widely used protocols for
enabling SDN. However, it has downsides, such as the inability
of Internet service providers to select particular services,
even if not all functions are always required. Additionally,
costs are high, and new OpenFlow versions come up with
different hardware. Considering data plane functionality is not
predetermined by hardware, P4 was developed as an extension
of the OpenFlow protocol that provides higher flexibility
and a possibility to directly influence packet processing [15].
Nevertheless, unlike protocols such as Openflow that already
have a variety of AQM algorithms at their disposal, this is not
generally true for AQM on programmable data plane [16].

Although OpenFlow can already draw on a set of im-
plemented congestion control algorithms, these must first
be implemented on a corresponding P4 target architecture.
Implementing a new proposed algorithm using P4 and the
subsequent evaluation is part of this work. Similar to table
slicing of [17], our P4 code divides flows into network slices
(each owning a queue). While authors of [17] investigate dif-
ferent network slicing techniques and their implementation on
P4 target, the focus of our work is to explore AQM algorithms
(enabled with data plane programming) by using network
slicing for different flows and schedule them according to
their priority class. Priority scheduling is a common way
to differentiate traffic flow inside a network by assigning a
priority class to the packets as it was shown in [18], [5], and
[19].

III. DESIGNING PACKET PROCESSING PIPELINE

This work studies the combined impacts of integrating prior-
ity queuing and CoDel in reducing both packet losses and de-
lays for high-priority data streams. We leverage programmable
data planes, which allow reprogramming the packet processing
pipeline using the P4 programming language. We elaborate
the whole pipeline for packet processing, as illustrated in
Fig. 1, including modifications to incorporate priority queuing
and controlled delay protocols. Since the Traffic Manager
(TM) is nonadjustable due to the current development of P4,
we keep TM unchanged. The main modification occurs in
the Ingress and Egress modules, where we define actions to
incoming packets. We integrate the priority queuing discipline
and CoDel into the Ingress and Egress. In addition, we exploit
registers to convey congestion status at the exit of the traffic
manager in order to filter and drop packets already in the
Ingress section. We modify the Parser and Deparser modules
to define additional fields for packet headers.



Fig. 1. Packet processing pipeline for CoDel++, integrating Priority Queuing and CoDel.

A. Defining Headers and Metadata

This section defines the header and metadata of packets to
be processed by the programmable data plane, which includes
any program-specific metadata associated with the processed
packet and the format of each header within a packet. For
example, listing 1 shows the declaration of standard packet
headers with Ethernet, IPv4, and UDP or TCP that the P4
switches can recognize in this work. Additionally, each packet
is associated with metadata. This user-defined data elaborates
intermediate information generated during the execution of a
P4 program. P4 programs can also retain and change metadata,
as defined in the second part of listing III-A. CoDel user-
defined metadata are inspected and taken from the implemen-
tation by Kundel et al. [20] as well as headers. In addition to
other metadata declarations, the slice ID field has been adopted
from [18]. Metadata for priority queuing contain prepared bit
fields, which can be filled with extra information on congestion
control in each packet. For every slice within the P4 switch,
congestion notifications and queuing metrics are given and
stored in user-defined registers. Their values can subsequently
be connected with each packet via the metadata specified by
the user.

struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
tcp_t tcp;
udp_t udp; }

struct metadata {
codel_t codel;
prio_t prio;
slice_t slice; }

Listing 1. Define headers and additional metadata.

The parser specifies the allowed header sequences within
received packets. It recognizes and extracts specific header
sequences from packets. The parser operates similarly to a
state transition diagram, beginning with the start states and
branching to other states, whose definitions are illustrated in
Listing 2. The parser first extracts the packet’s Ethernet header
in the start state. If ethetype == 0x800, the parser switches
to the state parse ipv4. The packet’s appropriate header is

extracted as an outcome of traversing each stage. The values
stored in these memory structures are then accessible to other
pipelines [21].

In the subsequent parse ipv4 state, the parser covers the
packet header extraction for the transport protocols. It ex-
tracts the 20-byte field in the IPv4 header and examines the
Protocol field. The parser switches states to either parse tcp
or parse udp depending on the protocol equal 8w6 or 8w17,
respectively. If the protocol field matches either of the values,
then the parser switches to the accepted state, marking the
completion of extracting packet headers. Subsequently, the
extracted packet headers are used for pre-defined procedures
within the Ingress and Egress pipeline.

state start {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.ethertype) {

16w0x800: parse_ipv4;
default: accept; } }

state parse_ipv4 {
packet.extract(hdr.ipv4);
transition select(hdr.ipv4.protocol) {

8w17: parse_udp;
8w6: parse_tcp;
default: accept; } }

state parse_tcp {
packet.extract(hdr.tcp);
transition accept; }

state parse_udp {
packet.extract(hdr.udp);
transition accept; }

Listing 2. Extraction headers for layers 2-4.

B. Integrating Priority Queues and CoDel

We decided to integrate priority queues at the Ingress
stage so that actions like dropping packets can be taken
early enough before they enter the queue inside the Traffic
Manager. The Ingress pipeline, as part of the V1Model switch
architecture, can be split into two principal parts. The first
Ingress pipeline defines three match-action tables with the
associated actions. Table 1 maps packets to slice id. As a



packet’s IP source address matches a predefined value, the
action slicing assigns the packet to a particular slice id. The
module assigns a priority class to the packet based on the
slice id. Table 2 maps slice id to prioirty id. The match/ac-
tion table slice priority prepares the mapping of packets into
the corresponding priority queue within the traffic manager.
The action set priority fixates the priority field in metadata
to a predefined value [19]. While table 1 and table 2 target
specifically network slicing, table 3 is a standard one. The
table maps packets to the egress port of the switch. The table
is responsible for matching incoming packets to the correct
output port of the switch based on the slice ID and ingress port.
All three tables together enable a logical splitting of various
data streams within a network consisting of P4 switches. The
second ingress pipeline filters packets according to their slice
ID and the associated priority.

Inspired by [22], we integrate CoDel at the Egress because,
in this later stage, CoDel can still consider internal delays
caused by the Ingress and the Traffic Manager as inputs for
its algorithm. The single input that CoDel needs is the internal
delay, which could be retrieved from the Traffic Manager.
The internal delay is the time difference between when the
packet enters the parser and when the packet leaves the Traffic
Manager. Additionally, the Egress also collects queue depths
of all the priority queues inside the Traffic Manager.

C. Coordinating Priority Queues and CoDel

The second part of the Ingress pipeline is named Egress
feedback, which is responsible for receiving and assigning
congestion control notifications from the Egress pipeline back
to the Ingress module. We leverage the switch’s register to
store the Egress module stores these values and metrics as
user-defined metadata. Even though the original CoDel per-
forms probing to estimate link latency, we simplified this pro-
cess by assuming a uniform delay of packets. This allows for
avoiding the complexity of the estimation process and focusing
on the interaction between priority queuing disciplines. During
congestion in the network, we assume the same delays and
queue length occupancy within the traffic manager are present
for all incoming packets at a given time t0. For this reason,
the register values at time t0 can be assigned to multiple
packets simultaneously. The Ingress applies a dropping policy
for packets belonging to a specific slice ID by comparing the
actual queue length and the corresponding threshold of that
queue length. It means one can achieve differentiated services
for various slices based on queue length for packets in the
traffic manager.

As packets pass through the traffic manager’s queues, the
Ingress updates the packet’s delay and queue length into the
packet’s metadata. The Egress uses the metadata to estimate
the current state of the switch starting already at the Ingress,
leveraging registers and Ingress tables. During the congestion
phase, the Ingress drops several packets according to their
priority class and perceived queue length, and the Egress pro-
cesses the remaining processed according to the CoDel AQM
algorithm elaborated in section II. While pure priority queuing

works only with fixed queue lengths, the combination of
priority queuing and CoDel allows for dynamically adjusting
priority classes’ queue lengths, enabling an immediate reduc-
tion of queues by dropping packets [14]. While pure priority
queuing assigns packets to queues according to their priority
class, priority queueing with congestion awareness can directly
control the maximum queue threshold from which packets
are dropped off the priority classes. Both algorithms, priority
queueing with congestion awareness and CoDel AQM, enable
an immediate reduction of queues by dropping packets [14].

IV. PERFORMANCE EVALUATION

In this section, we seek the answer to how well our proposed
queuing management scheme enables isolation between slices
compared to state-of-the-art schemes. Toward this aim, we
evaluate the proposed scheme using P4 behavioral model
version 2 (bmv2), a reference P4 software switch that is
widely adopted for P4 prototype implementation. We then
introduce performance metrics, including latency, packet loss,
and throughput, to assess the performance of the studied
schemes. Afterward, we detail our measurement setup and
discuss the obtained results.

A. Metrics

To investigate the performance of the studied schemes,
we consider three key performance metrics: latency, packet
loss, and throughput. These performance metrics are widely
adopted to evaluate queuing management schemes [22], [18],
[23], [24], [25]. Specifically, a queuing management scheme
is assessed by its ability in terms of network congestion. Due
to the network congestion, network devices have to buffer
packets, thus increasing packet latency (i.e., queuing delay)
and reducing throughput. Moreover, network devices might
need to drop packets to alleviate the congestion, consequently
leading to packet loss. In this study, we used iPerf [26] to
measure latency, packet loss, and throughput.

1) Latency: Even though Round-trip-time (RTT) and one-
way-delay (OWD) are widely used in the literature to measure
latency, we adopted OWD, that only calculates the time taken
to transfer a packet from sender to receiver to provide a reliable
latency measurement. More specifically, we used iPerf in UDP
mode to measure the OWD. As both sender and receiver run
on the same machine, the OWD measurement does not require
clock synchronization between sender and receiver. The OWD
typically includes transmission delay, link propagation delay,
queuing delay, and processing delay. Considering the conges-
tion scenario in an emulation environment (i.e., Mininet), the
queuing delay dominates the OWD.

2) Packet loss: Packet loss represents lost packets that do
not reach the receiver when transferred over the network.
For queuing management, packet loss occurs when network
devices drop packets in the queues to alleviate network
congestion. In our study, the processing pipelines actively
remove packets by invoking the mark to drop() function when
a defined condition is met.



Fig. 2. Evaluation Topology with 3 senders and 3 receiver over a bottleneck link.

3) Network throughput: Network throughput measures the
amount of data transferred from sender to receiver within a
given time period. Queuing management schemes decide how
long packets stay in the queues and thus directly affect network
throughput.

B. Measurement Setup

Our evaluation attempts to understand the abilities of dif-
ferent queuing management schemes to differentiate services.
Toward this end, we conduct a measurement setup to assess
the performance of the studied queuing management schemes.
Specifically, we first describe network topology, followed
by the setting of different slices. Afterward, we detail our
emulation setup that is used to build the network topology. We
then present the settings for input and output data. Finally, we
describe four benchmark schemes: Baseline, Priority Queuing,
CoDel, and CoDel++.

To investigate the performance of the studied queuing
management schemes in network congestion, we consider a
bottleneck network topology [6]. Fig. 2 illustrates our network
topology, which consists of six emulated hosts and two P4
software switches. In Fig. 2, three hosts on the left (h1, h2,
and h3) are senders. Meanwhile, the other three hosts on the
right (r1, r2, and r3) are receivers. The senders are connected
to the receivers via two P4 software switches (s1 and s2).
Specifically, the senders are linked to s1, while the receivers
are linked to s2. The senders reach the receivers via the link
between s1 and s2.

We proceed to present the setting of different slices. Toward
this end, we set up three network slices (slice 1, slice 2, and
slice 3) sharing the same underlying network mentioned above.
Specifically, slice 1, slice 2, and slice 3 carry traffic from h1
to r1, h2 to r2, and h3 to r3, respectively. The P4 switches
s1 and s2 differentiate the slices by assigning an ID to each
slice in match/action tables to indicate the processing priority.
Accordingly, slice 1 has the highest processing priority, while
slice 3 has the lowest.

For the emulation setup, we consider an emulator that can
rapidly prototype our network topology. Mininet [27] is a

well-known tool that allows one to quickly emulate hosts,
links, and switches on a single machine. However, Mininet
does not support the P4 software switches for implementing
queuing management schemes. Consequently, we adopted P4-
Utils [28], an extension to Mininet that relies on the behavioral
model (bmv2) [29] to provide the P4 software switches.
Moreover, P4-Utils uses a reference compiler [30] to compile
programs deployed on the P4 software switches. To provide
isolation between slices, we installed forwarding rules on the
switches to ensure that only hosts in the same slice can
communicate with each other. We set the maximum link
bandwidth to mimic the network congestion to 5 Mbps. We
set the queue rate (i.e., the number of packets processed by
the queue in one second) to 500 PPS based on the maximum
link capacity.

We then describe the input data generated for different slices
and the output data obtained from the measurement. For the
input data, we used the iPerf client on senders to generate
three data streams (UDP traffic) for slice 1, slice 2, and slice
3, respectively. The bit rates used for the data streams of
slice 1, slice 2, and slice 3 are, in turn, 2 Mbps, 1 Mbps,
and 3 Mbps. The sum of the bit rates for all data streams (6
Mbps) exceeds the link capacity, thus leading to the queues
formed in the switches. To obtain the results, we used the iPerf
server on receivers to receive and analyze the traffic from the
senders. The experimental results represent the averages and
95% confidence intervals of 100 measurements, whereby each
measurement ran in 10 seconds.

We proceed to describe four scenarios that we carried out
to observe their performance for different slices:

• Baseline: This scheme uses default First-In-Fist-Out
(FIFO) queues in the P4 switches s1 and s2. Specifically,
the traffic manager in s1 and s2 sorts all incoming packets
according to their arrival and buffers them if the queues
form at the output port. Each FIFO queue can hold up to
1000 packets by default.

• Priority Queuing: We configured the P4 switches s1 and
s2, similar to the baseline scheme. Different priorities



have been assigned to the slices. In particular, slice 1 has
the highest priority, while slice 3 has the lowest priority.

• CoDel: We implemented CoDel [14] congestion control
algorithm in the P4 switches s1 and s2.

• CoDel++: We proposed and implemented a new queuing
management scheme that combines the priority queuing
scheme and CoDel.

Note that for CoDel and CoDel++, we fixed the number of
packets a queue can hold for each output port by setting the
maximum queue depth to 10000, similar to [22]. This setting
is larger than required to ensure that packet dropping is not
caused by the full buffers.

C. Results

1) Latency: We first investigate the performance of the
studied schemes in terms of latency. Fig. 3 shows the OWD
measurement results of the studied schemes for different slices.
Notably, Fig. 3 shows that CoDel++ performs the best for slice
1 among the studied schemes.

As CoDel and CoDel++ are two schemes that rely on a
congestion control algorithm, we observe from Fig. 3 that
CoDel and CoDel++ achieve better performance and obtain
more stable results than the baseline scheme. Specifically, the
OWD of CoDel for each slice is 448 ms. CoDel reduces the
OWD by 70% for each slice compared to the baseline scheme.
This superiority is because CoDel rapidly drops packets in the
queues to alleviate the congestion. Meanwhile, CoDel++ is the
combination of CoDel and the priority queuing scheme. Since
CoDel++ assigns the highest priority to slice 1, the OWD of
CoDel++ for slice 1 is less than for slice 2 and slice 3. As
expected, we observe from Fig. 3 that the OWD of CoDel++
is 251 ms for slice 1, 658 ms for slice 2, and 700 ms for slice
3. It is also worth noting that thanks to the priority queuing,
CoDel++ incurs less OWD for slice 1 than CoDel. However,
since slice 2 and slice 3 have lower priority than slice 1,
CoDel++ incurs higher OWD for slice 2 and slice 3 than for
CoDel.

We then investigate the performance of the baseline scheme
and the priority queuing scheme that exclude congestion con-
trol. Specifically, the baseline scheme performs worst among
the studied schemes. As illustrated in Fig. 3, the OWD of
the baseline scheme for each slice is varied from 624 ms to
2330 ms. This is expected as the baseline scheme does not
consider the isolation between slices. Consequently, the results
demonstrate the impact of network congestion on the latency
for all slices. Whereas priority queuing is the second-worst
scheme as it simply assigns the priority to each slice, i.e.,
slice 1 has the highest priority while slice 3 has the lowest
priority. As expected, the results in Fig. 3 show that the OWD
of the priority queuing scheme is 465 ms for slice 1, 495 ms
for slice 2, and 1128 ms for slice 3. We also observe from
Fig. 3, that the OWD for slice 3 tends to fluctuate due to its
lowest priority highly.

In summary, CoDel++ can overcome congestion and pro-
vides strong isolation between slices. For the practical deploy-

ment, CoDel++ can assign high priority to slices for latency-
sensitive use cases such as haptics.

Fig. 3. Latency of each slice in all four scenarios

2) Packet loss: We examine the performance of the studied
schemes for different slices in terms of packet loss. Fig. 4a
plots the packet loss of the studied schemes for different slices.
During the simulation, we observed that the total number of
packets for all incoming data streams is the maximum queue
depth for the baseline and the priority queuing scheme. As
expected, Fig. 4a shows that the baseline scheme and the
priority queuing scheme incur no packet loss for all slices.
Meanwhile, CoDel and CoDel++ incur packet loss due to
the use of the congestion control algorithm. Specifically, the
packet loss of CoDel is 28% for slice 1, 27% for slice 2, and
26% for slice 3. The packet losses of CoDel++ for slice 1,
slice 2, and slice 3 are in turns 0%, 8.1%, and 27%. As can
be seen, CoDel++ outperforms CoDel for slice 1 and slice 2
in terms of packet loss. Notably, compared to CoDel, when
combined with the priority queuing, CoDel++ incurs no packet
loss for slice 1 and only 8.1% packet loss for slice 2. Since
CoDel++ assigns the lowest priority to slice 3, we observe that
CoDel++ incurs 29% packet loss for slice 3.

In summary, the baseline scheme and the priority queu-
ing scheme outperform CoDel and CoDel++ in terms of
packet loss. However, in case of buffer overflow, the base-
line scheme and the priority queuing scheme have to drop
packets due to the lack of a congestion control algorithm.
Notably, CoDel++ tends to have more flexibility than CoDel.
Specifically, CoDel++ can allocate slices with low priority
to use cases that can tolerate packet loss, such as video
streaming. Meanwhile, high-prior slices are suitable for haptic
data streams, which are highly sensitive to delay and losses.

D. Throughput

We study the performance of the schemes for different slices
in terms of throughput. Fig. 4b plots the throughput of the
studied schemes measured in 10 seconds. It is worth noting



(a) (b)

Fig. 4. Packet loss (a) and Throughput (b) of each slice in all four scenarios.

that priority queuing shows a significant impact on throughput.
Specifically, we observe from Fig. 4b that the priority queuing
scheme achieves higher throughput for slice 1 and slice 2 than
the baseline scheme. Since slice 3 has the lowest priority, the
priority queuing scheme achieves similar throughput compared
to the baseline scheme. Meanwhile, thanks to the priority
queuing, CoDel++ performs better than CoDel for slice 1 and
slice 2 in terms of throughput. For slice 3, which has the lowest
priority, CoDel++ achieves lower throughput than CoDel due
to the packet loss increase. We also remark on the impact
of the congestion control algorithm on the throughput. The
results in Fig. 4b show that CoDel performs worse than the
baseline scheme and the queuing scheme for all slices in terms
of throughput. For instance, the throughput of CoDel is 1.41
Mbps for slice 1, 0.72 Mbps for slice 2, and 2.18 Mbps for
slice 3. Meanwhile, the throughput of the baseline scheme is
1.6 Mbps for slice 1, 0.81 Mbps for slice 2, and 2.43 Mbps for
slice 3. This is because CoDel tends to drop packets to alleviate
the congestion, consequently lowering the throughput.

In summary, we observe the impact of priority queuing and
congestion control on the throughput of the studied schemes.
Specifically, priority queuing could improve the throughput of
the schemes that rely on the congestion control algorithm.

V. CONCLUSION & FUTURE WORK

Future communication networks need to support multiple
modalities with different latency and packet loss requirements
to enable perceived real-time interactions between humans
and robots. However, state-of-the-art congestion control al-
gorithms, CoDel, apply the same policy for all modalities.
This work studies the impact of priority queueing in combi-
nation with congestion on multiple modalities. We leverage
programmable data planes, which can be programmed with
P4, allowing for implementing AQM and congestion control
algorithms in practical settings. Evaluation results show that

combining priority queuing and CoDel (or CoDel++) produces
superior results for high-priority data streams. CoDel++ re-
duces latency by roughly 60% and packet loss by half com-
pared to individual exploitation of AQM or CoDel individually.

This work suggests promising future studies, such as eval-
uating the performance of CoDel++ in practical testbeds
exploiting Tofino switches. We also plan to assess the impacts
of different priorities in finer granularities. Last but not least,
we will investigate more comprehensive topologies resembling
real-world networks and traffic conditions more closely.
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